 |
PDBsum entry 1gx6
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class 1:
|
 |
E.C.2.7.7.48
- RNA-directed Rna polymerase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
RNA(n) + a ribonucleoside 5'-triphosphate = RNA(n+1) + diphosphate
|
 |
 |
 |
 |
 |
RNA(n)
|
+
|
ribonucleoside 5'-triphosphate
|
=
|
RNA(n+1)
Bound ligand (Het Group name = )
matches with 69.23% similarity
|
+
|
diphosphate
|
|
 |
 |
 |
 |
 |
 |
 |
 |
Enzyme class 2:
|
 |
E.C.3.4.21.98
- hepacivirin.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
Hydrolysis of four peptide bonds in the viral precursor polyprotein, commonly with Asp or Glu in the P6 position, Cys or Thr in P1 and Ser or Ala in P1'.
|
 |
 |
 |
 |
 |
Enzyme class 3:
|
 |
E.C.3.4.22.-
- ?????
|
|
 |
 |
 |
 |
 |
Enzyme class 4:
|
 |
E.C.3.6.1.15
- nucleoside-triphosphate phosphatase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
a ribonucleoside 5'-triphosphate + H2O = a ribonucleoside 5'-diphosphate + phosphate + H+
|
 |
 |
 |
 |
 |
ribonucleoside 5'-triphosphate
|
+
|
H2O
|
=
|
ribonucleoside 5'-diphosphate
|
+
|
phosphate
|
+
|
H(+)
|
|
 |
 |
 |
 |
 |
 |
 |
 |
Enzyme class 5:
|
 |
E.C.3.6.4.13
- Rna helicase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
ATP + H2O = ADP + phosphate + H+
|
 |
 |
 |
 |
 |
ATP
Bound ligand (Het Group name = )
matches with 81.82% similarity
|
+
|
H2O
|
=
|
ADP
|
+
|
phosphate
|
+
|
H(+)
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Note, where more than one E.C. class is given (as above), each may
correspond to a different protein domain or, in the case of polyprotein
precursors, to a different mature protein.
|
|
 |
|
Molecule diagrams generated from .mol files obtained from the
KEGG ftp site
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
| |
|
|
J Virol
76:3482-3492
(2002)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structural analysis of the hepatitis C virus RNA polymerase in complex with ribonucleotides.
|
|
S.Bressanelli,
L.Tomei,
F.A.Rey,
R.De Francesco.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
We report here the results of a systematic high-resolution X-ray
crystallographic analysis of complexes of the hepatitis C virus (HCV) RNA
polymerase with ribonucleoside triphosphates (rNTPs) and divalent metal ions. An
unexpected observation revealed by this study is the existence of a specific
rGTP binding site in a shallow pocket at the molecular surface of the enzyme, 30
A away from the catalytic site. This previously unidentified rGTP pocket, which
lies at the interface between fingers and thumb, may be an allosteric regulatory
site and could play a role in allowing alternative interactions between the two
domains during a possible conformational change of the enzyme required for
efficient initiation. The electron density map at 1.7-A resolution clearly shows
the mode of binding of the guanosine moiety to the enzyme. In the catalytic
site, density corresponding to the triphosphates of nucleotides bound to the
catalytic metals was apparent in each complex with nucleotides. Moreover, a
network of triphosphate densities was detected; these densities superpose to the
corresponding moieties of the nucleotides observed in the initiation complex
reported for the polymerase of bacteriophage phi6, strengthening the proposal
that the two enzymes initiate replication de novo by similar mechanisms. No
equivalent of the protein stacking platform observed for the priming nucleotide
in the phi6 enzyme is present in HCV polymerase, however, again suggesting that
a change in conformation of the thumb domain takes place upon template binding
to allow for efficient de novo initiation of RNA synthesis.
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
M.Mason,
A.Schuller,
and
E.Skordalakes
(2011).
Telomerase structure function.
|
| |
Curr Opin Struct Biol,
21,
92.
|
 |
|
|
|
|
 |
P.Clemente-Casares,
A.J.López-Jiménez,
I.Bellón-Echeverría,
J.A.Encinar,
E.Martínez-Alfaro,
R.Pérez-Flores,
and
A.Mas
(2011).
De novo polymerase activity and oligomerization of hepatitis C virus RNA-dependent RNA-polymerases from genotypes 1 to 5.
|
| |
PLoS One,
6,
e18515.
|
 |
|
|
|
|
 |
M.Mitchell,
A.Gillis,
M.Futahashi,
H.Fujiwara,
and
E.Skordalakes
(2010).
Structural basis for telomerase catalytic subunit TERT binding to RNA template and telomeric DNA.
|
| |
Nat Struct Mol Biol,
17,
513-518.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.T.Kidmose,
N.N.Vasiliev,
A.B.Chetverin,
G.R.Andersen,
and
C.R.Knudsen
(2010).
Structure of the Qbeta replicase, an RNA-dependent RNA polymerase consisting of viral and host proteins.
|
| |
Proc Natl Acad Sci U S A,
107,
10884-10889.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Chinnaswamy,
A.Murali,
P.Li,
K.Fujisaki,
and
C.C.Kao
(2010).
Regulation of de novo-initiated RNA synthesis in hepatitis C virus RNA-dependent RNA polymerase by intermolecular interactions.
|
| |
J Virol,
84,
5923-5935.
|
 |
|
|
|
|
 |
Z.Ren,
H.Wang,
and
R.Ghose
(2010).
Dynamics on multiple timescales in the RNA-directed RNA polymerase from the cystovirus phi6.
|
| |
Nucleic Acids Res,
38,
5105-5118.
|
 |
|
|
|
|
 |
E.M.Quezada,
and
C.M.Kane
(2009).
The Hepatitis C Virus NS5A Stimulates NS5B During In Vitro RNA Synthesis in a Template Specific Manner.
|
| |
Open Biochem J,
3,
39-48.
|
 |
|
|
|
|
 |
H.Tang,
and
H.Grisé
(2009).
Cellular and molecular biology of HCV infection and hepatitis.
|
| |
Clin Sci (Lond),
117,
49-65.
|
 |
|
|
|
|
 |
J.Q.Hang,
Y.Yang,
S.F.Harris,
V.Leveque,
H.J.Whittington,
S.Rajyaguru,
G.Ao-Ieong,
M.F.McCown,
A.Wong,
A.M.Giannetti,
S.Le Pogam,
F.Talamás,
N.Cammack,
I.Nájera,
and
K.Klumpp
(2009).
Slow binding inhibition and mechanism of resistance of non-nucleoside polymerase inhibitors of hepatitis C virus.
|
| |
J Biol Chem,
284,
15517-15529.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
P.Simister,
M.Schmitt,
M.Geitmann,
O.Wicht,
U.H.Danielson,
R.Klein,
S.Bressanelli,
and
V.Lohmann
(2009).
Structural and functional analysis of hepatitis C virus strain JFH1 polymerase.
|
| |
J Virol,
83,
11926-11939.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
V.Soriano,
M.G.Peters,
and
S.Zeuzem
(2009).
New therapies for hepatitis C virus infection.
|
| |
Clin Infect Dis,
48,
313-320.
|
 |
|
|
|
|
 |
A.Gruez,
B.Selisko,
M.Roberts,
G.Bricogne,
C.Bussetta,
I.Jabafi,
B.Coutard,
A.M.De Palma,
J.Neyts,
and
B.Canard
(2008).
The crystal structure of coxsackievirus B3 RNA-dependent RNA polymerase in complex with its protein primer VPg confirms the existence of a second VPg binding site on Picornaviridae polymerases.
|
| |
J Virol,
82,
9577-9590.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
E.Ferrari,
Z.He,
R.E.Palermo,
and
H.C.Huang
(2008).
Hepatitis C virus NS5B polymerase exhibits distinct nucleotide requirements for initiation and elongation.
|
| |
J Biol Chem,
283,
33893-33901.
|
 |
|
|
|
|
 |
K.K.Ng,
J.J.Arnold,
and
C.E.Cameron
(2008).
Structure-function relationships among RNA-dependent RNA polymerases.
|
| |
Curr Top Microbiol Immunol,
320,
137-156.
|
 |
|
|
|
|
 |
M.M.Poranen,
M.R.Koivunen,
and
D.H.Bamford
(2008).
Nontemplated terminal nucleotidyltransferase activity of double-stranded RNA bacteriophage phi6 RNA-dependent RNA polymerase.
|
| |
J Virol,
82,
9254-9264.
|
 |
|
|
|
|
 |
M.Mazzei,
E.Nieddu,
M.Miele,
A.Balbi,
M.Ferrone,
M.Fermeglia,
M.T.Mazzei,
S.Pricl,
P.La Colla,
F.Marongiu,
C.Ibba,
and
R.Loddo
(2008).
Activity of Mannich bases of 7-hydroxycoumarin against Flaviviridae.
|
| |
Bioorg Med Chem,
16,
2591-2605.
|
 |
|
|
|
|
 |
O.Nyanguile,
F.Pauwels,
W.Van den Broeck,
C.W.Boutton,
L.Quirynen,
T.Ivens,
L.van der Helm,
G.Vandercruyssen,
W.Mostmans,
F.Delouvroy,
P.Dehertogh,
M.D.Cummings,
J.F.Bonfanti,
K.A.Simmen,
and
P.Raboisson
(2008).
1,5-benzodiazepines, a novel class of hepatitis C virus polymerase nonnucleoside inhibitors.
|
| |
Antimicrob Agents Chemother,
52,
4420-4431.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Chinnaswamy,
I.Yarbrough,
S.Palaninathan,
C.T.Kumar,
V.Vijayaraghavan,
B.Demeler,
S.M.Lemon,
J.C.Sacchettini,
and
C.C.Kao
(2008).
A locking mechanism regulates RNA synthesis and host protein interaction by the hepatitis C virus polymerase.
|
| |
J Biol Chem,
283,
20535-20546.
|
 |
|
|
|
|
 |
S.Hoover,
and
R.Striker
(2008).
Thiopurines inhibit bovine viral diarrhea virus production in a thiopurine methyltransferase-dependent manner.
|
| |
J Gen Virol,
89,
1000-1009.
|
 |
|
|
|
|
 |
V.Soriano,
A.Madejon,
E.Vispo,
P.Labarga,
J.Garcia-Samaniego,
L.Martin-Carbonero,
J.Sheldon,
M.Bottecchia,
P.Tuma,
and
P.Barreiro
(2008).
Emerging drugs for hepatitis C.
|
| |
Expert Opin Emerg Drugs,
13,
1.
|
 |
|
|
|
|
 |
A.A.Thompson,
R.A.Albertini,
and
O.B.Peersen
(2007).
Stabilization of poliovirus polymerase by NTP binding and fingers-thumb interactions.
|
| |
J Mol Biol,
366,
1459-1474.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Kaul,
I.Woerz,
P.Meuleman,
G.Leroux-Roels,
and
R.Bartenschlager
(2007).
Cell culture adaptation of hepatitis C virus and in vivo viability of an adapted variant.
|
| |
J Virol,
81,
13168-13179.
|
 |
|
|
|
|
 |
D.Moradpour,
F.Penin,
and
C.M.Rice
(2007).
Replication of hepatitis C virus.
|
| |
Nat Rev Microbiol,
5,
453-463.
|
 |
|
|
|
|
 |
F.Pauwels,
W.Mostmans,
L.M.Quirynen,
L.van der Helm,
C.W.Boutton,
A.S.Rueff,
E.Cleiren,
P.Raboisson,
D.Surleraux,
O.Nyanguile,
and
K.A.Simmen
(2007).
Binding-site identification and genotypic profiling of hepatitis C virus polymerase inhibitors.
|
| |
J Virol,
81,
6909-6919.
|
 |
|
|
|
|
 |
J.Pan,
V.N.Vakharia,
and
Y.J.Tao
(2007).
The structure of a birnavirus polymerase reveals a distinct active site topology.
|
| |
Proc Natl Acad Sci U S A,
104,
7385-7390.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Sheldon,
P.Barreiro,
and
V.Vincent
(2007).
Novel protease and polymerase inhibitors for the treatment of hepatitis C virus infection.
|
| |
Expert Opin Investig Drugs,
16,
1171-1181.
|
 |
|
|
|
|
 |
L.L.Marcotte,
A.B.Wass,
D.W.Gohara,
H.B.Pathak,
J.J.Arnold,
D.J.Filman,
C.E.Cameron,
and
J.M.Hogle
(2007).
Crystal structure of poliovirus 3CD protein: virally encoded protease and precursor to the RNA-dependent RNA polymerase.
|
| |
J Virol,
81,
3583-3596.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.S.Freistadt,
and
K.E.Eberle
(2007).
Conserved aspartic acid 233 and alanine 231 are not required for poliovirus polymerase function in replicons.
|
| |
Virol J,
4,
28.
|
 |
|
|
|
|
 |
N.Beerens,
B.Selisko,
S.Ricagno,
I.Imbert,
L.van der Zanden,
E.J.Snijder,
and
B.Canard
(2007).
De novo initiation of RNA synthesis by the arterivirus RNA-dependent RNA polymerase.
|
| |
J Virol,
81,
8384-8395.
|
 |
|
|
|
|
 |
R.De Francesco,
and
A.Carfí
(2007).
Advances in the development of new therapeutic agents targeting the NS3-4A serine protease or the NS5B RNA-dependent RNA polymerase of the hepatitis C virus.
|
| |
Adv Drug Deliv Rev,
59,
1242-1262.
|
 |
|
|
|
|
 |
T.L.Yap,
T.Xu,
Y.L.Chen,
H.Malet,
M.P.Egloff,
B.Canard,
S.G.Vasudevan,
and
J.Lescar
(2007).
Crystal structure of the dengue virus RNA-dependent RNA polymerase catalytic domain at 1.85-angstrom resolution.
|
| |
J Virol,
81,
4753-4765.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.Suzuki,
K.Ishii,
H.Aizaki,
and
T.Wakita
(2007).
Hepatitis C viral life cycle.
|
| |
Adv Drug Deliv Rev,
59,
1200-1212.
|
 |
|
|
|
|
 |
A.Y.Howe,
H.Cheng,
I.Thompson,
S.K.Chunduru,
S.Herrmann,
J.O'Connell,
A.Agarwal,
R.Chopra,
and
A.M.Del Vecchio
(2006).
Molecular mechanism of a thumb domain hepatitis C virus nonnucleoside RNA-dependent RNA polymerase inhibitor.
|
| |
Antimicrob Agents Chemother,
50,
4103-4113.
|
 |
|
|
|
|
 |
C.T.Ranjith-Kumar,
and
C.C.Kao
(2006).
Recombinant viral RdRps can initiate RNA synthesis from circular templates.
|
| |
RNA,
12,
303-312.
|
 |
|
|
|
|
 |
H.Dutartre,
C.Bussetta,
J.Boretto,
and
B.Canard
(2006).
General catalytic deficiency of hepatitis C virus RNA polymerase with an S282T mutation and mutually exclusive resistance towards 2'-modified nucleotide analogues.
|
| |
Antimicrob Agents Chemother,
50,
4161-4169.
|
 |
|
|
|
|
 |
J.Ortín,
and
F.Parra
(2006).
Structure and function of RNA replication.
|
| |
Annu Rev Microbiol,
60,
305-326.
|
 |
|
|
|
|
 |
J.Paeshuyse,
P.Leyssen,
E.Mabery,
N.Boddeker,
R.Vrancken,
M.Froeyen,
I.H.Ansari,
H.Dutartre,
J.Rozenski,
L.H.Gil,
C.Letellier,
R.Lanford,
B.Canard,
F.Koenen,
P.Kerkhofs,
R.O.Donis,
P.Herdewijn,
J.Watson,
E.De Clercq,
G.Puerstinger,
and
J.Neyts
(2006).
A novel, highly selective inhibitor of pestivirus replication that targets the viral RNA-dependent RNA polymerase.
|
| |
J Virol,
80,
149-160.
|
 |
|
|
|
|
 |
M.V.Kozlov,
K.M.Polyakov,
A.V.Ivanov,
S.E.Filippova,
A.O.Kuzyakin,
V.L.Tunitskaya,
and
S.N.Kochetkov
(2006).
Hepatitis C virus RNA-dependent RNA polymerase: study on the inhibition mechanism by pyrogallol derivatives.
|
| |
Biochemistry (Mosc),
71,
1021-1026.
|
 |
|
|
|
|
 |
S.H.Choi,
K.J.Park,
B.Y.Ahn,
G.Jung,
M.M.Lai,
and
S.B.Hwang
(2006).
Hepatitis C virus nonstructural 5B protein regulates tumor necrosis factor alpha signaling through effects on cellular IkappaB kinase.
|
| |
Mol Cell Biol,
26,
3048-3059.
|
 |
|
|
|
|
 |
A.D.Kwong,
B.G.Rao,
and
K.T.Jeang
(2005).
Viral and cellular RNA helicases as antiviral targets.
|
| |
Nat Rev Drug Discov,
4,
845-853.
|
 |
|
|
|
|
 |
B.D.Lindenbach,
and
C.M.Rice
(2005).
Unravelling hepatitis C virus replication from genome to function.
|
| |
Nature,
436,
933-938.
|
 |
|
|
|
|
 |
F.Ferron,
C.Bussetta,
H.Dutartre,
and
B.Canard
(2005).
The modeled structure of the RNA dependent RNA polymerase of GBV-C virus suggests a role for motif E in Flaviviridae RNA polymerases.
|
| |
BMC Bioinformatics,
6,
255.
|
 |
|
|
|
|
 |
S.W.Ludmerer,
D.J.Graham,
E.Boots,
E.M.Murray,
A.Simcoe,
E.J.Markel,
J.A.Grobler,
O.A.Flores,
D.B.Olsen,
D.J.Hazuda,
and
R.L.LaFemina
(2005).
Replication fitness and NS5B drug sensitivity of diverse hepatitis C virus isolates characterized by using a transient replication assay.
|
| |
Antimicrob Agents Chemother,
49,
2059-2069.
|
 |
|
|
|
|
 |
Z.Cai,
M.Yi,
C.Zhang,
and
G.Luo
(2005).
Mutagenesis analysis of the rGTP-specific binding site of hepatitis C virus RNA-dependent RNA polymerase.
|
| |
J Virol,
79,
11607-11617.
|
 |
|
|
|
|
 |
A.Azzi,
and
S.X.Lin
(2004).
Human SARS-coronavirus RNA-dependent RNA polymerase: activity determinants and nucleoside analogue inhibitors.
|
| |
Proteins,
57,
12-14.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.T.Ranjith-Kumar,
R.T.Sarisky,
L.Gutshall,
M.Thomson,
and
C.C.Kao
(2004).
De novo initiation pocket mutations have multiple effects on hepatitis C virus RNA-dependent RNA polymerase activities.
|
| |
J Virol,
78,
12207-12217.
|
 |
|
|
|
|
 |
D.R.Hwang,
Y.C.Tsai,
J.C.Lee,
K.K.Huang,
R.K.Lin,
C.H.Ho,
J.M.Chiou,
Y.T.Lin,
J.T.Hsu,
and
C.T.Yeh
(2004).
Inhibition of hepatitis C virus replication by arsenic trioxide.
|
| |
Antimicrob Agents Chemother,
48,
2876-2882.
|
 |
|
|
|
|
 |
F.Penin,
J.Dubuisson,
F.A.Rey,
D.Moradpour,
and
J.M.Pawlotsky
(2004).
Structural biology of hepatitis C virus.
|
| |
Hepatology,
39,
5.
|
 |
|
|
|
|
 |
G.McKercher,
P.L.Beaulieu,
D.Lamarre,
S.LaPlante,
S.Lefebvre,
C.Pellerin,
L.Thauvette,
and
G.Kukolj
(2004).
Specific inhibitors of HCV polymerase identified using an NS5B with lower affinity for template/primer substrate.
|
| |
Nucleic Acids Res,
32,
422-431.
|
 |
|
|
|
|
 |
J.M.Pawlotsky,
and
J.G.McHutchison
(2004).
Hepatitis C. Development of new drugs and clinical trials: promises and pitfalls. Summary of an AASLD hepatitis single topic conference, Chicago, IL, February 27-March 1, 2003.
|
| |
Hepatology,
39,
554-567.
|
 |
|
|
|
|
 |
K.H.Choi,
J.M.Groarke,
D.C.Young,
R.J.Kuhn,
J.L.Smith,
D.C.Pevear,
and
M.G.Rossmann
(2004).
The structure of the RNA-dependent RNA polymerase from bovine viral diarrhea virus establishes the role of GTP in de novo initiation.
|
| |
Proc Natl Acad Sci U S A,
101,
4425-4430.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
L.Tomei,
S.Altamura,
L.Bartholomew,
M.Bisbocci,
C.Bailey,
M.Bosserman,
A.Cellucci,
E.Forte,
I.Incitti,
L.Orsatti,
U.Koch,
R.De Francesco,
D.B.Olsen,
S.S.Carroll,
and
G.Migliaccio
(2004).
Characterization of the inhibition of hepatitis C virus RNA replication by nonnucleosides.
|
| |
J Virol,
78,
938-946.
|
 |
|
|
|
|
 |
Z.Cai,
T.J.Liang,
and
G.Luo
(2004).
Effects of mutations of the initiation nucleotides on hepatitis C virus RNA replication in the cell.
|
| |
J Virol,
78,
3633-3643.
|
 |
|
|
|
|
 |
A.A.Khromykh,
N.Kondratieva,
J.Y.Sgro,
A.Palmenberg,
and
E.G.Westaway
(2003).
Significance in replication of the terminal nucleotides of the flavivirus genome.
|
| |
J Virol,
77,
10623-10629.
|
 |
|
|
|
|
 |
C.T.Ranjith-Kumar,
X.Zhang,
and
C.C.Kao
(2003).
Enhancer-like activity of a brome mosaic virus RNA promoter.
|
| |
J Virol,
77,
1830-1839.
|
 |
|
|
|
|
 |
J.A.Bruenn
(2003).
A structural and primary sequence comparison of the viral RNA-dependent RNA polymerases.
|
| |
Nucleic Acids Res,
31,
1821-1829.
|
 |
|
|
|
|
 |
J.H.Sun,
J.A.Lemm,
D.R.O'Boyle,
J.Racela,
R.Colonno,
and
M.Gao
(2003).
Specific inhibition of bovine viral diarrhea virus replicase.
|
| |
J Virol,
77,
6753-6760.
|
 |
|
|
|
|
 |
L.Tomei,
S.Altamura,
L.Bartholomew,
A.Biroccio,
A.Ceccacci,
L.Pacini,
F.Narjes,
N.Gennari,
M.Bisbocci,
I.Incitti,
L.Orsatti,
S.Harper,
I.Stansfield,
M.Rowley,
R.De Francesco,
and
G.Migliaccio
(2003).
Mechanism of action and antiviral activity of benzimidazole-based allosteric inhibitors of the hepatitis C virus RNA-dependent RNA polymerase.
|
| |
J Virol,
77,
13225-13231.
|
 |
|
|
|
|
 |
M.Nomaguchi,
M.Ackermann,
C.Yon,
S.You,
R.Padmanabhan,
and
R.Padmanbhan
(2003).
De novo synthesis of negative-strand RNA by Dengue virus RNA-dependent RNA polymerase in vitro: nucleotide, primer, and template parameters.
|
| |
J Virol,
77,
8831-8842.
|
 |
|
|
|
|
 |
R.A.Love,
H.E.Parge,
X.Yu,
M.J.Hickey,
W.Diehl,
J.Gao,
H.Wriggers,
A.Ekker,
L.Wang,
J.A.Thomson,
P.S.Dragovich,
and
S.A.Fuhrman
(2003).
Crystallographic identification of a noncompetitive inhibitor binding site on the hepatitis C virus NS5B RNA polymerase enzyme.
|
| |
J Virol,
77,
7575-7581.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.W.Hardy,
J.Marcotrigiano,
K.J.Blight,
J.E.Majors,
and
C.M.Rice
(2003).
Hepatitis C virus RNA synthesis in a cell-free system isolated from replicon-containing hepatoma cells.
|
| |
J Virol,
77,
2029-2037.
|
 |
|
|
|
|
 |
T.T.Nguyen,
A.T.Gates,
L.L.Gutshall,
V.K.Johnston,
B.Gu,
K.J.Duffy,
and
R.T.Sarisky
(2003).
Resistance profile of a hepatitis C virus RNA-dependent RNA polymerase benzothiadiazine inhibitor.
|
| |
Antimicrob Agents Chemother,
47,
3525-3530.
|
 |
|
|
|
|
 |
X.Xu,
Y.Liu,
S.Weiss,
E.Arnold,
S.G.Sarafianos,
and
J.Ding
(2003).
Molecular model of SARS coronavirus polymerase: implications for biochemical functions and drug design.
|
| |
Nucleic Acids Res,
31,
7117-7130.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.Biroccio,
J.Hamm,
I.Incitti,
R.De Francesco,
and
L.Tomei
(2002).
Selection of RNA aptamers that are specific and high-affinity ligands of the hepatitis C virus RNA-dependent RNA polymerase.
|
| |
J Virol,
76,
3688-3696.
|
 |
|
|
|
|
 |
C.T.Ranjith-Kumar,
L.Gutshall,
M.J.Kim,
R.T.Sarisky,
and
C.C.Kao
(2002).
Requirements for de novo initiation of RNA synthesis by recombinant flaviviral RNA-dependent RNA polymerases.
|
| |
J Virol,
76,
12526-12536.
|
 |
|
|
|
|
 |
C.T.Ranjith-Kumar,
Y.C.Kim,
L.Gutshall,
C.Silverman,
S.Khandekar,
R.T.Sarisky,
and
C.C.Kao
(2002).
Mechanism of de novo initiation by the hepatitis C virus RNA-dependent RNA polymerase: role of divalent metals.
|
| |
J Virol,
76,
12513-12525.
|
 |
|
|
|
|
 |
D.Moradpour,
V.Brass,
R.Gosert,
B.Wölk,
and
H.E.Blum
(2002).
Hepatitis C: molecular virology and antiviral targets.
|
| |
Trends Mol Med,
8,
476-482.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |