|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class 1:
|
 |
Chains A, B, C, D:
E.C.2.7.7.-
- ?????
|
|
 |
 |
 |
 |
 |
Enzyme class 2:
|
 |
Chains A, B, C, D:
E.C.2.7.7.49
- RNA-directed Dna polymerase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
DNA(n) + a 2'-deoxyribonucleoside 5'-triphosphate = DNA(n+1) + diphosphate
|
 |
 |
 |
 |
 |
DNA(n)
|
+
|
2'-deoxyribonucleoside 5'-triphosphate
|
=
|
DNA(n+1)
|
+
|
diphosphate
|
|
 |
 |
 |
 |
 |
 |
 |
 |
Enzyme class 3:
|
 |
Chains A, B, C, D:
E.C.2.7.7.7
- DNA-directed Dna polymerase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
DNA(n) + a 2'-deoxyribonucleoside 5'-triphosphate = DNA(n+1) + diphosphate
|
 |
 |
 |
 |
 |
DNA(n)
|
+
|
2'-deoxyribonucleoside 5'-triphosphate
|
=
|
DNA(n+1)
|
+
|
diphosphate
|
|
 |
 |
 |
 |
 |
 |
 |
 |
Enzyme class 4:
|
 |
Chains A, B, C, D:
E.C.3.1.-.-
|
|
 |
 |
 |
 |
 |
Enzyme class 5:
|
 |
Chains A, B, C, D:
E.C.3.1.13.2
- exoribonuclease H.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
Exonucleolytic cleavage to 5'-phosphomonoester oligonucleotides in both 5'- to 3'- and 3'- to 5'-directions.
|
 |
 |
 |
 |
 |
Enzyme class 6:
|
 |
Chains A, B, C, D:
E.C.3.1.26.13
- retroviral ribonuclease H.
|
|
 |
 |
 |
 |
 |
Enzyme class 7:
|
 |
Chains A, B, C, D:
E.C.3.4.23.16
- HIV-1 retropepsin.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
Specific for a P1 residue that is hydrophobic, and P1' variable, but often Pro.
|
 |
 |
 |
 |
 |
 |
 |
|
Note, where more than one E.C. class is given (as above), each may
correspond to a different protein domain or, in the case of polyprotein
precursors, to a different mature protein.
|
|
 |
|
Molecule diagrams generated from .mol files obtained from the
KEGG ftp site
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
| |
|
DOI no:
|
Science
282:1669-1675
(1998)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance.
|
|
H.Huang,
R.Chopra,
G.L.Verdine,
S.C.Harrison.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
A combinatorial disulfide cross-linking strategy was used to prepare a stalled
complex of human immunodeficiency virus-type 1 (HIV-1) reverse transcriptase
with a DNA template:primer and a deoxynucleoside triphosphate (dNTP), and the
crystal structure of the complex was determined at a resolution of 3.2
angstroms. The presence of a dideoxynucleotide at the 3'-primer terminus allows
capture of a state in which the substrates are poised for attack on the dNTP.
Conformational changes that accompany formation of the catalytic complex produce
distinct clusters of the residues that are altered in viruses resistant to
nucleoside analog drugs. The positioning of these residues in the neighborhood
of the dNTP helps to resolve some long-standing puzzles about the molecular
basis of resistance. The resistance mutations are likely to influence binding or
reactivity of the inhibitors, relative to normal dNTPs, and the clustering of
the mutations correlates with the chemical structure of the drug.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 1.
Fig. 1. RT-DNA tethering reaction. Chemistry of disulfide
bond formation between the side chain of an engineered cysteine
residue (blue) in helix H (gold) of RT to a thiol group in the
minor groove of DNA (activated as the mixed disulfide), which is
tethered to N2 of a dG (green) in the template:primer.
|
 |
Figure 6.
Fig. 6. Sites of mutations conferring resistance to various
nucleoside analog drugs. (A) "Front" view, corresponding to the
orientation in Fig. 4. The polypeptide backbone of the fingers
and palm domains (residues 1 to 235) is shown as a red worm, and
locations of resistance mutations are indicated by colored
squares. The substrates are shown in Corey-Pauling-Koltun
representation, with colors as in Fig. 3. The color code for
mutations is as follows: light blue for resistance to ddI, ddC,
and 3TC; blue for resistance to AZT; and violet for cross
resistance to AZT and ddI or ddC. The location of the NNRTI
binding site is shown by an arrow. Side chains of the residues
at which mutations affect dideoxynucleotide sensitivity project
forward: L74 bears on the templating base, and V at this
position will also shift Q151 and R72 and hence the dNTP itself;
M184 contacts the backbone and base at the primer terminus, and
mutation to I or V will also generate a contact to the sugar
ring of the dNTP; K65 contacts the -phosphate;
and T69D (resistance to ddC) can probably best be explained by
assuming a conformational effect on the fingers loop,
transmitted to the dNTP by contacts from other fingers residues.
(B) "Back" view, from the direction opposite to the one in (A).
Side chains of AZT resistance mutations project toward this
surface. One of the earliest mutations that appears in patients
on AZT monotherapy is K70R. The Lys70 residue projects directly
outward in the current model, but mutation to arginine (with
five hydrogen-bond donors in fixed orientations on the
guanidinium group) could readily induce side-chain
reorientation, with contacts to Asp113 or the -phosphate.
Subsequent appearance of T215Y/F confers higher levels of
resistance. This mutation, likely to affect the rear of the 3'
pocket, is frequently "tuned" by appearance of others: K210W
(which probably stabilizes the alteration at 215), M41L, and
D67N and K219Q (which likely affect the interaction of fingers
and palm and hence the formation of the 3' pocket during the
polymerization cycle) (16). Figure 4A was prepared with GRASP
(50), and Figs. 3, 4B, 5, and 6, with RIBBONS (51).
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from the AAAs:
Science
(1998,
282,
1669-1675)
copyright 1998.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
M.Lapkouski,
L.Tian,
J.T.Miller,
S.F.Le Grice,
and
W.Yang
(2013).
Complexes of HIV-1 RT, NNRTI and RNA/DNA hybrid reveal a structure compatible with RNA degradation.
|
| |
Nat Struct Mol Biol,
20,
230-236.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Engelman,
and
P.Cherepanov
(2012).
The structural biology of HIV-1: mechanistic and therapeutic insights.
|
| |
Nat Rev Microbiol,
10,
279-290.
|
 |
|
|
|
|
 |
C.Yi,
B.Chen,
B.Qi,
W.Zhang,
G.Jia,
L.Zhang,
C.J.Li,
A.R.Dinner,
C.G.Yang,
and
C.He
(2012).
Duplex interrogation by a direct DNA repair protein in search of base damage.
|
| |
Nat Struct Mol Biol,
19,
671-676.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.Das,
S.E.Martinez,
J.D.Bauman,
and
E.Arnold
(2012).
HIV-1 reverse transcriptase complex with DNA and nevirapine reveals non-nucleoside inhibition mechanism.
|
| |
Nat Struct Mol Biol,
19,
253-259.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.Nakamura,
Y.Zhao,
Y.Yamagata,
Y.J.Hua,
and
W.Yang
(2012).
Watching DNA polymerase η make a phosphodiester bond.
|
| |
Nature,
487,
196-201.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Hachiya,
E.N.Kodama,
M.M.Schuckmann,
K.A.Kirby,
E.Michailidis,
Y.Sakagami,
S.Oka,
K.Singh,
and
S.G.Sarafianos
(2011).
K70Q adds high-level tenofovir resistance to "Q151M complex" HIV reverse transcriptase through the enhanced discrimination mechanism.
|
| |
PLoS One,
6,
e16242.
|
 |
|
|
|
|
 |
H.Chunduri,
C.Crumpacker,
and
P.L.Sharma
(2011).
Reverse transcriptase mutation K65N confers a decreased replication capacity to HIV-1 in comparison to K65R due to a decreased RT processivity.
|
| |
Virology,
414,
34-41.
|
 |
|
|
|
|
 |
H.Chunduri,
D.Rimland,
V.Nurpeisov,
C.S.Crumpacker,
and
P.L.Sharma
(2011).
A Leu to Ile but not Leu to Val change at HIV-1 reverse transcriptase codon 74 in the background of K65R mutation leads to an increased processivity of K65R+L74I enzyme and a replication competent virus.
|
| |
Virol J,
8,
33.
|
 |
|
|
|
|
 |
J.Xie,
P.Zhang,
C.Li,
Q.Huang,
R.Zhou,
and
T.Peng
(2011).
Mechanistic insights into the roles of three linked single-stranded template binding residues of MMLV reverse transcriptase in misincorporation and mispair extension fidelity of DNA synthesis.
|
| |
Gene,
479,
47-56.
|
 |
|
|
|
|
 |
M.Mason,
A.Schuller,
and
E.Skordalakes
(2011).
Telomerase structure function.
|
| |
Curr Opin Struct Biol,
21,
92.
|
 |
|
|
|
|
 |
S.Ibe,
and
W.Sugiura
(2011).
Clinical significance of HIV reverse-transcriptase inhibitor-resistance mutations.
|
| |
Future Microbiol,
6,
295-315.
|
 |
|
|
|
|
 |
S.Yang,
M.Froeyen,
E.Lescrinier,
P.Marlière,
and
P.Herdewijn
(2011).
3-Phosphono-L-alanine as pyrophosphate mimic for DNA synthesis using HIV-1 reverse transcriptase.
|
| |
Org Biomol Chem,
9,
111-119.
|
 |
|
|
|
|
 |
A.Giraut,
and
P.Herdewijn
(2010).
Influence of the linkage between leaving group and nucleoside on substrate efficiency for incorporation in DNA catalyzed by reverse transcriptase.
|
| |
Chembiochem,
11,
1399-1403.
|
 |
|
|
|
|
 |
A.Giraut,
X.P.Song,
M.Froeyen,
P.Marlière,
and
P.Herdewijn
(2010).
Iminodiacetic-phosphoramidates as metabolic prototypes for diversifying nucleic acid polymerization in vivo.
|
| |
Nucleic Acids Res,
38,
2541-2550.
|
 |
|
|
|
|
 |
A.Herschhorn,
and
A.Hizi
(2010).
Retroviral reverse transcriptases.
|
| |
Cell Mol Life Sci,
67,
2717-2747.
|
 |
|
|
|
|
 |
A.J.Acosta-Hoyos,
and
W.A.Scott
(2010).
The Role of Nucleotide Excision by Reverse Transcriptase in HIV Drug Resistance.
|
| |
Viruses,
2,
372-394.
|
 |
|
|
|
|
 |
A.J.Kandathil,
A.P.Joseph,
R.Kannangai,
N.Srinivasan,
O.C.Abraham,
S.A.Pulimood,
and
G.Sridharan
(2010).
HIV reverse transcriptase: Structural interpretation of drug resistant genetic variants from India.
|
| |
Bioinformation,
4,
36-45.
|
 |
|
|
|
|
 |
A.K.Upadhyay,
T.T.Talele,
and
V.N.Pandey
(2010).
Impact of template overhang-binding region of HIV-1 RT on the binding and orientation of the duplex region of the template-primer.
|
| |
Mol Cell Biochem,
338,
19-33.
|
 |
|
|
|
|
 |
A.W.Walsh,
D.R.Langley,
R.J.Colonno,
and
D.J.Tenney
(2010).
Mechanistic characterization and molecular modeling of hepatitis B virus polymerase resistance to entecavir.
|
| |
PLoS One,
5,
e9195.
|
 |
|
|
|
|
 |
G.N.Roviello,
S.Di Gaetano,
D.Capasso,
A.Cesarani,
E.M.Bucci,
and
C.Pedone
(2010).
Synthesis, spectroscopic studies and biological activity of a novel nucleopeptide with Moloney murine leukemia virus reverse transcriptase inhibitory activity.
|
| |
Amino Acids,
38,
1489-1496.
|
 |
|
|
|
|
 |
H.Zhang,
and
F.P.Guengerich
(2010).
Effect of N2-guanyl modifications on early steps in catalysis of polymerization by Sulfolobus solfataricus P2 DNA polymerase Dpo4 T239W.
|
| |
J Mol Biol,
395,
1007-1018.
|
 |
|
|
|
|
 |
J.T.Olimpo,
and
J.J.DeStefano
(2010).
Duplex structural differences and not 2'-hydroxyls explain the more stable binding of HIV-reverse transcriptase to RNA-DNA versus DNA-DNA.
|
| |
Nucleic Acids Res,
38,
4426-4435.
|
 |
|
|
|
|
 |
K.A.Delviks-Frankenberry,
G.N.Nikolenko,
and
V.K.Pathak
(2010).
The "Connection" Between HIV Drug Resistance and RNase H.
|
| |
Viruses,
2,
1476-1503.
|
 |
|
|
|
|
 |
K.A.Johnson
(2010).
The kinetic and chemical mechanism of high-fidelity DNA polymerases.
|
| |
Biochim Biophys Acta,
1804,
1041-1048.
|
 |
|
|
|
|
 |
K.Singh,
B.Marchand,
K.A.Kirby,
E.Michailidis,
and
S.G.Sarafianos
(2010).
Structural Aspects of Drug Resistance and Inhibition of HIV-1 Reverse Transcriptase.
|
| |
Viruses,
2,
606-638.
|
 |
|
|
|
|
 |
M.Götte,
J.W.Rausch,
B.Marchand,
S.Sarafianos,
and
S.F.Le Grice
(2010).
Reverse transcriptase in motion: conformational dynamics of enzyme-substrate interactions.
|
| |
Biochim Biophys Acta,
1804,
1202-1212.
|
 |
|
|
|
|
 |
M.Mitchell,
A.Gillis,
M.Futahashi,
H.Fujiwara,
and
E.Skordalakes
(2010).
Structural basis for telomerase catalytic subunit TERT binding to RNA template and telomeric DNA.
|
| |
Nat Struct Mol Biol,
17,
513-518.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Mukaide,
Y.Tanaka,
T.Shin-I,
M.F.Yuen,
F.Kurbanov,
O.Yokosuka,
M.Sata,
Y.Karino,
G.Yamada,
K.Sakaguchi,
E.Orito,
M.Inoue,
S.Baqai,
C.L.Lai,
and
M.Mizokami
(2010).
Mechanism of entecavir resistance of hepatitis B virus with viral breakthrough as determined by long-term clinical assessment and molecular docking simulation.
|
| |
Antimicrob Agents Chemother,
54,
882-889.
|
 |
|
|
|
|
 |
M.W.Kellinger,
and
K.A.Johnson
(2010).
Nucleotide-dependent conformational change governs specificity and analog discrimination by HIV reverse transcriptase.
|
| |
Proc Natl Acad Sci U S A,
107,
7734-7739.
|
 |
|
|
|
|
 |
M.Yokoyama,
H.Mori,
and
H.Sato
(2010).
Allosteric regulation of HIV-1 reverse transcriptase by ATP for nucleotide selection.
|
| |
PLoS One,
5,
e8867.
|
 |
|
|
|
|
 |
P.Gong,
and
O.B.Peersen
(2010).
Structural basis for active site closure by the poliovirus RNA-dependent RNA polymerase.
|
| |
Proc Natl Acad Sci U S A,
107,
22505-22510.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
P.R.Daga,
J.Duan,
and
R.J.Doerksen
(2010).
Computational model of hepatitis B virus DNA polymerase: molecular dynamics and docking to understand resistant mutations.
|
| |
Protein Sci,
19,
796-807.
|
 |
|
|
|
|
 |
R.Hu,
F.Barbault,
F.Maurel,
M.Delamar,
and
R.Zhang
(2010).
Molecular dynamics simulations of 2-amino-6-arylsulphonylbenzonitriles analogues as HIV inhibitors: interaction modes and binding free energies.
|
| |
Chem Biol Drug Des,
76,
518-526.
|
 |
|
|
|
|
 |
S.Chung,
M.Wendeler,
J.W.Rausch,
G.Beilhartz,
M.Gotte,
B.R.O'Keefe,
A.Bermingham,
J.A.Beutler,
S.Liu,
X.Zhuang,
and
S.F.Le Grice
(2010).
Structure-activity analysis of vinylogous urea inhibitors of human immunodeficiency virus-encoded ribonuclease H.
|
| |
Antimicrob Agents Chemother,
54,
3913-3921.
|
 |
|
|
|
|
 |
S.J.Schultz,
M.Zhang,
and
J.J.Champoux
(2010).
Multiple nucleotide preferences determine cleavage-site recognition by the HIV-1 and M-MuLV RNases H.
|
| |
J Mol Biol,
397,
161-178.
|
 |
|
|
|
|
 |
S.K.Perumal,
H.Yue,
Z.Hu,
M.M.Spiering,
and
S.J.Benkovic
(2010).
Single-molecule studies of DNA replisome function.
|
| |
Biochim Biophys Acta,
1804,
1094-1112.
|
 |
|
|
|
|
 |
S.Kim,
C.M.Schroeder,
and
X.S.Xie
(2010).
Single-molecule study of DNA polymerization activity of HIV-1 reverse transcriptase on DNA templates.
|
| |
J Mol Biol,
395,
995.
|
 |
|
|
|
|
 |
S.Liu,
B.T.Harada,
J.T.Miller,
S.F.Le Grice,
and
X.Zhuang
(2010).
Initiation complex dynamics direct the transitions between distinct phases of early HIV reverse transcription.
|
| |
Nat Struct Mol Biol,
17,
1453-1460.
|
 |
|
|
|
|
 |
S.N.Stumpp,
B.Heyn,
and
S.Brakmann
(2010).
Activity-based selection of HIV-1 reverse transcriptase variants with decreased polymerization fidelity.
|
| |
Biol Chem,
391,
665-674.
|
 |
|
|
|
|
 |
S.Rasheedi,
M.Suragani,
S.K.Haq,
Sachchidanand,
R.Bhardwaj,
S.E.Hasnain,
and
N.Z.Ehtesham
(2010).
Expression, purification and ligand binding properties of the recombinant translation initiation factor (PeIF5B) from Pisum sativum.
|
| |
Mol Cell Biochem,
344,
33-41.
|
 |
|
|
|
|
 |
V.A.Braz,
L.A.Holladay,
and
M.D.Barkley
(2010).
Efavirenz binding to HIV-1 reverse transcriptase monomers and dimers.
|
| |
Biochemistry,
49,
601-610.
|
 |
|
|
|
|
 |
V.Svicher,
C.Alteri,
A.Artese,
F.Forbici,
M.M.Santoro,
D.Schols,
K.Van Laethem,
S.Alcaro,
G.Costa,
C.Tommasi,
M.Zaccarelli,
P.Narciso,
A.Antinori,
F.Ceccherini-Silberstein,
J.Balzarini,
and
C.F.Perno
(2010).
Different evolution of genotypic resistance profiles to emtricitabine versus lamivudine in tenofovir-containing regimens.
|
| |
J Acquir Immune Defic Syndr,
55,
336-344.
|
 |
|
|
|
|
 |
X.Ding,
L.Jiang,
C.Ke,
Z.Yang,
C.Lei,
K.Cao,
J.Xu,
L.Xu,
X.Yang,
Y.Zhang,
P.Huang,
W.Huang,
X.Zhu,
Z.He,
L.Liu,
J.Li,
J.Yuan,
J.Wu,
X.Tang,
and
M.Li
(2010).
Amino acid sequence analysis and identification of mutations under positive selection in hemagglutinin of 2009 influenza A (H1N1) isolates.
|
| |
Virus Genes,
41,
329-340.
|
 |
|
|
|
|
 |
X.Tu,
K.Das,
Q.Han,
J.D.Bauman,
A.D.Clark,
X.Hou,
Y.V.Frenkel,
B.L.Gaffney,
R.A.Jones,
P.L.Boyer,
S.H.Hughes,
S.G.Sarafianos,
and
E.Arnold
(2010).
Structural basis of HIV-1 resistance to AZT by excision.
|
| |
Nat Struct Mol Biol,
17,
1202-1209.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
Y.Qi,
M.C.Spong,
K.Nam,
M.Karplus,
and
G.L.Verdine
(2010).
Entrapment and structure of an extrahelical guanine attempting to enter the active site of a bacterial DNA glycosylase, MutM.
|
| |
J Biol Chem,
285,
1468-1478.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Alian,
S.L.Griner,
V.Chiang,
M.Tsiang,
G.Jones,
G.Birkus,
R.Geleziunas,
A.D.Leavitt,
and
R.M.Stroud
(2009).
Catalytically-active complex of HIV-1 integrase with a viral DNA substrate binds anti-integrase drugs.
|
| |
Proc Natl Acad Sci U S A,
106,
8192-8197.
|
 |
|
|
|
|
 |
A.Ivetac,
and
J.A.McCammon
(2009).
Elucidating the inhibition mechanism of HIV-1 non-nucleoside reverse transcriptase inhibitors through multicopy molecular dynamics simulations.
|
| |
J Mol Biol,
388,
644-658.
|
 |
|
|
|
|
 |
A.Onafuwa-Nuga,
and
A.Telesnitsky
(2009).
The remarkable frequency of human immunodeficiency virus type 1 genetic recombination.
|
| |
Microbiol Mol Biol Rev,
73,
451.
|
 |
|
|
|
|
 |
C.Castro,
E.D.Smidansky,
J.J.Arnold,
K.R.Maksimchuk,
I.Moustafa,
A.Uchida,
M.Götte,
W.Konigsberg,
and
C.E.Cameron
(2009).
Nucleic acid polymerases use a general acid for nucleotidyl transfer.
|
| |
Nat Struct Mol Biol,
16,
212-218.
|
 |
|
|
|
|
 |
C.Yi,
C.G.Yang,
and
C.He
(2009).
A non-heme iron-mediated chemical demethylation in DNA and RNA.
|
| |
Acc Chem Res,
42,
519-529.
|
 |
|
|
|
|
 |
D.M.Himmel,
K.A.Maegley,
T.A.Pauly,
J.D.Bauman,
K.Das,
C.Dharia,
A.D.Clark,
K.Ryan,
M.J.Hickey,
R.A.Love,
S.H.Hughes,
S.Bergqvist,
and
E.Arnold
(2009).
Structure of HIV-1 reverse transcriptase with the inhibitor beta-Thujaplicinol bound at the RNase H active site.
|
| |
Structure,
17,
1625-1635.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
E.P.Tchesnokov,
A.Obikhod,
I.Massud,
A.Lisco,
C.Vanpouille,
B.Brichacek,
J.Balzarini,
C.McGuigan,
M.Derudas,
L.Margolis,
R.F.Schinazi,
and
M.Götte
(2009).
Mechanisms associated with HIV-1 resistance to acyclovir by the V75I mutation in reverse transcriptase.
|
| |
J Biol Chem,
284,
21496-21504.
|
 |
|
|
|
|
 |
G.Yang,
E.Paintsil,
G.E.Dutschman,
S.P.Grill,
C.J.Wang,
J.Wang,
H.Tanaka,
T.Hamasaki,
M.Baba,
and
Y.C.Cheng
(2009).
Impact of novel human immunodeficiency virus type 1 reverse transcriptase mutations P119S and T165A on 4'-ethynylthymidine analog resistance profile.
|
| |
Antimicrob Agents Chemother,
53,
4640-4646.
|
 |
|
|
|
|
 |
J.J.Champoux,
and
S.J.Schultz
(2009).
Ribonuclease H: properties, substrate specificity and roles in retroviral reverse transcription.
|
| |
FEBS J,
276,
1506-1516.
|
 |
|
|
|
|
 |
J.M.Seckler,
K.J.Howard,
M.D.Barkley,
and
P.L.Wintrode
(2009).
Solution structural dynamics of HIV-1 reverse transcriptase heterodimer.
|
| |
Biochemistry,
48,
7646-7655.
|
 |
|
|
|
|
 |
J.W.Rausch,
L.Chelico,
M.F.Goodman,
and
S.F.Le Grice
(2009).
Dissecting APOBEC3G substrate specificity by nucleoside analog interference.
|
| |
J Biol Chem,
284,
7047-7058.
|
 |
|
|
|
|
 |
K.A.Malecka,
W.C.Ho,
and
R.Marmorstein
(2009).
Crystal structure of a p53 core tetramer bound to DNA.
|
| |
Oncogene,
28,
325-333.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.B.Turner,
H.Y.Yi-Brunozzi,
R.G.Brinson,
J.P.Marino,
D.Fabris,
and
S.F.Le Grice
(2009).
SHAMS: combining chemical modification of RNA with mass spectrometry to examine polypurine tract-containing RNA/DNA hybrids.
|
| |
RNA,
15,
1605-1613.
|
 |
|
|
|
|
 |
K.Das,
R.P.Bandwar,
K.L.White,
J.Y.Feng,
S.G.Sarafianos,
S.Tuske,
X.Tu,
A.D.Clark,
P.L.Boyer,
X.Hou,
B.L.Gaffney,
R.A.Jones,
M.D.Miller,
S.H.Hughes,
and
E.Arnold
(2009).
Structural basis for the role of the K65r mutation in HIV-1 reverse transcriptase polymerization, excision antagonism, and tenofovir resistance.
|
| |
J Biol Chem,
284,
35092-35100.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.Yasukawa,
M.Mizuno,
and
K.Inouye
(2009).
Characterization of Moloney murine leukaemia virus/avian myeloblastosis virus chimeric reverse transcriptases.
|
| |
J Biochem,
145,
315-324.
|
 |
|
|
|
|
 |
L.L.Dunn,
M.J.McWilliams,
K.Das,
E.Arnold,
and
S.H.Hughes
(2009).
Mutations in the thumb allow human immunodeficiency virus type 1 reverse transcriptase to be cleaved by protease in virions.
|
| |
J Virol,
83,
12336-12344.
|
 |
|
|
|
|
 |
P.L.Sharma,
J.H.Nettles,
A.Feldman,
K.Rapp,
and
R.F.Schinazi
(2009).
Comparative analysis of in vitro processivity of HIV-1 reverse transcriptases containing mutations 65R, 74V, 184V and 65R+74V.
|
| |
Antiviral Res,
83,
317-323.
|
 |
|
|
|
|
 |
R.G.Brinson,
K.B.Turner,
H.Y.Yi-Brunozzi,
S.F.Le Grice,
D.Fabris,
and
J.P.Marino
(2009).
Probing anomalous structural features in polypurine tract-containing RNA-DNA hybrids with neomycin B.
|
| |
Biochemistry,
48,
6988-6997.
|
 |
|
|
|
|
 |
R.Shahriar,
S.Y.Rhee,
T.F.Liu,
W.J.Fessel,
A.Scarsella,
W.Towner,
S.P.Holmes,
A.R.Zolopa,
and
R.W.Shafer
(2009).
Nonpolymorphic human immunodeficiency virus type 1 protease and reverse transcriptase treatment-selected mutations.
|
| |
Antimicrob Agents Chemother,
53,
4869-4878.
|
 |
|
|
|
|
 |
S.G.Sarafianos,
B.Marchand,
K.Das,
D.M.Himmel,
M.A.Parniak,
S.H.Hughes,
and
E.Arnold
(2009).
Structure and function of HIV-1 reverse transcriptase: molecular mechanisms of polymerization and inhibition.
|
| |
J Mol Biol,
385,
693-713.
|
 |
|
|
|
|
 |
S.J.Schultz,
M.Zhang,
and
J.J.Champoux
(2009).
Preferred sequences within a defined cleavage window specify DNA 3' end-directed cleavages by retroviral RNases H.
|
| |
J Biol Chem,
284,
32225-32238.
|
 |
|
|
|
|
 |
S.M.McDonald,
Y.J.Tao,
and
J.T.Patton
(2009).
The ins and outs of four-tunneled Reoviridae RNA-dependent RNA polymerases.
|
| |
Curr Opin Struct Biol,
19,
775-782.
|
 |
|
|
|
|
 |
S.Michielssens,
N.Tien Trung,
M.Froeyen,
P.Herdewijn,
M.Tho Nguyen,
and
A.Ceulemans
(2009).
Hydrolysis of aspartic acid phosphoramidate nucleotides: a comparative quantum chemical study.
|
| |
Phys Chem Chem Phys,
11,
7274-7285.
|
 |
|
|
|
|
 |
T.Matamoros,
M.Nevot,
M.A.Martínez,
and
L.Menéndez-Arias
(2009).
Thymidine analogue resistance suppression by V75I of HIV-1 reverse transcriptase: effects of substituting valine 75 on stavudine excision and discrimination.
|
| |
J Biol Chem,
284,
32792-32802.
|
 |
|
|
|
|
 |
T.T.Talele,
A.Upadhyay,
and
V.N.Pandey
(2009).
Influence of the RNase H domain of retroviral reverse transcriptases on the metal specificity and substrate selection of their polymerase domains.
|
| |
Virol J,
6,
159.
|
 |
|
|
|
|
 |
V.Varghese,
Y.Mitsuya,
R.Shahriar,
M.H.Bachmann,
W.J.Fessel,
R.M.Kagan,
and
R.W.Shafer
(2009).
Human immunodeficiency virus type 1 isolates with the reverse transcriptase (RT) mutation Q145M retain nucleoside and nonnucleoside RT inhibitor susceptibility.
|
| |
Antimicrob Agents Chemother,
53,
2196-2198.
|
 |
|
|
|
|
 |
X.Hou,
G.Wang,
B.L.Gaffney,
and
R.A.Jones
(2009).
Synthesis of guanosine and deoxyguanosine phosphoramidites with cross-linkable thioalkyl tethers for direct incorporation into RNA and DNA.
|
| |
Nucleosides Nucleotides Nucleic Acids,
28,
1076-1094.
|
 |
|
|
|
|
 |
Y.C.Tsai,
Z.Jin,
and
K.A.Johnson
(2009).
Site-specific labeling of T7 DNA polymerase with a conformationally sensitive fluorophore and its use in detecting single-nucleotide polymorphisms.
|
| |
Anal Biochem,
384,
136-144.
|
 |
|
|
|
|
 |
Y.S.Lee,
W.D.Kennedy,
and
Y.W.Yin
(2009).
Structural insight into processive human mitochondrial DNA synthesis and disease-related polymerase mutations.
|
| |
Cell,
139,
312-324.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Hachiya,
E.N.Kodama,
S.G.Sarafianos,
M.M.Schuckmann,
Y.Sakagami,
M.Matsuoka,
M.Takiguchi,
H.Gatanaga,
and
S.Oka
(2008).
Amino acid mutation N348I in the connection subdomain of human immunodeficiency virus type 1 reverse transcriptase confers multiclass resistance to nucleoside and nonnucleoside reverse transcriptase inhibitors.
|
| |
J Virol,
82,
3261-3270.
|
 |
|
|
|
|
 |
A.Sharon,
and
C.K.Chu
(2008).
Understanding the molecular basis of HBV drug resistance by molecular modeling.
|
| |
Antiviral Res,
80,
339-353.
|
 |
|
|
|
|
 |
C.Dash,
B.J.Scarth,
C.Badorrek,
M.Götte,
and
S.F.Le Grice
(2008).
Examining the ribonuclease H primer grip of HIV-1 reverse transcriptase by charge neutralization of RNA/DNA hybrids.
|
| |
Nucleic Acids Res,
36,
6363-6371.
|
 |
|
|
|
|
 |
C.G.Yang,
C.Yi,
E.M.Duguid,
C.T.Sullivan,
X.Jian,
P.A.Rice,
and
C.He
(2008).
Crystal structures of DNA/RNA repair enzymes AlkB and ABH2 bound to dsDNA.
|
| |
Nature,
452,
961-965.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.Michalowski,
R.Chitima-Matsiga,
D.M.Held,
and
D.H.Burke
(2008).
Novel bimodular DNA aptamers with guanosine quadruplexes inhibit phylogenetically diverse HIV-1 reverse transcriptases.
|
| |
Nucleic Acids Res,
36,
7124-7135.
|
 |
|
|
|
|
 |
E.A.Abbondanzieri,
G.Bokinsky,
J.W.Rausch,
J.X.Zhang,
S.F.Le Grice,
and
X.Zhuang
(2008).
Dynamic binding orientations direct activity of HIV reverse transcriptase.
|
| |
Nature,
453,
184-189.
|
 |
|
|
|
|
 |
E.Arnold,
and
S.G.Sarafianos
(2008).
Molecular biology: an HIV secret uncovered.
|
| |
Nature,
453,
169-170.
|
 |
|
|
|
|
 |
E.S.Svarovskaia,
J.Y.Feng,
N.A.Margot,
F.Myrick,
D.Goodman,
J.K.Ly,
K.L.White,
N.Kutty,
R.Wang,
K.Borroto-Esoda,
and
M.D.Miller
(2008).
The A62V and S68G mutations in HIV-1 reverse transcriptase partially restore the replication defect associated with the K65R mutation.
|
| |
J Acquir Immune Defic Syndr,
48,
428-436.
|
 |
|
|
|
|
 |
G.Yang,
J.Wang,
Y.Cheng,
G.E.Dutschman,
H.Tanaka,
M.Baba,
and
Y.C.Cheng
(2008).
Mechanism of inhibition of human immunodeficiency virus type 1 reverse transcriptase by a stavudine analogue, 4'-ethynyl stavudine triphosphate.
|
| |
Antimicrob Agents Chemother,
52,
2035-2042.
|
 |
|
|
|
|
 |
H.Y.Yi-Brunozzi,
R.G.Brinson,
D.M.Brabazon,
D.Lener,
S.F.Le Grice,
and
J.P.Marino
(2008).
High-resolution NMR analysis of the conformations of native and base analog substituted retroviral and LTR-retrotransposon PPT primers.
|
| |
Chem Biol,
15,
254-262.
|
 |
|
|
|
|
 |
J.Cramer,
G.Rangam,
A.Marx,
and
T.Restle
(2008).
Varied active-site constraints in the klenow fragment of E. coli DNA polymerase I and the lesion-bypass Dbh DNA polymerase.
|
| |
Chembiochem,
9,
1243-1250.
|
 |
|
|
|
|
 |
J.D.Bauman,
K.Das,
W.C.Ho,
M.Baweja,
D.M.Himmel,
A.D.Clark,
D.A.Oren,
P.L.Boyer,
S.H.Hughes,
A.J.Shatkin,
and
E.Arnold
(2008).
Crystal engineering of HIV-1 reverse transcriptase for structure-based drug design.
|
| |
Nucleic Acids Res,
36,
5083-5092.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.J.DeStefano,
and
G.R.Nair
(2008).
Novel aptamer inhibitors of human immunodeficiency virus reverse transcriptase.
|
| |
Oligonucleotides,
18,
133-144.
|
 |
|
|
|
|
 |
J.Mendieta,
C.E.Cases-González,
T.Matamoros,
G.Ramírez,
and
L.Menéndez-Arias
(2008).
A Mg2+-induced conformational switch rendering a competent DNA polymerase catalytic complex.
|
| |
Proteins,
71,
565-574.
|
 |
|
|
|
|
 |
J.Oh,
M.J.McWilliams,
J.G.Julias,
and
S.H.Hughes
(2008).
Mutations in the U5 region adjacent to the primer binding site affect tRNA cleavage by human immunodeficiency virus type 1 reverse transcriptase in vivo.
|
| |
J Virol,
82,
719-727.
|
 |
|
|
|
|
 |
L.Gao,
M.N.Hanson,
M.Balakrishnan,
P.L.Boyer,
B.P.Roques,
S.H.Hughes,
B.Kim,
and
R.A.Bambara
(2008).
Apparent defects in processive DNA synthesis, strand transfer, and primer elongation of Met-184 mutants of HIV-1 reverse transcriptase derive solely from a dNTP utilization defect.
|
| |
J Biol Chem,
283,
9196-9205.
|
 |
|
|
|
|
 |
M.A.McMahon,
J.D.Siliciano,
J.Lai,
J.O.Liu,
J.T.Stivers,
R.F.Siliciano,
and
R.M.Kohli
(2008).
The antiherpetic drug acyclovir inhibits HIV replication and selects the V75I reverse transcriptase multidrug resistance mutation.
|
| |
J Biol Chem,
283,
31289-31293.
|
 |
|
|
|
|
 |
M.C.Huigen,
P.M.van Ham,
L.de Graaf,
R.M.Kagan,
C.A.Boucher,
and
M.Nijhuis
(2008).
Identification of a novel resistance (E40F) and compensatory (K43E) substitution in HIV-1 reverse transcriptase.
|
| |
Retrovirology,
5,
20.
|
 |
|
|
|
|
 |
M.Ehteshami,
B.J.Scarth,
E.P.Tchesnokov,
C.Dash,
S.F.Le Grice,
S.Hallenberger,
D.Jochmans,
and
M.Götte
(2008).
Mutations M184V and Y115F in HIV-1 reverse transcriptase discriminate against "nucleotide-competing reverse transcriptase inhibitors".
|
| |
J Biol Chem,
283,
29904-29911.
|
 |
|
|
|
|
 |
M.Ehteshami,
G.L.Beilhartz,
B.J.Scarth,
E.P.Tchesnokov,
S.McCormick,
B.Wynhoven,
P.R.Harrigan,
and
M.Götte
(2008).
Connection domain mutations N348I and A360V in HIV-1 reverse transcriptase enhance resistance to 3'-azido-3'-deoxythymidine through both RNase H-dependent and -independent mechanisms.
|
| |
J Biol Chem,
283,
22222-22232.
|
 |
|
|
|
|
 |
M.L.Coté,
and
M.J.Roth
(2008).
Murine leukemia virus reverse transcriptase: structural comparison with HIV-1 reverse transcriptase.
|
| |
Virus Res,
134,
186-202.
|
 |
|
|
|
|
 |
M.Pandey,
S.S.Patel,
and
A.Gabriel
(2008).
Kinetic pathway of pyrophosphorolysis by a retrotransposon reverse transcriptase.
|
| |
PLoS ONE,
3,
e1389.
|
 |
|
|
|
|
 |
P.Liu,
A.Sharon,
and
C.K.Chu
(2008).
Fluorinated Nucleosides: Synthesis and Biological Implication.
|
| |
J Fluor Chem,
129,
743-766.
|
 |
|
|
|
|
 |
P.Thomen,
P.J.Lopez,
U.Bockelmann,
J.Guillerez,
M.Dreyfus,
and
F.Heslot
(2008).
T7 RNA polymerase studied by force measurements varying cofactor concentration.
|
| |
Biophys J,
95,
2423-2433.
|
 |
|
|
|
|
 |
R.A.Wing,
S.Bailey,
and
T.A.Steitz
(2008).
Insights into the replisome from the structure of a ternary complex of the DNA polymerase III alpha-subunit.
|
| |
J Mol Biol,
382,
859-869.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.J.Murray,
F.I.Lewis,
M.D.Miller,
and
A.J.Brown
(2008).
Genetic basis of variation in tenofovir drug susceptibility in HIV-1.
|
| |
AIDS,
22,
1113-1123.
|
 |
|
|
|
|
 |
S.J.Garforth,
M.A.Parniak,
and
V.R.Prasad
(2008).
Utilization of a deoxynucleoside diphosphate substrate by HIV reverse transcriptase.
|
| |
PLoS ONE,
3,
e2074.
|
 |
|
|
|
|
 |
S.J.Schultz,
and
J.J.Champoux
(2008).
RNase H activity: structure, specificity, and function in reverse transcription.
|
| |
Virus Res,
134,
86.
|
 |
|
|
|
|
 |
S.Liu,
E.A.Abbondanzieri,
J.W.Rausch,
S.F.Le Grice,
and
X.Zhuang
(2008).
Slide into action: dynamic shuttling of HIV reverse transcriptase on nucleic acid substrates.
|
| |
Science,
322,
1092-1097.
|
 |
|
|
|
|
 |
T.Cihlar,
A.S.Ray,
C.G.Boojamra,
L.Zhang,
H.Hui,
G.Laflamme,
J.E.Vela,
D.Grant,
J.Chen,
F.Myrick,
K.L.White,
Y.Gao,
K.Y.Lin,
J.L.Douglas,
N.T.Parkin,
A.Carey,
R.Pakdaman,
and
R.L.Mackman
(2008).
Design and Profiling of GS-9148, a Novel Nucleotide Analog Active against Nucleoside-Resistant Variants of Human Immunodeficiency Virus Type 1, and Its Orally Bioavailable Phosphonoamidate Prodrug, GS-9131.
|
| |
Antimicrob Agents Chemother,
52,
655-665.
|
 |
|
|
|
|
 |
U.D.Priyakumar,
and
A.D.Mackerell
(2008).
Atomic detail investigation of the structure and dynamics of DNA.RNA hybrids: a molecular dynamics study.
|
| |
J Phys Chem B,
112,
1515-1524.
|
 |
|
|
|
|
 |
V.K.Jamburuthugoda,
J.M.Santos-Velazquez,
M.Skasko,
D.J.Operario,
V.Purohit,
P.Chugh,
E.A.Szymanski,
J.E.Wedekind,
R.A.Bambara,
and
B.Kim
(2008).
Reduced dNTP binding affinity of 3TC-resistant M184I HIV-1 reverse transcriptase variants responsible for viral infection failure in macrophage.
|
| |
J Biol Chem,
283,
9206-9216.
|
 |
|
|
|
|
 |
W.J.Allen,
P.J.Rothwell,
and
G.Waksman
(2008).
An intramolecular FRET system monitors fingers subdomain opening in Klentaq1.
|
| |
Protein Sci,
17,
401-408.
|
 |
|
|
|
|
 |
W.Rutvisuttinunt,
P.R.Meyer,
and
W.A.Scott
(2008).
Interactions between HIV-1 reverse transcriptase and the downstream template strand in stable complexes with primer-template.
|
| |
PLoS ONE,
3,
e3561.
|
 |
|
|
|
|
 |
Z.Zhao,
C.J.McKee,
J.J.Kessl,
W.L.Santos,
J.E.Daigle,
A.Engelman,
G.Verdine,
and
M.Kvaratskhelia
(2008).
Subunit-specific protein footprinting reveals significant structural rearrangements and a role for N-terminal Lys-14 of HIV-1 Integrase during viral DNA binding.
|
| |
J Biol Chem,
283,
5632-5641.
|
 |
|
|
|
|
 |
A.J.Berman,
S.Kamtekar,
J.L.Goodman,
J.M.Lázaro,
M.de Vega,
L.Blanco,
M.Salas,
and
T.A.Steitz
(2007).
Structures of phi29 DNA polymerase complexed with substrate: the mechanism of translocation in B-family polymerases.
|
| |
EMBO J,
26,
3494-3505.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
B.A.Paulson,
M.Zhang,
S.J.Schultz,
and
J.J.Champoux
(2007).
Substitution of alanine for tyrosine-64 in the fingers subdomain of M-MuLV reverse transcriptase impairs strand displacement synthesis and blocks viral replication in vivo.
|
| |
Virology,
366,
361-376.
|
 |
|
|
|
|
 |
C.Ferrer-Orta,
A.Arias,
R.Pérez-Luque,
C.Escarmís,
E.Domingo,
and
N.Verdaguer
(2007).
Sequential structures provide insights into the fidelity of RNA replication.
|
| |
Proc Natl Acad Sci U S A,
104,
9463-9468.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.M.Held,
J.D.Kissel,
S.J.Thacker,
D.Michalowski,
D.Saran,
J.Ji,
R.W.Hardy,
J.J.Rossi,
and
D.H.Burke
(2007).
Cross-clade inhibition of recombinant human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus SIVcpz reverse transcriptases by RNA pseudoknot aptamers.
|
| |
J Virol,
81,
5375-5384.
|
 |
|
|
|
|
 |
D.R.Langley,
A.W.Walsh,
C.J.Baldick,
B.J.Eggers,
R.E.Rose,
S.M.Levine,
A.J.Kapur,
R.J.Colonno,
and
D.J.Tenney
(2007).
Inhibition of hepatitis B virus polymerase by entecavir.
|
| |
J Virol,
81,
3992-4001.
|
 |
|
|
|
|
 |
D.Sengupta,
D.Verma,
and
P.K.Naik
(2007).
Docking mode of delvardine and its analogues into the p66 domain of HIV-1 reverse transcriptase: screening using molecular mechanics-generalized born/surface area and absorption, distribution, metabolism and excretion properties.
|
| |
J Biosci,
32,
1307-1316.
|
 |
|
|
|
|
 |
G.Luo,
M.Wang,
W.H.Konigsberg,
and
X.S.Xie
(2007).
Single-molecule and ensemble fluorescence assays for a functionally important conformational change in T7 DNA polymerase.
|
| |
Proc Natl Acad Sci U S A,
104,
12610-12615.
|
 |
|
|
|
|
 |
I.Bougie,
and
M.Bisaillon
(2007).
Characterization of the RNA binding energetics of the Candida albicans poly(A) polymerase.
|
| |
Yeast,
24,
431-446.
|
 |
|
|
|
|
 |
I.Olivares,
A.Mulky,
P.I.Boross,
J.Tözsér,
J.C.Kappes,
C.López-Galíndez,
and
L.Menéndez-Arias
(2007).
HIV-1 protease dimer interface mutations that compensate for viral reverse transcriptase instability in infectious virions.
|
| |
J Mol Biol,
372,
369-381.
|
 |
|
|
|
|
 |
J.D.Kissel,
D.M.Held,
R.W.Hardy,
and
D.H.Burke
(2007).
Active site binding and sequence requirements for inhibition of HIV-1 reverse transcriptase by the RT1 family of single-stranded DNA aptamers.
|
| |
Nucleic Acids Res,
35,
5039-5050.
|
 |
|
|
|
|
 |
J.E.Corn,
and
J.M.Berger
(2007).
FASTDXL: a generalized screen to trap disulfide-stabilized complexes for use in structural studies.
|
| |
Structure,
15,
773-780.
|
 |
|
|
|
|
 |
J.H.Brehm,
D.Koontz,
J.D.Meteer,
V.Pathak,
N.Sluis-Cremer,
and
J.W.Mellors
(2007).
Selection of mutations in the connection and RNase H domains of human immunodeficiency virus type 1 reverse transcriptase that increase resistance to 3'-azido-3'-dideoxythymidine.
|
| |
J Virol,
81,
7852-7859.
|
 |
|
|
|
|
 |
J.Jiang,
E.G.Maes,
A.B.Taylor,
L.Wang,
A.P.Hinck,
E.M.Lafer,
and
R.Sousa
(2007).
Structural basis of J cochaperone binding and regulation of Hsp70.
|
| |
Mol Cell,
28,
422-433.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.Pan,
V.N.Vakharia,
and
Y.J.Tao
(2007).
The structure of a birnavirus polymerase reveals a distinct active site topology.
|
| |
Proc Natl Acad Sci U S A,
104,
7385-7390.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Takehisa,
M.H.Kraus,
J.M.Decker,
Y.Li,
B.F.Keele,
F.Bibollet-Ruche,
K.P.Zammit,
Z.Weng,
M.L.Santiago,
S.Kamenya,
M.L.Wilson,
A.E.Pusey,
E.Bailes,
P.M.Sharp,
G.M.Shaw,
and
B.H.Hahn
(2007).
Generation of infectious molecular clones of simian immunodeficiency virus from fecal consensus sequences of wild chimpanzees.
|
| |
J Virol,
81,
7463-7475.
|
 |
|
|
|
|
 |
J.Wang,
Y.Jin,
K.L.Rapp,
R.F.Schinazi,
and
C.K.Chu
(2007).
D- and L-2',3'-didehydro-2',3'-dideoxy-3'-fluoro-carbocyclic nucleosides: synthesis, anti-HIV activity and mechanism of resistance.
|
| |
J Med Chem,
50,
1828-1839.
|
 |
|
|
|
|
 |
K.A.Delviks-Frankenberry,
G.N.Nikolenko,
R.Barr,
and
V.K.Pathak
(2007).
Mutations in human immunodeficiency virus type 1 RNase H primer grip enhance 3'-azido-3'-deoxythymidine resistance.
|
| |
J Virol,
81,
6837-6845.
|
 |
|
|
|
|
 |
M.Götte
(2007).
Should we include connection domain mutations of HIV-1 reverse transcriptase in HIV resistance testing.
|
| |
PLoS Med,
4,
e346.
|
 |
|
|
|
|
 |
M.Ghany,
and
T.J.Liang
(2007).
Drug targets and molecular mechanisms of drug resistance in chronic hepatitis B.
|
| |
Gastroenterology,
132,
1574-1585.
|
 |
|
|
|
|
 |
M.Nowotny,
S.A.Gaidamakov,
R.Ghirlando,
S.M.Cerritelli,
R.J.Crouch,
and
W.Yang
(2007).
Structure of human RNase H1 complexed with an RNA/DNA hybrid: insight into HIV reverse transcription.
|
| |
Mol Cell,
28,
264-276.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
N.Sluis-Cremer,
C.W.Sheen,
S.Zelina,
P.S.Torres,
U.M.Parikh,
and
J.W.Mellors
(2007).
Molecular mechanism by which the K70E mutation in human immunodeficiency virus type 1 reverse transcriptase confers resistance to nucleoside reverse transcriptase inhibitors.
|
| |
Antimicrob Agents Chemother,
51,
48-53.
|
 |
|
|
|
|
 |
N.Z.Rudinger,
R.Kranaster,
and
A.Marx
(2007).
Hydrophobic amino acid and single-atom substitutions increase DNA polymerase selectivity.
|
| |
Chem Biol,
14,
185-194.
|
 |
|
|
|
|
 |
O.Adelfinskaya,
M.Terrazas,
M.Froeyen,
P.Marlière,
K.Nauwelaerts,
and
P.Herdewijn
(2007).
Polymerase-catalyzed synthesis of DNA from phosphoramidate conjugates of deoxynucleotides and amino acids.
|
| |
Nucleic Acids Res,
35,
5060-5072.
|
 |
|
|
|
|
 |
P.R.Meyer,
W.Rutvisuttinunt,
S.E.Matsuura,
A.G.So,
and
W.A.Scott
(2007).
Stable complexes formed by HIV-1 reverse transcriptase at distinct positions on the primer-template controlled by binding deoxynucleoside triphosphates or foscarnet.
|
| |
J Mol Biol,
369,
41-54.
|
 |
|
|
|
|
 |
Q.Xia,
J.Radzio,
K.S.Anderson,
and
N.Sluis-Cremer
(2007).
Probing nonnucleoside inhibitor-induced active-site distortion in HIV-1 reverse transcriptase by transient kinetic analyses.
|
| |
Protein Sci,
16,
1728-1737.
|
 |
|
|
|
|
 |
S.H.Yap,
C.W.Sheen,
J.Fahey,
M.Zanin,
D.Tyssen,
V.D.Lima,
B.Wynhoven,
M.Kuiper,
N.Sluis-Cremer,
P.R.Harrigan,
and
G.Tachedjian
(2007).
N348I in the connection domain of HIV-1 reverse transcriptase confers zidovudine and nevirapine resistance.
|
| |
PLoS Med,
4,
e335.
|
 |
|
|
|
|
 |
S.J.Garforth,
T.W.Kim,
M.A.Parniak,
E.T.Kool,
and
V.R.Prasad
(2007).
Site-directed mutagenesis in the fingers subdomain of HIV-1 reverse transcriptase reveals a specific role for the beta3-beta4 hairpin loop in dNTP selection.
|
| |
J Mol Biol,
365,
38-49.
|
 |
|
|
|
|
 |
S.Yamazaki,
L.Tan,
G.Mayer,
J.S.Hartig,
J.N.Song,
S.Reuter,
T.Restle,
S.D.Laufer,
D.Grohmann,
H.G.Kräusslich,
J.Bajorath,
and
M.Famulok
(2007).
Aptamer displacement identifies alternative small-molecule target sites that escape viral resistance.
|
| |
Chem Biol,
14,
804-812.
|
 |
|
|
|
|
 |
T.L.Yap,
T.Xu,
Y.L.Chen,
H.Malet,
M.P.Egloff,
B.Canard,
S.G.Vasudevan,
and
J.Lescar
(2007).
Crystal structure of the dengue virus RNA-dependent RNA polymerase catalytic domain at 1.85-angstrom resolution.
|
| |
J Virol,
81,
4753-4765.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
U.M.Parikh,
S.Zelina,
N.Sluis-Cremer,
and
J.W.Mellors
(2007).
Molecular mechanisms of bidirectional antagonism between K65R and thymidine analog mutations in HIV-1 reverse transcriptase.
|
| |
AIDS,
21,
1405-1414.
|
 |
|
|
|
|
 |
W.C.Drosopoulos,
and
V.R.Prasad
(2007).
The active site residue Valine 867 in human telomerase reverse transcriptase influences nucleotide incorporation and fidelity.
|
| |
Nucleic Acids Res,
35,
1155-1168.
|
 |
|
|
|
|
 |
Y.El Safadi,
V.Vivet-Boudou,
and
R.Marquet
(2007).
HIV-1 reverse transcriptase inhibitors.
|
| |
Appl Microbiol Biotechnol,
75,
723-737.
|
 |
|
|
|
|
 |
Z.C.Tu,
and
U.Seifert
(2007).
Concise theory of chiral lipid membranes.
|
| |
Phys Rev E Stat Nonlin Soft Matter Phys,
76,
031603.
|
 |
|
|
|
|
 |
Z.Hu,
H.Hatano,
S.P.Hammond,
D.Smith,
M.Wild,
S.Gupta,
J.Whitcomb,
R.C.Kalayjian,
B.Gripshover,
and
D.R.Kuritzkes
(2007).
Virologic characterization of HIV type 1 with a codon 70 deletion in reverse transcriptase.
|
| |
J Acquir Immune Defic Syndr,
45,
494-500.
|
 |
|
|
|
|
 |
A.Eugster,
C.Lanzuolo,
M.Bonneton,
P.Luciano,
A.Pollice,
J.F.Pulitzer,
E.Stegberg,
A.S.Berthiau,
K.Förstemann,
Y.Corda,
J.Lingner,
V.Géli,
and
E.Gilson
(2006).
The finger subdomain of yeast telomerase cooperates with Pif1p to limit telomere elongation.
|
| |
Nat Struct Mol Biol,
13,
734-739.
|
 |
|
|
|
|
 |
B.A.Sampoli Benítez,
K.Arora,
and
T.Schlick
(2006).
In silico studies of the African swine fever virus DNA polymerase X support an induced-fit mechanism.
|
| |
Biophys J,
90,
42-56.
|
 |
|
|
|
|
 |
C.Autexier,
and
N.F.Lue
(2006).
The structure and function of telomerase reverse transcriptase.
|
| |
Annu Rev Biochem,
75,
493-517.
|
 |
|
|
|
|
 |
C.Ferrer-Orta,
A.Arias,
R.Agudo,
R.Pérez-Luque,
C.Escarmís,
E.Domingo,
and
N.Verdaguer
(2006).
The structure of a protein primer-polymerase complex in the initiation of genome replication.
|
| |
EMBO J,
25,
880-888.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.Jochmans,
J.Deval,
B.Kesteleyn,
H.Van Marck,
E.Bettens,
I.De Baere,
P.Dehertogh,
T.Ivens,
M.Van Ginderen,
B.Van Schoubroeck,
M.Ehteshami,
P.Wigerinck,
M.Götte,
and
K.Hertogs
(2006).
Indolopyridones inhibit human immunodeficiency virus reverse transcriptase with a novel mechanism of action.
|
| |
J Virol,
80,
12283-12292.
|
 |
|
|
|
|
 |
D.M.Himmel,
S.G.Sarafianos,
S.Dharmasena,
M.M.Hossain,
K.McCoy-Simandle,
T.Ilina,
A.D.Clark,
J.L.Knight,
J.G.Julias,
P.K.Clark,
K.Krogh-Jespersen,
R.M.Levy,
S.H.Hughes,
M.A.Parniak,
and
E.Arnold
(2006).
HIV-1 reverse transcriptase structure with RNase H inhibitor dihydroxy benzoyl naphthyl hydrazone bound at a novel site.
|
| |
ACS Chem Biol,
1,
702-712.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.Mandal,
C.Dash,
S.F.Le Grice,
and
V.R.Prasad
(2006).
Analysis of HIV-1 replication block due to substitutions at F61 residue of reverse transcriptase reveals additional defects involving the RNase H function.
|
| |
Nucleic Acids Res,
34,
2853-2863.
|
 |
|
|
|
|
 |
H.Choo,
X.Chen,
V.Yadav,
J.Wang,
R.F.Schinazi,
and
C.K.Chu
(2006).
Synthesis and anti-HIV activity of D- and L-thietanose nucleosides.
|
| |
J Med Chem,
49,
1635-1647.
|
 |
|
|
|
|
 |
H.Dutartre,
C.Bussetta,
J.Boretto,
and
B.Canard
(2006).
General catalytic deficiency of hepatitis C virus RNA polymerase with an S282T mutation and mutually exclusive resistance towards 2'-modified nucleotide analogues.
|
| |
Antimicrob Agents Chemother,
50,
4161-4169.
|
 |
|
|
|
|
 |
H.Fu,
J.W.Guthrie,
and
X.C.Le
(2006).
Study of binding stoichiometries of the human immunodeficiency virus type 1 reverse transcriptase by capillary electrophoresis and laser-induced fluorescence polarization using aptamers as probes.
|
| |
Electrophoresis,
27,
433-441.
|
 |
|
|
|
|
 |
I.Ivanov,
B.R.Chapados,
J.A.McCammon,
and
J.A.Tainer
(2006).
Proliferating cell nuclear antigen loaded onto double-stranded DNA: dynamics, minor groove interactions and functional implications.
|
| |
Nucleic Acids Res,
34,
6023-6033.
|
 |
|
|
|
|
 |
J.J.DeStefano,
and
J.V.Cristofaro
(2006).
Selection of primer-template sequences that bind human immunodeficiency virus reverse transcriptase with high affinity.
|
| |
Nucleic Acids Res,
34,
130-139.
|
 |
|
|
|
|
 |
J.Ren,
C.E.Nichols,
A.Stamp,
P.P.Chamberlain,
R.Ferris,
K.L.Weaver,
S.A.Short,
and
D.K.Stammers
(2006).
Structural insights into mechanisms of non-nucleoside drug resistance for HIV-1 reverse transcriptases mutated at codons 101 or 138.
|
| |
FEBS J,
273,
3850-3860.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Poss,
H.A.Ross,
S.L.Painter,
D.C.Holley,
J.A.Terwee,
S.Vandewoude,
and
A.Rodrigo
(2006).
Feline lentivirus evolution in cross-species infection reveals extensive G-to-A mutation and selection on key residues in the viral polymerase.
|
| |
J Virol,
80,
2728-2737.
|
 |
|
|
|
|
 |
O.Yokosuka,
and
M.Arai
(2006).
Molecular biology of hepatitis B virus: effect of nucleotide substitutions on the clinical features of chronic hepatitis B.
|
| |
Med Mol Morphol,
39,
113-120.
|
 |
|
|
|
|
 |
P.A.Reche,
D.B.Keskin,
R.E.Hussey,
P.Ancuta,
D.Gabuzda,
and
E.L.Reinherz
(2006).
Elicitation from virus-naive individuals of cytotoxic T lymphocytes directed against conserved HIV-1 epitopes.
|
| |
Med Immunol,
5,
1.
|
 |
|
|
|
|
 |
P.R.Meyer,
A.J.Smith,
S.E.Matsuura,
and
W.A.Scott
(2006).
Chain-terminating dinucleoside tetraphosphates are substrates for DNA polymerization by human immunodeficiency virus type 1 reverse transcriptase with increased activity against thymidine analogue-resistant mutants.
|
| |
Antimicrob Agents Chemother,
50,
3607-3614.
|
 |
|
|
|
|
 |
R.A.Smith,
D.J.Anderson,
and
B.D.Preston
(2006).
Hypersusceptibility to substrate analogs conferred by mutations in human immunodeficiency virus type 1 reverse transcriptase.
|
| |
J Virol,
80,
7169-7178.
|
 |
|
|
|
|
 |
S.J.Schultz,
M.Zhang,
and
J.J.Champoux
(2006).
Sequence, distance, and accessibility are determinants of 5'-end-directed cleavages by retroviral RNases H.
|
| |
J Biol Chem,
281,
1943-1955.
|
 |
|
|
|
|
 |
U.M.Parikh,
L.Bacheler,
D.Koontz,
and
J.W.Mellors
(2006).
The K65R mutation in human immunodeficiency virus type 1 reverse transcriptase exhibits bidirectional phenotypic antagonism with thymidine analog mutations.
|
| |
J Virol,
80,
4971-4977.
|
 |
|
|
|
|
 |
V.Goldschmidt,
J.Didierjean,
B.Ehresmann,
C.Ehresmann,
C.Isel,
and
R.Marquet
(2006).
Mg2+ dependency of HIV-1 reverse transcription, inhibition by nucleoside analogues and resistance.
|
| |
Nucleic Acids Res,
34,
42-52.
|
 |
|
|
|
|
 |
V.K.Batra,
W.A.Beard,
D.D.Shock,
J.M.Krahn,
L.C.Pedersen,
and
S.H.Wilson
(2006).
Magnesium-induced assembly of a complete DNA polymerase catalytic complex.
|
| |
Structure,
14,
757-766.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
W.P.Bohlayer,
and
J.J.DeStefano
(2006).
Tighter binding of HIV reverse transcriptase to RNA-DNA versus DNA-DNA results mostly from interactions in the polymerase domain and requires just a small stretch of RNA-DNA.
|
| |
Biochemistry,
45,
7628-7638.
|
 |
|
|
|
|
 |
Z.Zhang,
M.Walker,
W.Xu,
J.H.Shim,
J.L.Girardet,
R.K.Hamatake,
and
Z.Hong
(2006).
Novel nonnucleoside inhibitors that select nucleoside inhibitor resistance mutations in human immunodeficiency virus type 1 reverse transcriptase.
|
| |
Antimicrob Agents Chemother,
50,
2772-2781.
|
 |
|
|
|
|
 |
A.Banerjee,
W.Yang,
M.Karplus,
and
G.L.Verdine
(2005).
Structure of a repair enzyme interrogating undamaged DNA elucidates recognition of damaged DNA.
|
| |
Nature,
434,
612-618.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Mulky,
and
J.C.Kappes
(2005).
Analysis of human immunodeficiency virus type 1 reverse transcriptase subunit structure/function in the context of infectious virions and human target cells.
|
| |
Antimicrob Agents Chemother,
49,
3762-3769.
|
 |
|
|
|
|
 |
A.Vaisman,
H.Ling,
R.Woodgate,
and
W.Yang
(2005).
Fidelity of Dpo4: effect of metal ions, nucleotide selection and pyrophosphorolysis.
|
| |
EMBO J,
24,
2957-2967.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
B.A.Mulder,
S.Anaya,
P.Yu,
K.W.Lee,
A.Nguyen,
J.Murphy,
R.Willson,
J.M.Briggs,
X.Gao,
and
S.H.Hardin
(2005).
Nucleotide modification at the gamma-phosphate leads to the improved fidelity of HIV-1 reverse transcriptase.
|
| |
Nucleic Acids Res,
33,
4865-4873.
|
 |
|
|
|
|
 |
E.Crespan,
G.A.Locatelli,
R.Cancio,
U.Hübscher,
S.Spadari,
and
G.Maga
(2005).
Drug resistance mutations in the nucleotide binding pocket of human immunodeficiency virus type 1 reverse transcriptase differentially affect the phosphorolysis-dependent primer unblocking activity in the presence of stavudine and zidovudine and its inhibition by efavirenz.
|
| |
Antimicrob Agents Chemother,
49,
342-349.
|
 |
|
|
|
|
 |
F.Ceccherini-Silberstein,
F.Gago,
M.Santoro,
C.Gori,
V.Svicher,
F.Rodríguez-Barrios,
R.d'Arrigo,
M.Ciccozzi,
A.Bertoli,
A.d'Arminio Monforte,
J.Balzarini,
A.Antinori,
and
C.F.Perno
(2005).
High sequence conservation of human immunodeficiency virus type 1 reverse transcriptase under drug pressure despite the continuous appearance of mutations.
|
| |
J Virol,
79,
10718-10729.
|
 |
|
|
|
|
 |
F.J.Blocker,
G.Mohr,
L.H.Conlan,
L.Qi,
M.Belfort,
and
A.M.Lambowitz
(2005).
Domain structure and three-dimensional model of a group II intron-encoded reverse transcriptase.
|
| |
RNA,
11,
14-28.
|
 |
|
|
|
|
 |
G.N.Nikolenko,
S.Palmer,
F.Maldarelli,
J.W.Mellors,
J.M.Coffin,
and
V.K.Pathak
(2005).
Mechanism for nucleoside analog-mediated abrogation of HIV-1 replication: balance between RNase H activity and nucleotide excision.
|
| |
Proc Natl Acad Sci U S A,
102,
2093-2098.
|
 |
|
|
|
|
 |
G.Tachedjian,
J.Radzio,
and
N.Sluis-Cremer
(2005).
Relationship between enzyme activity and dimeric structure of recombinant HIV-1 reverse transcriptase.
|
| |
Proteins,
60,
5.
|
 |
|
|
|
|
 |
H.Mo,
L.Lu,
T.Pilot-Matias,
R.Pithawalla,
R.Mondal,
S.Masse,
T.Dekhtyar,
T.Ng,
G.Koev,
V.Stoll,
K.D.Stewart,
J.Pratt,
P.Donner,
T.Rockway,
C.Maring,
and
A.Molla
(2005).
Mutations conferring resistance to a hepatitis C virus (HCV) RNA-dependent RNA polymerase inhibitor alone or in combination with an HCV serine protease inhibitor in vitro.
|
| |
Antimicrob Agents Chemother,
49,
4305-4314.
|
 |
|
|
|
|
 |
J.Didierjean,
C.Isel,
F.Querré,
J.F.Mouscadet,
A.M.Aubertin,
J.Y.Valnot,
S.R.Piettre,
and
R.Marquet
(2005).
Inhibition of human immunodeficiency virus type 1 reverse transcriptase, RNase H, and integrase activities by hydroxytropolones.
|
| |
Antimicrob Agents Chemother,
49,
4884-4894.
|
 |
|
|
|
|
 |
J.E.Boerner,
J.M.Lyle,
S.Daijogo,
B.L.Semler,
S.C.Schultz,
K.Kirkegaard,
and
O.C.Richards
(2005).
Allosteric effects of ligands and mutations on poliovirus RNA-dependent RNA polymerase.
|
| |
J Virol,
79,
7803-7811.
|
 |
|
|
|
|
 |
J.J.Arnold,
M.Vignuzzi,
J.K.Stone,
R.Andino,
and
C.E.Cameron
(2005).
Remote site control of an active site fidelity checkpoint in a viral RNA-dependent RNA polymerase.
|
| |
J Biol Chem,
280,
25706-25716.
|
 |
|
|
|
|
 |
J.L.Hammond,
U.M.Parikh,
D.L.Koontz,
S.Schlueter-Wirtz,
C.K.Chu,
H.Z.Bazmi,
R.F.Schinazi,
and
J.W.Mellors
(2005).
In vitro selection and analysis of human immunodeficiency virus type 1 resistant to derivatives of beta-2',3'-didehydro-2',3'-dideoxy-5-fluorocytidine.
|
| |
Antimicrob Agents Chemother,
49,
3930-3932.
|
 |
|
|
|
|
 |
J.L.Mbisa,
G.N.Nikolenko,
and
V.K.Pathak
(2005).
Mutations in the RNase H primer grip domain of murine leukemia virus reverse transcriptase decrease efficiency and accuracy of plus-strand DNA transfer.
|
| |
J Virol,
79,
419-427.
|
 |
|
|
|
|
 |
J.Radzio,
and
N.Sluis-Cremer
(2005).
Stereo-selectivity of HIV-1 reverse transcriptase toward isomers of thymidine-5'-O-1-thiotriphosphate.
|
| |
Protein Sci,
14,
1929-1933.
|
 |
|
|
|
|
 |
J.Ren,
and
D.K.Stammers
(2005).
HIV reverse transcriptase structures: designing new inhibitors and understanding mechanisms of drug resistance.
|
| |
Trends Pharmacol Sci,
26,
4-7.
|
 |
|
|
|
|
 |
K.L.White,
N.A.Margot,
J.K.Ly,
J.M.Chen,
A.S.Ray,
M.Pavelko,
R.Wang,
M.McDermott,
S.Swaminathan,
and
M.D.Miller
(2005).
A combination of decreased NRTI incorporation and decreased excision determines the resistance profile of HIV-1 K65R RT.
|
| |
AIDS,
19,
1751-1760.
|
 |
|
|
|
|
 |
L.H.Conlan,
M.J.Stanger,
K.Ichiyanagi,
and
M.Belfort
(2005).
Localization, mobility and fidelity of retrotransposed Group II introns in rRNA genes.
|
| |
Nucleic Acids Res,
33,
5262-5270.
|
 |
|
|
|
|
 |
L.R.Miranda,
M.Götte,
F.Liang,
and
D.R.Kuritzkes
(2005).
The L74V mutation in human immunodeficiency virus type 1 reverse transcriptase counteracts enhanced excision of zidovudine monophosphate associated with thymidine analog resistance mutations.
|
| |
Antimicrob Agents Chemother,
49,
2648-2656.
|
 |
|
|
|
|
 |
L.Wu,
M.H.Huang,
J.L.Zhao,
and
M.S.Yang
(2005).
Study of MMLV RT- binding with DNA using surface plasmon resonance biosensor.
|
| |
Acta Biochim Biophys Sin (Shanghai),
37,
634-642.
|
 |
|
|
|
|
 |
M.Nowotny,
S.A.Gaidamakov,
R.J.Crouch,
and
W.Yang
(2005).
Crystal structures of RNase H bound to an RNA/DNA hybrid: substrate specificity and metal-dependent catalysis.
|
| |
Cell,
121,
1005-1016.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
N.Yahi,
J.Fantini,
M.Henry,
C.Tourrès,
and
C.Tamalet
(2005).
Structural analysis of reverse transcriptase mutations at codon 215 explains the predominance of T215Y over T215F in HIV-1 variants selected under antiretroviral therapy.
|
| |
J Biomed Sci,
12,
701-710.
|
 |
|
|
|
|
 |
P.J.Rothwell,
V.Mitaksov,
and
G.Waksman
(2005).
Motions of the fingers subdomain of klentaq1 are fast and not rate limiting: implications for the molecular basis of fidelity in DNA polymerases.
|
| |
Mol Cell,
19,
345-355.
|
 |
|
|
|
|
 |
R.Chen,
M.Yokoyama,
H.Sato,
C.Reilly,
and
L.M.Mansky
(2005).
Human immunodeficiency virus mutagenesis during antiviral therapy: impact of drug-resistant reverse transcriptase and nucleoside and nonnucleoside reverse transcriptase inhibitors on human immunodeficiency virus type 1 mutation frequencies.
|
| |
J Virol,
79,
12045-12057.
|
 |
|
|
|
|
 |
R.G.Ferris,
R.J.Hazen,
G.B.Roberts,
M.H.St Clair,
J.H.Chan,
K.R.Romines,
G.A.Freeman,
J.H.Tidwell,
L.T.Schaller,
J.R.Cowan,
S.A.Short,
K.L.Weaver,
D.W.Selleseth,
K.R.Moniri,
and
L.R.Boone
(2005).
Antiviral activity of GW678248, a novel benzophenone nonnucleoside reverse transcriptase inhibitor.
|
| |
Antimicrob Agents Chemother,
49,
4046-4051.
|
 |
|
|
|
|
 |
S.S.David
(2005).
Structural biology: DNA search and rescue.
|
| |
Nature,
434,
569-570.
|
 |
|
|
|
|
 |
T.C.Appleby,
H.Luecke,
J.H.Shim,
J.Z.Wu,
I.W.Cheney,
W.Zhong,
L.Vogeley,
Z.Hong,
and
N.Yao
(2005).
Crystal structure of complete rhinovirus RNA polymerase suggests front loading of protein primer.
|
| |
J Virol,
79,
277-288.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
V.K.Batra,
W.A.Beard,
D.D.Shock,
L.C.Pedersen,
and
S.H.Wilson
(2005).
Nucleotide-induced DNA polymerase active site motions accommodating a mutagenic DNA intermediate.
|
| |
Structure,
13,
1225-1233.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
V.Kempeneers,
M.Renders,
M.Froeyen,
and
P.Herdewijn
(2005).
Investigation of the DNA-dependent cyclohexenyl nucleic acid polymerization and the cyclohexenyl nucleic acid-dependent DNA polymerization.
|
| |
Nucleic Acids Res,
33,
3828-3836.
|
 |
|
|
|
|
 |
V.Sundaravaradan,
T.Hahn,
and
N.Ahmad
(2005).
Conservation of functional domains and limited heterogeneity of HIV-1 reverse transcriptase gene following vertical transmission.
|
| |
Retrovirology,
2,
36.
|
 |
|
|
|
|
 |
W.Zheng,
B.R.Brooks,
S.Doniach,
and
D.Thirumalai
(2005).
Network of dynamically important residues in the open/closed transition in polymerases is strongly conserved.
|
| |
Structure,
13,
565-577.
|
 |
|
|
|
|
 |
X.Gao,
K.A.Vander Velden,
D.F.Voytas,
and
X.Gu
(2005).
SplitTester: software to identify domains responsible for functional divergence in protein family.
|
| |
BMC Bioinformatics,
6,
137.
|
 |
|
|
|
|
 |
A.Mulky,
S.G.Sarafianos,
E.Arnold,
X.Wu,
and
J.C.Kappes
(2004).
Subunit-specific analysis of the human immunodeficiency virus type 1 reverse transcriptase in vivo.
|
| |
J Virol,
78,
7089-7096.
|
 |
|
|
|
|
 |
C.Dash,
J.W.Rausch,
and
S.F.Le Grice
(2004).
Using pyrrolo-deoxycytosine to probe RNA/DNA hybrids containing the human immunodeficiency virus type-1 3' polypurine tract.
|
| |
Nucleic Acids Res,
32,
1539-1547.
|
 |
|
|
|
|
 |
C.E.Cases-González,
and
L.Menéndez-Arias
(2004).
Increased G-->A transition frequencies displayed by primer grip mutants of human immunodeficiency virus type 1 reverse transcriptase.
|
| |
J Virol,
78,
1012-1019.
|
 |
|
|
|
|
 |
C.L.Hendrickson,
K.G.Devine,
and
S.A.Benner
(2004).
Probing minor groove recognition contacts by DNA polymerases and reverse transcriptases using 3-deaza-2'-deoxyadenosine.
|
| |
Nucleic Acids Res,
32,
2241-2250.
|
 |
|
|
|
|
 |
D.Das,
and
M.M.Georgiadis
(2004).
The crystal structure of the monomeric reverse transcriptase from Moloney murine leukemia virus.
|
| |
Structure,
12,
819-829.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.W.Gohara,
J.J.Arnold,
and
C.E.Cameron
(2004).
Poliovirus RNA-dependent RNA polymerase (3Dpol): kinetic, thermodynamic, and structural analysis of ribonucleotide selection.
|
| |
Biochemistry,
43,
5149-5158.
|
 |
|
|
|
|
 |
E.N.Peletskaya,
A.A.Kogon,
S.Tuske,
E.Arnold,
and
S.H.Hughes
(2004).
Nonnucleoside inhibitor binding affects the interactions of the fingers subdomain of human immunodeficiency virus type 1 reverse transcriptase with DNA.
|
| |
J Virol,
78,
3387-3397.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
G.A.Locatelli,
G.Campiani,
R.Cancio,
E.Morelli,
A.Ramunno,
S.Gemma,
U.Hübscher,
S.Spadari,
and
G.Maga
(2004).
Effects of drug resistance mutations L100I and V106A on the binding of pyrrolobenzoxazepinone nonnucleoside inhibitors to the human immunodeficiency virus type 1 reverse transcriptase catalytic complex.
|
| |
Antimicrob Agents Chemother,
48,
1570-1580.
|
 |
|
|
|
|
 |
G.D.Bowman,
M.O'Donnell,
and
J.Kuriyan
(2004).
Structural analysis of a eukaryotic sliding DNA clamp-clamp loader complex.
|
| |
Nature,
429,
724-730.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
G.N.Nikolenko,
E.S.Svarovskaia,
K.A.Delviks,
and
V.K.Pathak
(2004).
Antiretroviral drug resistance mutations in human immunodeficiency virus type 1 reverse transcriptase increase template-switching frequency.
|
| |
J Virol,
78,
8761-8770.
|
 |
|
|
|
|
 |
G.Tachedjian,
and
A.Mijch
(2004).
Virological significance, prevalence and genetic basis of hypersusceptibility to nonnucleoside reverse transcriptase inhibitors.
|
| |
Sex Health,
1,
81-89.
|
 |
|
|
|
|
 |
J.Auwerx,
M.Stevens,
A.R.Van Rompay,
L.E.Bird,
J.Ren,
E.De Clercq,
B.Oberg,
D.K.Stammers,
A.Karlsson,
and
J.Balzarini
(2004).
The phenylmethylthiazolylthiourea nonnucleoside reverse transcriptase (RT) inhibitor MSK-076 selects for a resistance mutation in the active site of human immunodeficiency virus type 2 RT.
|
| |
J Virol,
78,
7427-7437.
|
 |
|
|
|
|
 |
J.D.Pata,
W.G.Stirtan,
S.W.Goldstein,
and
T.A.Steitz
(2004).
Structure of HIV-1 reverse transcriptase bound to an inhibitor active against mutant reverse transcriptases resistant to other nonnucleoside inhibitors.
|
| |
Proc Natl Acad Sci U S A,
101,
10548-10553.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.J.Arnold,
and
C.E.Cameron
(2004).
Poliovirus RNA-dependent RNA polymerase (3Dpol): pre-steady-state kinetic analysis of ribonucleotide incorporation in the presence of Mg2+.
|
| |
Biochemistry,
43,
5126-5137.
|
 |
|
|
|
|
 |
J.J.Arnold,
D.W.Gohara,
and
C.E.Cameron
(2004).
Poliovirus RNA-dependent RNA polymerase (3Dpol): pre-steady-state kinetic analysis of ribonucleotide incorporation in the presence of Mn2+.
|
| |
Biochemistry,
43,
5138-5148.
|
 |
|
|
|
|
 |
K.H.Choi,
J.M.Groarke,
D.C.Young,
R.J.Kuhn,
J.L.Smith,
D.C.Pevear,
and
M.G.Rossmann
(2004).
The structure of the RNA-dependent RNA polymerase from bovine viral diarrhea virus establishes the role of GTP in de novo initiation.
|
| |
Proc Natl Acad Sci U S A,
101,
4425-4430.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.L.White,
J.M.Chen,
N.A.Margot,
T.Wrin,
C.J.Petropoulos,
L.K.Naeger,
S.Swaminathan,
and
M.D.Miller
(2004).
Molecular mechanisms of tenofovir resistance conferred by human immunodeficiency virus type 1 reverse transcriptase containing a diserine insertion after residue 69 and multiple thymidine analog-associated mutations.
|
| |
Antimicrob Agents Chemother,
48,
992.
|
 |
|
|
|
|
 |
L.Yang,
W.A.Beard,
S.H.Wilson,
S.Broyde,
and
T.Schlick
(2004).
Highly organized but pliant active site of DNA polymerase beta: compensatory mechanisms in mutant enzymes revealed by dynamics simulations and energy analyses.
|
| |
Biophys J,
86,
3392-3408.
|
 |
|
|
|
|
 |
M.Götte
(2004).
Inhibition of HIV-1 reverse transcription: basic principles of drug action and resistance.
|
| |
Expert Rev Anti Infect Ther,
2,
707-716.
|
 |
|
|
|
|
 |
M.L.Li,
Y.H.Lin,
H.A.Simmonds,
and
V.Stollar
(2004).
A mutant of Sindbis virus which is able to replicate in cells with reduced CTP makes a replicase/transcriptase with a decreased Km for CTP.
|
| |
J Virol,
78,
9645-9651.
|
 |
|
|
|
|
 |
M.Strerath,
J.Gaster,
and
A.Marx
(2004).
Recognition of remote mismatches by DNA polymerases.
|
| |
Chembiochem,
5,
1585-1588.
|
 |
|
|
|
|
 |
N.F.Lue
(2004).
Adding to the ends: what makes telomerase processive and how important is it?
|
| |
Bioessays,
26,
955-962.
|
 |
|
|
|
|
 |
N.Kumagai,
N.Takahashi,
M.Kinoshita,
S.Tsunematsu,
K.Tsuchimoto,
H.Saito,
and
H.Ishii
(2004).
Polymorphisms of NS5B protein relates to early clearance of hepatitis C virus by interferon plus ribavirin: a pilot study.
|
| |
J Viral Hepat,
11,
225-235.
|
 |
|
|
|
|
 |
N.Sluis-Cremer,
N.A.Temiz,
and
I.Bahar
(2004).
Conformational changes in HIV-1 reverse transcriptase induced by nonnucleoside reverse transcriptase inhibitor binding.
|
| |
Curr HIV Res,
2,
323-332.
|
 |
|
|
|
|
 |
O.J.D'Cruz,
P.Samuel,
and
F.M.Uckun
(2004).
PHI-443: a novel noncontraceptive broad-spectrum anti-human immunodeficiency virus microbicide.
|
| |
Biol Reprod,
71,
2037-2047.
|
 |
|
|
|
|
 |
P.L.Boyer,
T.Imamichi,
S.G.Sarafianos,
E.Arnold,
and
S.H.Hughes
(2004).
Effects of the Delta67 complex of mutations in human immunodeficiency virus type 1 reverse transcriptase on nucleoside analog excision.
|
| |
J Virol,
78,
9987-9997.
|
 |
|
|
|
|
 |
P.S.Salgado,
E.V.Makeyev,
S.J.Butcher,
D.H.Bamford,
D.I.Stuart,
and
J.M.Grimes
(2004).
The structural basis for RNA specificity and Ca2+ inhibition of an RNA-dependent RNA polymerase.
|
| |
Structure,
12,
307-316.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
R.A.Love,
K.A.Maegley,
X.Yu,
R.A.Ferre,
L.K.Lingardo,
W.Diehl,
H.E.Parge,
P.S.Dragovich,
and
S.A.Fuhrman
(2004).
The crystal structure of the RNA-dependent RNA polymerase from human rhinovirus: a dual function target for common cold antiviral therapy.
|
| |
Structure,
12,
1533-1544.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
R.L.Crowther,
D.P.Remeta,
C.A.Minetti,
D.Das,
S.P.Montano,
and
M.M.Georgiadis
(2004).
Structural and energetic characterization of nucleic acid-binding to the fingers domain of Moloney murine leukemia virus reverse transcriptase.
|
| |
Proteins,
57,
15-26.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Crowder,
and
K.Kirkegaard
(2004).
Complete three-dimensional structures of picornaviral RNA-dependent RNA polymerases.
|
| |
Structure,
12,
1336-1339.
|
 |
|
|
|
|
 |
S.J.Johnson,
and
L.S.Beese
(2004).
Structures of mismatch replication errors observed in a DNA polymerase.
|
| |
Cell,
116,
803-816.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Tuske,
S.G.Sarafianos,
A.D.Clark,
J.Ding,
L.K.Naeger,
K.L.White,
M.D.Miller,
C.S.Gibbs,
P.L.Boyer,
P.Clark,
G.Wang,
B.L.Gaffney,
R.A.Jones,
D.M.Jerina,
S.H.Hughes,
and
E.Arnold
(2004).
Structures of HIV-1 RT-DNA complexes before and after incorporation of the anti-AIDS drug tenofovir.
|
| |
Nat Struct Mol Biol,
11,
469-474.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.A.Steitz,
and
Y.W.Yin
(2004).
Accuracy, lesion bypass, strand displacement and translocation by DNA polymerases.
|
| |
Philos Trans R Soc Lond B Biol Sci,
359,
17-23.
|
 |
|
|
|
|
 |
Y.W.Yin,
and
T.A.Steitz
(2004).
The structural mechanism of translocation and helicase activity in T7 RNA polymerase.
|
| |
Cell,
116,
393-404.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
Z.Zhou,
and
J.D.Madura
(2004).
Relative free energy of binding and binding mode calculations of HIV-1 RT inhibitors based on dock-MM-PB/GS.
|
| |
Proteins,
57,
493-503.
|
 |
|
|
|
|
 |
A.Bashan,
R.Zarivach,
F.Schluenzen,
I.Agmon,
J.Harms,
T.Auerbach,
D.Baram,
R.Berisio,
H.Bartels,
H.A.Hansen,
P.Fucini,
D.Wilson,
M.Peretz,
M.Kessler,
and
A.Yonath
(2003).
Ribosomal crystallography: peptide bond formation and its inhibition.
|
| |
Biopolymers,
70,
19-41.
|
 |
|
|
|
|
 |
A.M.DeLucia,
N.D.Grindley,
and
C.M.Joyce
(2003).
An error-prone family Y DNA polymerase (DinB homolog from Sulfolobus solfataricus) uses a 'steric gate' residue for discrimination against ribonucleotides.
|
| |
Nucleic Acids Res,
31,
4129-4137.
|
 |
|
|
|
|
 |
B.Sharma,
N.Kaushik,
A.Upadhyay,
S.Tripathi,
K.Singh,
and
V.N.Pandey
(2003).
A positively charged side chain at position 154 on the beta8-alphaE loop of HIV-1 RT is required for stable ternary complex formation.
|
| |
Nucleic Acids Res,
31,
5167-5174.
|
 |
|
|
|
|
 |
D.A.Katzenstein,
R.J.Bosch,
N.Hellmann,
N.Wang,
L.Bacheler,
and
M.A.Albrecht
(2003).
Phenotypic susceptibility and virological outcome in nucleoside-experienced patients receiving three or four antiretroviral drugs.
|
| |
AIDS,
17,
821-830.
|
 |
|
|
|
|
 |
E.M.Duguid,
Y.Mishina,
and
C.He
(2003).
How do DNA repair proteins locate potential base lesions? a chemical crosslinking method to investigate O6-alkylguanine-DNA alkyltransferases.
|
| |
Chem Biol,
10,
827-835.
|
 |
|
|
|
|
 |
G.Cristofari,
and
J.Lingner
(2003).
Fingering the ends: how to make new telomeres.
|
| |
Cell,
113,
552-554.
|
 |
|
|
|
|
 |
G.L.Verdine,
and
D.P.Norman
(2003).
Covalent trapping of protein-DNA complexes.
|
| |
Annu Rev Biochem,
72,
337-366.
|
 |
|
|
|
|
 |
J.A.Bruenn
(2003).
A structural and primary sequence comparison of the viral RNA-dependent RNA polymerases.
|
| |
Nucleic Acids Res,
31,
1821-1829.
|
 |
|
|
|
|
 |
J.K.Pfeiffer,
and
K.Kirkegaard
(2003).
A single mutation in poliovirus RNA-dependent RNA polymerase confers resistance to mutagenic nucleotide analogs via increased fidelity.
|
| |
Proc Natl Acad Sci U S A,
100,
7289-7294.
|
 |
|
|
|
|
 |
J.M.Krahn,
W.A.Beard,
H.Miller,
A.P.Grollman,
and
S.H.Wilson
(2003).
Structure of DNA polymerase beta with the mutagenic DNA lesion 8-oxodeoxyguanine reveals structural insights into its coding potential.
|
| |
Structure,
11,
121-127.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.P.Murry,
J.Higgins,
T.B.Matthews,
V.Y.Huang,
K.K.Van Rompay,
N.C.Pedersen,
and
T.W.North
(2003).
Reversion of the M184V mutation in simian immunodeficiency virus reverse transcriptase is selected by tenofovir, even in the presence of lamivudine.
|
| |
J Virol,
77,
1120-1130.
|
 |
|
|
|
|
 |
J.W.Rausch,
J.Qu,
H.Y.Yi-Brunozzi,
E.T.Kool,
and
S.F.Le Grice
(2003).
Hydrolysis of RNA/DNA hybrids containing nonpolar pyrimidine isosteres defines regions essential for HIV type 1 polypurine tract selection.
|
| |
Proc Natl Acad Sci U S A,
100,
11279-11284.
|
 |
|
|
|
|
 |
K.Diallo,
B.Marchand,
X.Wei,
L.Cellai,
M.Götte,
and
M.A.Wainberg
(2003).
Diminished RNA primer usage associated with the L74V and M184V mutations in the reverse transcriptase of human immunodeficiency virus type 1 provides a possible mechanism for diminished viral replication capacity.
|
| |
J Virol,
77,
8621-8632.
|
 |
|
|
|
|
 |
K.Diallo,
M.Götte,
and
M.A.Wainberg
(2003).
Molecular impact of the M184V mutation in human immunodeficiency virus type 1 reverse transcriptase.
|
| |
Antimicrob Agents Chemother,
47,
3377-3383.
|
 |
|
|
|
|
 |
K.E.McGinness,
and
G.F.Joyce
(2003).
In search of an RNA replicase ribozyme.
|
| |
Chem Biol,
10,
5.
|
 |
|
|
|
|
 |
K.Iwatsubo,
T.Tsunematsu,
and
Y.Ishikawa
(2003).
Isoform-specific regulation of adenylyl cyclase: a potential target in future pharmacotherapy.
|
| |
Expert Opin Ther Targets,
7,
441-451.
|
 |
|
|
|
|
 |
K.Post,
J.Guo,
K.J.Howard,
M.D.Powell,
J.T.Miller,
A.Hizi,
S.F.Le Grice,
and
J.G.Levin
(2003).
Human immunodeficiency virus type 2 reverse transcriptase activity in model systems that mimic steps in reverse transcription.
|
| |
J Virol,
77,
7623-7634.
|
 |
|
|
|
|
 |
L.M.Mansky,
E.Le Rouzic,
S.Benichou,
and
L.C.Gajary
(2003).
Influence of reverse transcriptase variants, drugs, and Vpr on human immunodeficiency virus type 1 mutant frequencies.
|
| |
J Virol,
77,
2071-2080.
|
 |
|
|
|
|
 |
L.Shen,
J.Shen,
X.Luo,
F.Cheng,
Y.Xu,
K.Chen,
E.Arnold,
J.Ding,
and
H.Jiang
(2003).
Steered molecular dynamics simulation on the binding of NNRTI to HIV-1 RT.
|
| |
Biophys J,
84,
3547-3563.
|
 |
|
|
|
|
 |
M.B.Kermekchiev,
A.Tzekov,
and
W.M.Barnes
(2003).
Cold-sensitive mutants of Taq DNA polymerase provide a hot start for PCR.
|
| |
Nucleic Acids Res,
31,
6139-6147.
|
 |
|
|
|
|
 |
M.T.Washington,
W.T.Wolfle,
T.E.Spratt,
L.Prakash,
and
S.Prakash
(2003).
Yeast DNA polymerase eta makes functional contacts with the DNA minor groove only at the incoming nucleoside triphosphate.
|
| |
Proc Natl Acad Sci U S A,
100,
5113-5118.
|
 |
|
|
|
|
 |
N.F.Lue,
Y.C.Lin,
and
I.S.Mian
(2003).
A conserved telomerase motif within the catalytic domain of telomerase reverse transcriptase is specifically required for repeat addition processivity.
|
| |
Mol Cell Biol,
23,
8440-8449.
|
 |
|
|
|
|
 |
N.Ito,
O.Nureki,
M.Shirouzu,
S.Yokoyama,
and
F.Hanaoka
(2003).
Crystal structure of the Pyrococcus horikoshii DNA primase-UTP complex: implications for the mechanism of primer synthesis.
|
| |
Genes Cells,
8,
913-923.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
N.Sluis-Cremer,
E.Kempner,
and
M.A.Parniak
(2003).
Structure-activity relationships in HIV-1 reverse transcriptase revealed by radiation target analysis.
|
| |
Protein Sci,
12,
2081-2086.
|
 |
|
|
|
|
 |
P.J.Rothwell,
S.Berger,
O.Kensch,
S.Felekyan,
M.Antonik,
B.M.Wöhrl,
T.Restle,
R.S.Goody,
and
C.A.Seidel
(2003).
Multiparameter single-molecule fluorescence spectroscopy reveals heterogeneity of HIV-1 reverse transcriptase:primer/template complexes.
|
| |
Proc Natl Acad Sci U S A,
100,
1655-1660.
|
 |
|
|
|
|
 |
P.R.Meyer,
S.E.Matsuura,
D.Zonarich,
R.R.Chopra,
E.Pendarvis,
H.Z.Bazmi,
J.W.Mellors,
and
W.A.Scott
(2003).
Relationship between 3'-azido-3'-deoxythymidine resistance and primer unblocking activity in foscarnet-resistant mutants of human immunodeficiency virus type 1 reverse transcriptase.
|
| |
J Virol,
77,
6127-6137.
|
 |
|
|
|
|
 |
R.Chin,
and
S.Locarnini
(2003).
Treatment of chronic hepatitis B: current challenges and future directions.
|
| |
Rev Med Virol,
13,
255-272.
|
 |
|
|
|
|
 |
S.C.Harrison
(2003).
Variation on an Src-like theme.
|
| |
Cell,
112,
737-740.
|
 |
|
|
|
|
 |
S.G.Park,
Y.Kim,
E.Park,
H.M.Ryu,
and
G.Jung
(2003).
Fidelity of hepatitis B virus polymerase.
|
| |
Eur J Biochem,
270,
2929-2936.
|
 |
|
|
|
|
 |
S.J.Johnson,
J.S.Taylor,
and
L.S.Beese
(2003).
Processive DNA synthesis observed in a polymerase crystal suggests a mechanism for the prevention of frameshift mutations.
|
| |
Proc Natl Acad Sci U S A,
100,
3895-3900.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Matsumi,
P.Kosalaraksa,
H.Tsang,
M.F.Kavlick,
S.Harada,
and
H.Mitsuya
(2003).
Pathways for the emergence of multi-dideoxynucleoside-resistant HIV-1 variants.
|
| |
AIDS,
17,
1127-1137.
|
 |
|
|
|
|
 |
S.Paolucci,
F.Baldanti,
M.Tinelli,
G.Maga,
and
G.Gerna
(2003).
Detection of a new HIV-1 reverse transcriptase mutation (Q145M) conferring resistance to nucleoside and non-nucleoside inhibitors in a patient failing highly active antiretroviral therapy.
|
| |
AIDS,
17,
924-927.
|
 |
|
|
|
|
 |
T.S.Fisher,
T.Darden,
and
V.R.Prasad
(2003).
Mutations proximal to the minor groove-binding track of human immunodeficiency virus type 1 reverse transcriptase differentially affect utilization of RNA versus DNA as template.
|
| |
J Virol,
77,
5837-5845.
|
 |
|
|
|
|
 |
W.A.Beard,
and
S.H.Wilson
(2003).
Structural insights into the origins of DNA polymerase fidelity.
|
| |
Structure,
11,
489-496.
|
 |
|
|
|
|
 |
X.Xu,
Y.Liu,
S.Weiss,
E.Arnold,
S.G.Sarafianos,
and
J.Ding
(2003).
Molecular model of SARS coronavirus polymerase: implications for biochemical functions and drug design.
|
| |
Nucleic Acids Res,
31,
7117-7130.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Z.Sevilya,
S.Loya,
N.Adir,
and
A.Hizi
(2003).
The ribonuclease H activity of the reverse transcriptases of human immunodeficiency viruses type 1 and type 2 is modulated by residue 294 of the small subunit.
|
| |
Nucleic Acids Res,
31,
1481-1487.
|
 |
|
|
|
|
 |
A.Loregian,
H.S.Marsden,
and
G.Palù
(2002).
Protein-protein interactions as targets for antiviral chemotherapy.
|
| |
Rev Med Virol,
12,
239-262.
|
 |
|
|
|
|
 |
A.M.Woodside,
and
F.P.Guengerich
(2002).
Misincorporation and stalling at O(6)-methylguanine and O(6)-benzylguanine: evidence for inactive polymerase complexes.
|
| |
Biochemistry,
41,
1039-1050.
|
 |
|
|
|
|
 |
A.Wlodawer
(2002).
Rational approach to AIDS drug design through structural biology.
|
| |
Annu Rev Med,
53,
595-614.
|
 |
|
|
|
|
 |
A.Wlodawer
(2002).
Structure-based design of AIDS drugs and the development of resistance.
|
| |
Vox Sang,
83,
23-26.
|
 |
|
|
|
|
 |
C.C.Yang,
C.H.Huang,
C.Y.Li,
Y.G.Tsay,
S.C.Lee,
and
C.W.Chen
(2002).
The terminal proteins of linear Streptomyces chromosomes and plasmids: a novel class of replication priming proteins.
|
| |
Mol Microbiol,
43,
297-305.
|
 |
|
|
|
|
 |
C.L.Fata,
S.G.Sawicki,
and
D.L.Sawicki
(2002).
Alphavirus minus-strand RNA synthesis: identification of a role for Arg183 of the nsP4 polymerase.
|
| |
J Virol,
76,
8632-8640.
|
 |
|
|
|
|
 |
C.S.Rinke,
P.L.Boyer,
M.D.Sullivan,
S.H.Hughes,
and
M.L.Linial
(2002).
Mutation of the catalytic domain of the foamy virus reverse transcriptase leads to loss of processivity and infectivity.
|
| |
J Virol,
76,
7560-7570.
|
 |
|
|
|
|
 |
E.C.Bolton,
A.S.Mildvan,
and
J.D.Boeke
(2002).
Inhibition of reverse transcription in vivo by elevated manganese ion concentration.
|
| |
Mol Cell,
9,
879-889.
|
 |
|
|
|
|
 |
E.T.Kool
(2002).
Active site tightness and substrate fit in DNA replication.
|
| |
Annu Rev Biochem,
71,
191-219.
|
 |
|
|
|
|
 |
F.Li,
Y.Xiong,
J.Wang,
H.D.Cho,
K.Tomita,
A.M.Weiner,
and
T.A.Steitz
(2002).
Crystal structures of the Bacillus stearothermophilus CCA-adding enzyme and its complexes with ATP or CTP.
|
| |
Cell,
111,
815-824.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
G.Yang,
M.Franklin,
J.Li,
T.C.Lin,
and
W.Konigsberg
(2002).
A conserved Tyr residue is required for sugar selectivity in a Pol alpha DNA polymerase.
|
| |
Biochemistry,
41,
10256-10261.
|
 |
|
|
|
|
 |
J.Beck,
M.Vogel,
and
M.Nassal
(2002).
dNTP versus NTP discrimination by phenylalanine 451 in duck hepatitis B virus P protein indicates a common structure of the dNTP-binding pocket with other reverse transcriptases.
|
| |
Nucleic Acids Res,
30,
1679-1687.
|
 |
|
|
|
|
 |
J.D.Pata,
B.R.King,
and
T.A.Steitz
(2002).
Assembly, purification and crystallization of an active HIV-1 reverse transcriptase initiation complex.
|
| |
Nucleic Acids Res,
30,
4855-4863.
|
 |
|
|
|
|
 |
J.Ren,
L.E.Bird,
P.P.Chamberlain,
G.B.Stewart-Jones,
D.I.Stuart,
and
D.K.Stammers
(2002).
Structure of HIV-2 reverse transcriptase at 2.35-A resolution and the mechanism of resistance to non-nucleoside inhibitors.
|
| |
Proc Natl Acad Sci U S A,
99,
14410-14415.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.L.White,
N.A.Margot,
T.Wrin,
C.J.Petropoulos,
M.D.Miller,
and
L.K.Naeger
(2002).
Molecular mechanisms of resistance to human immunodeficiency virus type 1 with reverse transcriptase mutations K65R and K65R+M184V and their effects on enzyme function and viral replication capacity.
|
| |
Antimicrob Agents Chemother,
46,
3437-3446.
|
 |
|
|
|
|
 |
L.L.Seifert
(2002).
Development of resistance mutations to nevirapine as part of triple-drug therapy in children.
|
| |
Pharmacotherapy,
22,
113-117.
|
 |
|
|
|
|
 |
L.Menéndez-Arias
(2002).
Targeting HIV: antiretroviral therapy and development of drug resistance.
|
| |
Trends Pharmacol Sci,
23,
381-388.
|
 |
|
|
|
|
 |
M.Kvaratskhelia,
J.T.Miller,
S.R.Budihas,
L.K.Pannell,
and
S.F.Le Grice
(2002).
Identification of specific HIV-1 reverse transcriptase contacts to the viral RNA:tRNA complex by mass spectrometry and a primary amine selective reagent.
|
| |
Proc Natl Acad Sci U S A,
99,
15988-15993.
|
 |
|
|
|
|
 |
M.P.Golinelli,
and
S.H.Hughes
(2002).
Nontemplated nucleotide addition by HIV-1 reverse transcriptase.
|
| |
Biochemistry,
41,
5894-5906.
|
 |
|
|
|
|
 |
N.A.Temiz,
and
I.Bahar
(2002).
Inhibitor binding alters the directions of domain motions in HIV-1 reverse transcriptase.
|
| |
Proteins,
49,
61-70.
|
 |
|
|
|
|
 |
N.Sluis-Cremer,
and
G.Tachedjian
(2002).
Modulation of the oligomeric structures of HIV-1 retroviral enzymes by synthetic peptides and small molecules.
|
| |
Eur J Biochem,
269,
5103-5111.
|
 |
|
|
|
|
 |
O.Avidan,
M.E.Meer,
I.Oz,
and
A.Hizi
(2002).
The processivity and fidelity of DNA synthesis exhibited by the reverse transcriptase of bovine leukemia virus.
|
| |
Eur J Biochem,
269,
859-867.
|
 |
|
|
|
|
 |
P.K.Pandey,
N.Kaushik,
K.Singh,
B.Sharma,
A.K.Upadhyay,
S.Kumar,
D.Harris,
and
V.N.Pandey
(2002).
Insertion of a small peptide of six amino acids into the beta7-beta8 loop of the p51 subunit of HIV-1 reverse transcriptase perturbs the heterodimer and affects its activities.
|
| |
BMC Biochem,
3,
18.
|
 |
|
|
|
|
 |
P.L.Boyer,
S.G.Sarafianos,
E.Arnold,
and
S.H.Hughes
(2002).
The M184V mutation reduces the selective excision of zidovudine 5'-monophosphate (AZTMP) by the reverse transcriptase of human immunodeficiency virus type 1.
|
| |
J Virol,
76,
3248-3256.
|
 |
|
|
|
|
 |
P.P.Chamberlain,
J.Ren,
C.E.Nichols,
L.Douglas,
J.Lennerstrand,
B.A.Larder,
D.I.Stuart,
and
D.K.Stammers
(2002).
Crystal structures of Zidovudine- or Lamivudine-resistant human immunodeficiency virus type 1 reverse transcriptases containing mutations at codons 41, 184, and 215.
|
| |
J Virol,
76,
10015-10019.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
P.R.Meyer,
S.E.Matsuura,
A.A.Tolun,
I.Pfeifer,
A.G.So,
J.W.Mellors,
and
W.A.Scott
(2002).
Effects of specific zidovudine resistance mutations and substrate structure on nucleotide-dependent primer unblocking by human immunodeficiency virus type 1 reverse transcriptase.
|
| |
Antimicrob Agents Chemother,
46,
1540-1545.
|
 |
|
|
|
|
 |
R.W.Shafer
(2002).
Genotypic testing for human immunodeficiency virus type 1 drug resistance.
|
| |
Clin Microbiol Rev,
15,
247-277.
|
 |
|
|
|
|
 |
S.Bressanelli,
L.Tomei,
F.A.Rey,
and
R.De Francesco
(2002).
Structural analysis of the hepatitis C virus RNA polymerase in complex with ribonucleotides.
|
| |
J Virol,
76,
3482-3492.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.G.Sarafianos,
A.D.Clark,
K.Das,
S.Tuske,
J.J.Birktoft,
P.Ilankumaran,
A.R.Ramesha,
J.M.Sayer,
D.M.Jerina,
P.L.Boyer,
S.H.Hughes,
and
E.Arnold
(2002).
Structures of HIV-1 reverse transcriptase with pre- and post-translocation AZTMP-terminated DNA.
|
| |
EMBO J,
21,
6614-6624.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.J.Anderson,
J.F.Bradley,
A.Ferreira-Gonzalez,
and
C.T.Garrett
(2002).
Human immunodeficiency virus genotype and hypertriglyceridemia.
|
| |
J Clin Lab Anal,
16,
202-208.
|
 |
|
|
|
|
 |
T.S.Fisher,
P.Joshi,
and
V.R.Prasad
(2002).
Mutations that confer resistance to template-analog inhibitors of human immunodeficiency virus (HIV) type 1 reverse transcriptase lead to severe defects in HIV replication.
|
| |
J Virol,
76,
4068-4072.
|
 |
|
|
|
|
 |
V.Truniger,
J.M.Lázaro,
F.J.Esteban,
L.Blanco,
and
M.Salas
(2002).
A positively charged residue of phi29 DNA polymerase, highly conserved in DNA polymerases from families A and B, is involved in binding the incoming nucleotide.
|
| |
Nucleic Acids Res,
30,
1483-1492.
|
 |
|
|
|
|
 |
W.H.Zhang,
E.S.Svarovskaia,
R.Barr,
and
V.K.Pathak
(2002).
Y586F mutation in murine leukemia virus reverse transcriptase decreases fidelity of DNA synthesis in regions associated with adenine-thymine tracts.
|
| |
Proc Natl Acad Sci U S A,
99,
10090-10095.
|
 |
|
|
|
|
 |
X.P.Yang,
L.A.Freeman,
C.L.Knapper,
M.J.Amar,
A.Remaley,
H.B.Brewer,
and
S.Santamarina-Fojo
(2002).
The E-box motif in the proximal ABCA1 promoter mediates transcriptional repression of the ABCA1 gene.
|
| |
J Lipid Res,
43,
297-306.
|
 |
|
|
|
|
 |
A.Goel,
M.D.Frank-Kamenetskii,
T.Ellenberger,
and
D.Herschbach
(2001).
Tuning DNA "strings": modulating the rate of DNA replication with mechanical tension.
|
| |
Proc Natl Acad Sci U S A,
98,
8485-8489.
|
 |
|
|
|
|
 |
A.Skandalis,
and
L.A.Loeb
(2001).
Enzymatic properties of rat DNA polymerase beta mutants obtained by randomized mutagenesis.
|
| |
Nucleic Acids Res,
29,
2418-2426.
|
 |
|
|
|
|
 |
C.Loveday
(2001).
International perspectives on antiretroviral resistance. Nucleoside reverse transcriptase inhibitor resistance.
|
| |
J Acquir Immune Defic Syndr,
26,
S10-S24.
|
 |
|
|
|
|
 |
E.Doo,
and
T.J.Liang
(2001).
Molecular anatomy and pathophysiologic implications of drug resistance in hepatitis B virus infection.
|
| |
Gastroenterology,
120,
1000-1008.
|
 |
|
|
|
|
 |
E.I.Kodama,
S.Kohgo,
K.Kitano,
H.Machida,
H.Gatanaga,
S.Shigeta,
M.Matsuoka,
H.Ohrui,
and
H.Mitsuya
(2001).
4'-Ethynyl nucleoside analogs: potent inhibitors of multidrug-resistant human immunodeficiency virus variants in vitro.
|
| |
Antimicrob Agents Chemother,
45,
1539-1546.
|
 |
|
|
|
|
 |
E.N.Peletskaya,
P.L.Boyer,
A.A.Kogon,
P.Clark,
H.Kroth,
J.M.Sayer,
D.M.Jerina,
and
S.H.Hughes
(2001).
Cross-linking of the fingers subdomain of human immunodeficiency virus type 1 reverse transcriptase to template-primer.
|
| |
J Virol,
75,
9435-9445.
|
 |
|
|
|
|
 |
E.T.Kool
(2001).
Hydrogen bonding, base stacking, and steric effects in dna replication.
|
| |
Annu Rev Biophys Biomol Struct,
30,
1.
|
 |
|
|
|
|
 |
G.Tachedjian,
M.Orlova,
S.G.Sarafianos,
E.Arnold,
and
S.P.Goff
(2001).
Nonnucleoside reverse transcriptase inhibitors are chemical enhancers of dimerization of the HIV type 1 reverse transcriptase.
|
| |
Proc Natl Acad Sci U S A,
98,
7188-7193.
|
 |
|
|
|
|
 |
H.Ling,
F.Boudsocq,
R.Woodgate,
and
W.Yang
(2001).
Crystal structure of a Y-family DNA polymerase in action: a mechanism for error-prone and lesion-bypass replication.
|
| |
Cell,
107,
91.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.Sato,
Y.Tomita,
K.Ebisawa,
A.Hachiya,
K.Shibamura,
T.Shiino,
R.Yang,
M.Tatsumi,
K.Gushi,
H.Umeyama,
S.Oka,
Y.Takebe,
and
Y.Nagai
(2001).
Augmentation of human immunodeficiency virus type 1 subtype E (CRF01_AE) multiple-drug resistance by insertion of a foreign 11-amino-acid fragment into the reverse transcriptase.
|
| |
J Virol,
75,
5604-5613.
|
 |
|
|
|
|
 |
J.L.Hammond,
D.L.Koontz,
H.Z.Bazmi,
J.R.Beadle,
S.E.Hostetler,
G.D.Kini,
K.A.Aldern,
D.D.Richman,
K.Y.Hostetler,
and
J.W.Mellors
(2001).
Alkylglycerol prodrugs of phosphonoformate are potent in vitro inhibitors of nucleoside-resistant human immunodeficiency virus type 1 and select for resistance mutations that suppress zidovudine resistance.
|
| |
Antimicrob Agents Chemother,
45,
1621-1628.
|
 |
|
|
|
|
 |
K.Das,
X.Xiong,
H.Yang,
C.E.Westland,
C.S.Gibbs,
S.G.Sarafianos,
and
E.Arnold
(2001).
Molecular modeling and biochemical characterization reveal the mechanism of hepatitis B virus polymerase resistance to lamivudine (3TC) and emtricitabine (FTC).
|
| |
J Virol,
75,
4771-4779.
|
 |
|
|
|
|
 |
K.Gao,
S.L.Butler,
and
F.Bushman
(2001).
Human immunodeficiency virus type 1 integrase: arrangement of protein domains in active cDNA complexes.
|
| |
EMBO J,
20,
3565-3576.
|
 |
|
|
|
|
 |
K.Lee,
and
C.K.Chu
(2001).
Molecular modeling approach to understanding the mode of action of L-nucleosides as antiviral agents.
|
| |
Antimicrob Agents Chemother,
45,
138-144.
|
 |
|
|
|
|
 |
K.Suzuki,
G.R.Kaufmann,
M.Mukaide,
P.Cunningham,
C.Harris,
L.Leas,
M.Kondo,
M.Imai,
S.L.Pett,
R.Finlayson,
J.Zaunders,
A.Kelleher,
and
D.A.Cooper
(2001).
Novel deletion of HIV type 1 reverse transcriptase residue 69 conferring selective high-level resistance to nevirapine.
|
| |
AIDS Res Hum Retroviruses,
17,
1293-1296.
|
 |
|
|
|
|
 |
K.Van Laethem,
M.Witvrouw,
C.Pannecouque,
B.Van Remoortel,
J.C.Schmit,
R.Esnouf,
J.P.Kleim,
J.Balzarini,
J.Desmyter,
E.De Clercq,
and
A.M.Vandamme
(2001).
Mutations in the non-nucleoside binding-pocket interfere with the multi-nucleoside resistance phenotype.
|
| |
AIDS,
15,
553-561.
|
 |
|
|
|
|
 |
K.Vastmans,
M.Froeyen,
L.Kerremans,
S.Pochet,
and
P.Herdewijn
(2001).
Reverse transcriptase incorporation of 1,5-anhydrohexitol nucleotides.
|
| |
Nucleic Acids Res,
29,
3154-3163.
|
 |
|
|
|
|
 |
L.F.Rezende,
Y.Kew,
and
V.R.Prasad
(2001).
The effect of increased processivity on overall fidelity of human immunodeficiency virus type 1 reverse transcriptase.
|
| |
J Biomed Sci,
8,
197-205.
|
 |
|
|
|
|
 |
M.A.Shogren-Knaak,
P.J.Alaimo,
and
K.M.Shokat
(2001).
Recent advances in chemical approaches to the study of biological systems.
|
| |
Annu Rev Cell Dev Biol,
17,
405-433.
|
 |
|
|
|
|
 |
M.Boutabout,
M.Wilhelm,
and
F.X.Wilhelm
(2001).
DNA synthesis fidelity by the reverse transcriptase of the yeast retrotransposon Ty1.
|
| |
Nucleic Acids Res,
29,
2217-2222.
|
 |
|
|
|
|
 |
M.Gutiérrez-Rivas,
and
L.Menéndez-Arias
(2001).
A mutation in the primer grip region of HIV-1 reverse transcriptase that confers reduced fidelity of DNA synthesis.
|
| |
Nucleic Acids Res,
29,
4963-4972.
|
 |
|
|
|
|
 |
M.Madrid,
J.A.Lukin,
J.D.Madura,
J.Ding,
and
E.Arnold
(2001).
Molecular dynamics of HIV-1 reverse transcriptase indicates increased flexibility upon DNA binding.
|
| |
Proteins,
45,
176-182.
|
 |
|
|
|
|
 |
M.Negroni,
and
H.Buc
(2001).
Mechanisms of retroviral recombination.
|
| |
Annu Rev Genet,
35,
275-302.
|
 |
|
|
|
|
 |
O.Uzun,
and
A.Gabriel
(2001).
A Ty1 reverse transcriptase active-site aspartate mutation blocks transposition but not polymerization.
|
| |
J Virol,
75,
6337-6347.
|
 |
|
|
|
|
 |
P.L.Boyer,
H.Q.Gao,
P.K.Clark,
S.G.Sarafianos,
E.Arnold,
and
S.H.Hughes
(2001).
YADD mutants of human immunodeficiency virus type 1 and Moloney murine leukemia virus reverse transcriptase are resistant to lamivudine triphosphate (3TCTP) in vitro.
|
| |
J Virol,
75,
6321-6328.
|
 |
|
|
|
|
 |
P.L.Boyer,
S.G.Sarafianos,
E.Arnold,
and
S.H.Hughes
(2001).
Selective excision of AZTMP by drug-resistant human immunodeficiency virus reverse transcriptase.
|
| |
J Virol,
75,
4832-4842.
|
 |
|
|
|
|
 |
S.D.Hobson,
E.S.Rosenblum,
O.C.Richards,
K.Richmond,
K.Kirkegaard,
and
S.C.Schultz
(2001).
Oligomeric structures of poliovirus polymerase are important for function.
|
| |
EMBO J,
20,
1153-1163.
|
 |
|
|
|
|
 |
S.G.Sarafianos,
K.Das,
C.Tantillo,
A.D.Clark,
J.Ding,
J.M.Whitcomb,
P.L.Boyer,
S.H.Hughes,
and
E.Arnold
(2001).
Crystal structure of HIV-1 reverse transcriptase in complex with a polypurine tract RNA:DNA.
|
| |
EMBO J,
20,
1449-1461.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.Imamichi,
M.A.Murphy,
H.Imamichi,
and
H.C.Lane
(2001).
Amino acid deletion at codon 67 and Thr-to-Gly change at codon 69 of human immunodeficiency virus type 1 reverse transcriptase confer novel drug resistance profiles.
|
| |
J Virol,
75,
3988-3992.
|
 |
|
|
|
|
 |
V.V.Lukashov,
R.Huismans,
M.F.Jebbink,
S.A.Danner,
R.J.de Boer,
and
J.Goudsmit
(2001).
Selection by AZT and rapid replacement in the absence of drugs of HIV type 1 resistant to multiple nucleoside analogs.
|
| |
AIDS Res Hum Retroviruses,
17,
807-818.
|
 |
|
|
|
|
 |
W.A.Beard,
and
S.H.Wilson
(2001).
DNA lesion bypass polymerases open up.
|
| |
Structure,
9,
759-764.
|
 |
|
|
|
|
 |
W.A.Breyer,
and
B.W.Matthews
(2001).
A structural basis for processivity.
|
| |
Protein Sci,
10,
1699-1711.
|
 |
|
|
|
|
 |
C.S.Snyder,
and
M.J.Roth
(2000).
Comparison of second-strand transfer requirements and RNase H cleavages catalyzed by human immunodeficiency virus type 1 reverse transcriptase (RT) and E478Q RT.
|
| |
J Virol,
74,
9668-9679.
|
 |
|
|
|
|
 |
E.K.Halvas,
E.S.Svarovskaia,
E.O.Freed,
and
V.K.Pathak
(2000).
Wild-type and YMDD mutant murine leukemia virus reverse transcriptases are resistant to 2',3'-dideoxy-3'-thiacytidine.
|
| |
J Virol,
74,
6669-6674.
|
 |
|
|
|
|
 |
E.K.Halvas,
E.S.Svarovskaia,
and
V.K.Pathak
(2000).
Development of an in vivo assay to identify structural determinants in murine leukemia virus reverse transcriptase important for fidelity.
|
| |
J Virol,
74,
312-319.
|
 |
|
|
|
|
 |
E.K.Halvas,
E.S.Svarovskaia,
and
V.K.Pathak
(2000).
Role of murine leukemia virus reverse transcriptase deoxyribonucleoside triphosphate-binding site in retroviral replication and in vivo fidelity.
|
| |
J Virol,
74,
10349-10358.
|
 |
|
|
|
|
 |
E.S.Svarovskaia,
K.A.Delviks,
C.K.Hwang,
and
V.K.Pathak
(2000).
Structural determinants of murine leukemia virus reverse transcriptase that affect the frequency of template switching.
|
| |
J Virol,
74,
7171-7178.
|
 |
|
|
|
|
 |
E.T.Kool
(2000).
Roles of Watson-Crick and minor groove hydrogen bonds in DNA replication.
|
| |
Cold Spring Harb Symp Quant Biol,
65,
93.
|
 |
|
|
|
|
 |
F.Alber,
and
P.Carloni
(2000).
Ab initio molecular dynamics studies on HIV-1 reverse transcriptase triphosphate binding site: implications for nucleoside-analog drug resistance.
|
| |
Protein Sci,
9,
2535-2546.
|
 |
|
|
|
|
 |
G.Maga,
D.Ubiali,
R.Salvetti,
M.Pregnolato,
and
S.Spadari
(2000).
Selective interaction of the human immunodeficiency virus type 1 reverse transcriptase nonnucleoside inhibitor efavirenz and its thio-substituted analog with different enzyme-substrate complexes.
|
| |
Antimicrob Agents Chemother,
44,
1186-1194.
|
 |
|
|
|
|
 |
G.Martin,
W.Keller,
and
S.Doublié
(2000).
Crystal structure of mammalian poly(A) polymerase in complex with an analog of ATP.
|
| |
EMBO J,
19,
4193-4203.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
G.Minasov,
M.Teplova,
P.Nielsen,
J.Wengel,
and
M.Egli
(2000).
Structural basis of cleavage by RNase H of hybrids of arabinonucleic acids and RNA.
|
| |
Biochemistry,
39,
3525-3532.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
G.Tachedjian,
H.E.Aronson,
and
S.P.Goff
(2000).
Analysis of mutations and suppressors affecting interactions between the subunits of the HIV type 1 reverse transcriptase.
|
| |
Proc Natl Acad Sci U S A,
97,
6334-6339.
|
 |
|
|
|
|
 |
H.Huang,
S.C.Harrison,
and
G.L.Verdine
(2000).
Trapping of a catalytic HIV reverse transcriptase*template:primer complex through a disulfide bond.
|
| |
Chem Biol,
7,
355-364.
|
 |
|
|
|
|
 |
H.Jonckheere,
E.De Clercq,
and
J.Anné
(2000).
Fidelity analysis of HIV-1 reverse transcriptase mutants with an altered amino-acid sequence at residues Leu74, Glu89, Tyr115, Tyr183 and Met184.
|
| |
Eur J Biochem,
267,
2658-2665.
|
 |
|
|
|
|
 |
H.Jonckheere,
J.Anné,
and
E.De Clercq
(2000).
The HIV-1 reverse transcription (RT) process as target for RT inhibitors.
|
| |
Med Res Rev,
20,
129-154.
|
 |
|
|
|
|
 |
H.Sato,
Y.Tomita,
K.Shibamura,
T.Shiino,
T.Miyakuni,
and
Y.Takebe
(2000).
Convergent evolution of reverse transcriptase (RT) genes of human immunodeficiency virus type 1 subtypes E and B following nucleoside analogue RT inhibitor therapies.
|
| |
J Virol,
74,
5357-5362.
|
 |
|
|
|
|
 |
H.Z.Bazmi,
J.L.Hammond,
S.C.Cavalcanti,
C.K.Chu,
R.F.Schinazi,
and
J.W.Mellors
(2000).
In vitro selection of mutations in the human immunodeficiency virus type 1 reverse transcriptase that decrease susceptibility to (-)-beta-D-dioxolane-guanosine and suppress resistance to 3'-azido-3'-deoxythymidine.
|
| |
Antimicrob Agents Chemother,
44,
1783-1788.
|
 |
|
|
|
|
 |
J.C.Morales,
and
E.T.Kool
(2000).
Functional hydrogen-bonding map of the minor groove binding tracks of six DNA polymerases.
|
| |
Biochemistry,
39,
12979-12988.
|
 |
|
|
|
|
 |
J.C.Morales,
and
E.T.Kool
(2000).
Varied Molecular Interactions at the Active Sites of Several DNA Polymerases: Nonpolar Nucleoside Isosteres as Probes.
|
| |
J Am Chem Soc,
122,
1001-1007.
|
 |
|
|
|
|
 |
J.K.Pfeiffer,
M.M.Georgiadis,
and
A.Telesnitsky
(2000).
Structure-based moloney murine leukemia virus reverse transcriptase mutants with altered intracellular direct-repeat deletion frequencies.
|
| |
J Virol,
74,
9629-9636.
|
 |
|
|
|
|
 |
J.Ren,
J.Milton,
K.L.Weaver,
S.A.Short,
D.I.Stuart,
and
D.K.Stammers
(2000).
Structural basis for the resilience of efavirenz (DMP-266) to drug resistance mutations in HIV-1 reverse transcriptase.
|
| |
Structure,
8,
1089-1094.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.Hertogs,
S.Bloor,
V.De Vroey,
C.van Den Eynde,
P.Dehertogh,
A.van Cauwenberge,
M.Stürmer,
T.Alcorn,
S.Wegner,
M.van Houtte,
V.Miller,
and
B.A.Larder
(2000).
A novel human immunodeficiency virus type 1 reverse transcriptase mutational pattern confers phenotypic lamivudine resistance in the absence of mutation 184V.
|
| |
Antimicrob Agents Chemother,
44,
568-573.
|
 |
|
|
|
|
 |
K.K.Weiss,
S.J.Isaacs,
N.H.Tran,
E.T.Adman,
and
B.Kim
(2000).
Molecular architecture of the mutagenic active site of human immunodeficiency virus type 1 reverse transcriptase: roles of the beta 8-alpha E loop in fidelity, processivity, and substrate interactions.
|
| |
Biochemistry,
39,
10684-10694.
|
 |
|
|
|
|
 |
L.M.Mansky,
and
K.S.Cunningham
(2000).
Virus mutators and antimutators: roles in evolution, pathogenesis and emergence.
|
| |
Trends Genet,
16,
512-517.
|
 |
|
|
|
|
 |
L.M.Mansky,
and
L.C.Bernard
(2000).
3'-Azido-3'-deoxythymidine (AZT) and AZT-resistant reverse transcriptase can increase the in vivo mutation rate of human immunodeficiency virus type 1.
|
| |
J Virol,
74,
9532-9539.
|
 |
|
|
|
|
 |
L.Mu,
S.G.Sarafianos,
M.C.Nicklaus,
P.Russ,
M.A.Siddiqui,
H.Ford,
H.Mitsuya,
R.Le,
E.Kodama,
C.Meier,
T.Knispel,
L.Anderson,
J.J.Barchi,
and
V.E.Marquez
(2000).
Interactions of conformationally biased north and south 2'-fluoro-2', 3'-dideoxynucleoside 5'-triphosphates with the active site of HIV-1 reverse transcriptase.
|
| |
Biochemistry,
39,
11205-11215.
|
 |
|
|
|
|
 |
M.A.Winters,
K.L.Coolley,
P.Cheng,
Y.A.Girard,
H.Hamdan,
L.C.Kovari,
and
T.C.Merigan
(2000).
Genotypic, phenotypic, and modeling studies of a deletion in the beta3-beta4 region of the human immunodeficiency virus type 1 reverse transcriptase gene that is associated with resistance to nucleoside reverse transcriptase inhibitors.
|
| |
J Virol,
74,
10707-10713.
|
 |
|
|
|
|
 |
M.C.Miller,
J.K.Liu,
and
K.Collins
(2000).
Template definition by Tetrahymena telomerase reverse transcriptase.
|
| |
EMBO J,
19,
4412-4422.
|
 |
|
|
|
|
 |
M.Götte,
D.Arion,
M.A.Parniak,
and
M.A.Wainberg
(2000).
The M184V mutation in the reverse transcriptase of human immunodeficiency virus type 1 impairs rescue of chain-terminated DNA synthesis.
|
| |
J Virol,
74,
3579-3585.
|
 |
|
|
|
|
 |
M.Götte,
and
M.A.Wainberg
(2000).
Biochemical mechanisms involved in overcoming HIV resistance to nucleoside inhibitors of reverse transcriptase.
|
| |
Drug Resist Updat,
3,
30-38.
|
 |
|
|
|
|
 |
M.L.Coté,
S.J.Yohannan,
and
M.M.Georgiadis
(2000).
Use of an N-terminal fragment from moloney murine leukemia virus reverse transcriptase to facilitate crystallization and analysis of a pseudo-16-mer DNA molecule containing G-A mispairs.
|
| |
Acta Crystallogr D Biol Crystallogr,
56,
1120-1131.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
N.Kaushik,
T.T.Talele,
P.K.Pandey,
D.Harris,
P.N.Yadav,
and
V.N.Pandey
(2000).
Role of glutamine 151 of human immunodeficiency virus type-1 reverse transcriptase in substrate selection as assessed by site-directed mutagenesis.
|
| |
Biochemistry,
39,
2912-2920.
|
 |
|
|
|
|
 |
N.Richard,
H.Salomon,
R.Rando,
T.Mansour,
T.L.Bowlin,
and
M.A.Wainberg
(2000).
Selection and characterization of human immunodeficiency virus type 1 variants resistant to the (+) and (-) enantiomers of 2'-deoxy-3'-oxa-4'-thio-5-fluorocytidine.
|
| |
Antimicrob Agents Chemother,
44,
1127-1131.
|
 |
|
|
|
|
 |
N.Yahi,
C.Tamalet,
C.Tourrès,
N.Tivoli,
and
J.Fantini
(2000).
Mutation L210W of HIV-1 reverse transcriptase in patients receiving combination therapy. Incidence, association with other mutations, and effects on the structure of mutated reverse transcriptase.
|
| |
J Biomed Sci,
7,
507-513.
|
 |
|
|
|
|
 |
P.L.Boyer,
S.G.Sarafianos,
E.Arnold,
and
S.H.Hughes
(2000).
Analysis of mutations at positions 115 and 116 in the dNTP binding site of HIV-1 reverse transcriptase.
|
| |
Proc Natl Acad Sci U S A,
97,
3056-3061.
|
 |
|
|
|
|
 |
P.L.Boyer,
and
S.H.Hughes
(2000).
Effects of amino acid substitutions at position 115 on the fidelity of human immunodeficiency virus type 1 reverse transcriptase.
|
| |
J Virol,
74,
6494-6500.
|
 |
|
|
|
|
 |
P.Meyer,
B.Schneider,
S.Sarfati,
D.Deville-Bonne,
C.Guerreiro,
J.Boretto,
J.Janin,
M.Véron,
and
B.Canard
(2000).
Structural basis for activation of alpha-boranophosphate nucleotide analogues targeting drug-resistant reverse transcriptase.
|
| |
EMBO J,
19,
3520-3529.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
P.R.Meyer,
S.E.Matsuura,
R.F.Schinazi,
A.G.So,
and
W.A.Scott
(2000).
Differential removal of thymidine nucleotide analogues from blocked DNA chains by human immunodeficiency virus reverse transcriptase in the presence of physiological concentrations of 2'-deoxynucleoside triphosphates.
|
| |
Antimicrob Agents Chemother,
44,
3465-3472.
|
 |
|
|
|
|
 |
R.W.Shafer,
R.Kantor,
and
M.J.Gonzales
(2000).
The Genetic Basis of HIV-1 Resistance to Reverse Transcriptase and Protease Inhibitors.
|
| |
AIDS Rev,
2,
211-228.
|
 |
|
|
|
|
 |
S.H.Wilson,
R.W.Sobol,
W.A.Beard,
J.K.Horton,
R.Prasad,
and
B.J.Vande Berg
(2000).
DNA polymerase beta and mammalian base excision repair.
|
| |
Cold Spring Harb Symp Quant Biol,
65,
143-155.
|
 |
|
|
|
|
 |
T.A.Kunkel,
and
K.Bebenek
(2000).
DNA replication fidelity.
|
| |
Annu Rev Biochem,
69,
497-529.
|
 |
|
|
|
|
 |
T.Imamichi,
T.Sinha,
H.Imamichi,
Y.M.Zhang,
J.A.Metcalf,
J.Falloon,
and
H.C.Lane
(2000).
High-level resistance to 3'-azido-3'-deoxythimidine due to a deletion in the reverse transcriptase gene of human immunodeficiency virus type 1.
|
| |
J Virol,
74,
1023-1028.
|
 |
|
|
|
|
 |
T.L.Ware,
H.Wang,
and
E.H.Blackburn
(2000).
Three telomerases with completely non-telomeric template replacements are catalytically active.
|
| |
EMBO J,
19,
3119-3131.
|
 |
|
|
|
|
 |
T.M.Bryan,
K.J.Goodrich,
and
T.R.Cech
(2000).
Telomerase RNA bound by protein motifs specific to telomerase reverse transcriptase.
|
| |
Mol Cell,
6,
493-499.
|
 |
|
|
|
|
 |
T.Mickle,
and
V.Nair
(2000).
Anti-human immunodeficiency virus activities of nucleosides and nucleotides: correlation with molecular electrostatic potential data.
|
| |
Antimicrob Agents Chemother,
44,
2939-2947.
|
 |
|
|
|
|
 |
W.R.Davis,
J.Tomsho,
S.Nikam,
E.M.Cook,
D.Somand,
and
J.A.Peliska
(2000).
Inhibition of HIV-1 reverse transcriptase-catalyzed DNA strand transfer reactions by 4-chlorophenylhydrazone of mesoxalic acid.
|
| |
Biochemistry,
39,
14279-14291.
|
 |
|
|
|
|
 |
W.Zhong,
E.Ferrari,
C.A.Lesburg,
D.Maag,
S.K.Ghosh,
C.E.Cameron,
J.Y.Lau,
and
Z.Hong
(2000).
Template/primer requirements and single nucleotide incorporation by hepatitis C virus nonstructural protein 5B polymerase.
|
| |
J Virol,
74,
9134-9143.
|
 |
|
|
|
|
 |
A.Marx,
M.Spichty,
M.Amacker,
U.Schwitter,
U.Hübscher,
T.A.Bickle,
G.Maga,
and
B.Giese
(1999).
Probing interactions between HIV-1 reverse transcriptase and its DNA substrate with backbone-modified nucleotides.
|
| |
Chem Biol,
6,
111-116.
|
 |
|
|
|
|
 |
B.A.Larder,
S.Bloor,
S.D.Kemp,
K.Hertogs,
R.L.Desmet,
V.Miller,
M.Sturmer,
S.Staszewski,
J.Ren,
D.K.Stammers,
D.I.Stuart,
and
R.Pauwels
(1999).
A family of insertion mutations between codons 67 and 70 of human immunodeficiency virus type 1 reverse transcriptase confer multinucleoside analog resistance.
|
| |
Antimicrob Agents Chemother,
43,
1961-1967.
|
 |
|
|
|
|
 |
B.Berkhout
(1999).
HIV-1 evolution under pressure of protease inhibitors: climbing the stairs of viral fitness.
|
| |
J Biomed Sci,
6,
298-305.
|
 |
|
|
|
|
 |
C.Isel,
E.Westhof,
C.Massire,
S.F.Le Grice,
B.Ehresmann,
C.Ehresmann,
and
R.Marquet
(1999).
Structural basis for the specificity of the initiation of HIV-1 reverse transcription.
|
| |
EMBO J,
18,
1038-1048.
|
 |
|
|
|
|
 |
H.Ago,
T.Adachi,
A.Yoshida,
M.Yamamoto,
N.Habuka,
K.Yatsunami,
and
M.Miyano
(1999).
Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus.
|
| |
Structure,
7,
1417-1426.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
I.Olivares,
V.Sánchez-Merino,
M.A.Martínez,
E.Domingo,
C.López-Galíndez,
and
L.Menéndez-Arias
(1999).
Second-site reversion of a human immunodeficiency virus type 1 reverse transcriptase mutant that restores enzyme function and replication capacity.
|
| |
J Virol,
73,
6293-6298.
|
 |
|
|
|
|
 |
J.A.Vaccaro,
H.A.Singh,
and
K.S.Anderson
(1999).
Initiation of minus-strand DNA synthesis by human immunodeficiency virus type 1 reverse transcriptase.
|
| |
Biochemistry,
38,
15978-15985.
|
 |
|
|
|
|
 |
J.C.Beauchamp,
and
N.W.Isaacs
(1999).
Methods for X-ray diffraction analysis of macromolecular structures.
|
| |
Curr Opin Chem Biol,
3,
525-529.
|
 |
|
|
|
|
 |
J.Jäger,
and
J.D.Pata
(1999).
Getting a grip: polymerases and their substrate complexes.
|
| |
Curr Opin Struct Biol,
9,
21-28.
|
 |
|
|
|
|
 |
J.Y.Feng,
and
K.S.Anderson
(1999).
Mechanistic studies examining the efficiency and fidelity of DNA synthesis by the 3TC-resistant mutant (184V) of HIV-1 reverse transcriptase.
|
| |
Biochemistry,
38,
9440-9448.
|
 |
|
|
|
|
 |
J.Y.Feng,
and
K.S.Anderson
(1999).
Mechanistic studies comparing the incorporation of (+) and (-) isomers of 3TCTP by HIV-1 reverse transcriptase.
|
| |
Biochemistry,
38,
55-63.
|
 |
|
|
|
|
 |
K.Yoshimura,
R.Feldman,
E.Kodama,
M.F.Kavlick,
Y.L.Qiu,
J.Zemlicka,
and
H.Mitsuya
(1999).
In vitro induction of human immunodeficiency virus type 1 variants resistant to phosphoralaninate prodrugs of Z-methylenecyclopropane nucleoside analogues.
|
| |
Antimicrob Agents Chemother,
43,
2479-2483.
|
 |
|
|
|
|
 |
L.Huang,
K.K.Ishii,
H.Zuccola,
A.M.Gehring,
C.B.Hwang,
J.Hogle,
and
D.M.Coen
(1999).
The enzymological basis for resistance of herpesvirus DNA polymerase mutants to acyclovir: relationship to the structure of alpha-like DNA polymerases.
|
| |
Proc Natl Acad Sci U S A,
96,
447-452.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
L.L.Furge,
and
F.P.Guengerich
(1999).
Explanation of pre-steady-state kinetics and decreased burst amplitude of HIV-1 reverse transcriptase at sites of modified DNA bases with an additional, nonproductive enzyme-DNA-nucleotide complex.
|
| |
Biochemistry,
38,
4818-4825.
|
 |
|
|
|
|
 |
M.C.Morris,
C.Berducou,
J.Mery,
F.Heitz,
and
G.Divita
(1999).
The thumb domain of the P51-subunit is essential for activation of HIV reverse transcriptase.
|
| |
Biochemistry,
38,
15097-15103.
|
 |
|
|
|
|
 |
M.Madrid,
A.Jacobo-Molina,
J.Ding,
and
E.Arnold
(1999).
Major subdomain rearrangement in HIV-1 reverse transcriptase simulated by molecular dynamics.
|
| |
Proteins,
35,
332-337.
|
 |
|
|
|
|
 |
M.O'Reilly,
S.A.Teichmann,
and
D.Rhodes
(1999).
Telomerases.
|
| |
Curr Opin Struct Biol,
9,
56-65.
|
 |
|
|
|
|
 |
M.Perach,
and
A.Hizi
(1999).
Catalytic features of the recombinant reverse transcriptase of bovine leukemia virus expressed in bacteria.
|
| |
Virology,
259,
176-189.
|
 |
|
|
|
|
 |
P.L.Sharma,
and
C.S.Crumpacker
(1999).
Decreased processivity of human immunodeficiency virus type 1 reverse transcriptase (RT) containing didanosine-selected mutation Leu74Val: a comparative analysis of RT variants Leu74Val and lamivudine-selected Met184Val.
|
| |
J Virol,
73,
8448-8456.
|
 |
|
|
|
|
 |
P.R.Meyer,
S.E.Matsuura,
A.M.Mian,
A.G.So,
and
W.A.Scott
(1999).
A mechanism of AZT resistance: an increase in nucleotide-dependent primer unblocking by mutant HIV-1 reverse transcriptase.
|
| |
Mol Cell,
4,
35-43.
|
 |
|
|
|
|
 |
R.A.Smith,
G.J.Klarmann,
K.M.Stray,
U.K.von Schwedler,
R.F.Schinazi,
B.D.Preston,
and
T.W.North
(1999).
A new point mutation (P157S) in the reverse transcriptase of human immunodeficiency virus type 1 confers low-level resistance to (-)-beta-2',3'-dideoxy-3'-thiacytidine.
|
| |
Antimicrob Agents Chemother,
43,
2077-2080.
|
 |
|
|
|
|
 |
S.Bressanelli,
L.Tomei,
A.Roussel,
I.Incitti,
R.L.Vitale,
M.Mathieu,
R.De Francesco,
and
F.A.Rey
(1999).
Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus.
|
| |
Proc Natl Acad Sci U S A,
96,
13034-13039.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Doublié,
M.R.Sawaya,
and
T.Ellenberger
(1999).
An open and closed case for all polymerases.
|
| |
Structure,
7,
R31-R35.
|
 |
|
|
|
|
 |
S.Druillennec,
C.Z.Dong,
S.Escaich,
N.Gresh,
A.Bousseau,
B.P.Roques,
and
M.C.Fournié-Zaluski
(1999).
A mimic of HIV-1 nucleocapsid protein impairs reverse transcription and displays antiviral activity.
|
| |
Proc Natl Acad Sci U S A,
96,
4886-4891.
|
 |
|
|
|
|
 |
S.G.Sarafianos,
K.Das,
A.D.Clark,
J.Ding,
P.L.Boyer,
S.H.Hughes,
and
E.Arnold
(1999).
Lamivudine (3TC) resistance in HIV-1 reverse transcriptase involves steric hindrance with beta-branched amino acids.
|
| |
Proc Natl Acad Sci U S A,
96,
10027-10032.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.G.Sarafianos,
K.Das,
J.Ding,
P.L.Boyer,
S.H.Hughes,
and
E.Arnold
(1999).
Touching the heart of HIV-1 drug resistance: the fingers close down on the dNTP at the polymerase active site.
|
| |
Chem Biol,
6,
R137-R146.
|
 |
|
|
|
|
 |
S.Sastry,
and
B.M.Ross
(1999).
Probing the interaction of T7 RNA polymerase with promoter.
|
| |
Biochemistry,
38,
4972-4981.
|
 |
|
|
|
|
 |
T.Darden,
L.Perera,
L.Li,
and
L.Pedersen
(1999).
New tricks for modelers from the crystallography toolkit: the particle mesh Ewald algorithm and its use in nucleic acid simulations.
|
| |
Structure,
7,
R55-R60.
|
 |
|
|
|
|
 |
Y.Zhao,
D.Jeruzalmi,
I.Moarefi,
L.Leighton,
R.Lasken,
and
J.Kuriyan
(1999).
Crystal structure of an archaebacterial DNA polymerase.
|
| |
Structure,
7,
1189-1199.
|
 |
|
PDB codes:
|
 |
|
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |