spacer
spacer

PDBsum entry 1xr5

Go to PDB code: 
protein metals links
Transferase PDB id
1xr5

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
460 a.a. *
Metals
_SM
Waters ×2
* Residue conservation analysis
PDB id:
1xr5
Name: Transferase
Title: Crystal structure of the RNA-dependent RNA polymerase 3d from human rhinovirus serotype 14
Structure: Genome polyprotein. Chain: a. Fragment: RNA-directed RNA polymerase. Engineered: yes
Source: Human rhinovirus 14. Organism_taxid: 12131. Gene: p3d. Expressed in: escherichia coli. Expression_system_taxid: 562.
Resolution:
2.80Å     R-factor:   0.267     R-free:   0.293
Authors: R.A.Love,K.A.Maegley,X.Yu,R.A.Ferre,L.K.Lingardo,W.Diehl,H.E.Parge, P.S.Dragovich,S.A.Fuhrman
Key ref:
R.A.Love et al. (2004). The crystal structure of the RNA-dependent RNA polymerase from human rhinovirus: a dual function target for common cold antiviral therapy. Structure, 12, 1533-1544. PubMed id: 15296746 DOI: 10.1016/j.str.2004.05.024
Date:
13-Oct-04     Release date:   26-Oct-04    
Supersedes: 1teb
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P03303  (POLG_HRV14) -  Genome polyprotein from Human rhinovirus 14
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
2179 a.a.
460 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class 2: E.C.2.7.7.48  - RNA-directed Rna polymerase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: RNA(n) + a ribonucleoside 5'-triphosphate = RNA(n+1) + diphosphate
RNA(n)
+ ribonucleoside 5'-triphosphate
= RNA(n+1)
+ diphosphate
   Enzyme class 3: E.C.3.4.22.28  - picornain 3C.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Selective cleavage of Gln-|-Gly bond in the poliovirus polyprotein. In other picornavirus reactions Glu may be substituted for Gln, and Ser or Thr for Gly.
   Enzyme class 4: E.C.3.4.22.29  - picornain 2A.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Selective cleavage of Tyr-|-Gly bond in the picornavirus polyprotein. In other picornavirus reactions Glu may be substituted for Gln, and Ser or Thr for Gly.
   Enzyme class 5: E.C.3.6.1.15  - nucleoside-triphosphate phosphatase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: a ribonucleoside 5'-triphosphate + H2O = a ribonucleoside 5'-diphosphate + phosphate + H+
ribonucleoside 5'-triphosphate
+ H2O
= ribonucleoside 5'-diphosphate
+ phosphate
+ H(+)
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1016/j.str.2004.05.024 Structure 12:1533-1544 (2004)
PubMed id: 15296746  
 
 
The crystal structure of the RNA-dependent RNA polymerase from human rhinovirus: a dual function target for common cold antiviral therapy.
R.A.Love, K.A.Maegley, X.Yu, R.A.Ferre, L.K.Lingardo, W.Diehl, H.E.Parge, P.S.Dragovich, S.A.Fuhrman.
 
  ABSTRACT  
 
Human rhinoviruses (HRV), the predominant members of the Picornaviridae family of positive-strand RNA viruses, are the major causative agents of the common cold. Given the lack of effective treatments for rhinoviral infections, virally encoded proteins have become attractive therapeutic targets. The HRV genome encodes an RNA-dependent RNA polymerase (RdRp) denoted 3Dpol, which is responsible for replicating the viral genome and for synthesizing a protein primer used in the replication. Here the crystal structures for three viral serotypes (1B, 14, and 16) of HRV 3Dpol have been determined. The three structures are very similar to one another, and to the closely related poliovirus (PV) 3Dpol enzyme. Because the reported PV crystal structure shows significant disorder, HRV 3Dpol provides the first complete view of a picornaviral RdRp. The folding topology of HRV 3Dpol also resembles that of RdRps from hepatitis C virus (HCV) and rabbit hemorrhagic disease virus (RHDV) despite very low sequence homology.
 
  Selected figure(s)  
 
Figure 1.
Figure 1. Experimental Density Map for HRV 3D^polStereoview of the 2.8 Å SAD electron density map for HRV14 3D^pol in the vicinity of the active site (contoured at 2s), derived from SHARP using the anomalous signal of bound samarium (red sphere). The refined structure of HRV14 3D^pol is superimposed.
 
  The above figure is reprinted by permission from Cell Press: Structure (2004, 12, 1533-1544) copyright 2004.  
  Figure was selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20521933 C.E.Cameron, H.Suk Oh, and I.M.Moustafa (2010).
Expanding knowledge of P3 proteins in the poliovirus lifecycle.
  Future Microbiol, 5, 867-881.  
  20625447 J.Kerkvliet, R.Edukulla, and M.Rodriguez (2010).
Novel roles of the picornaviral 3D polymerase in viral pathogenesis.
  Adv Virol, 2010, 368068.  
20485673 S.Cordey, T.Junier, D.Gerlach, F.Gobbini, L.Farinelli, E.M.Zdobnov, B.Winther, C.Tapparel, and L.Kaiser (2010).
Rhinovirus genome evolution during experimental human infection.
  PLoS One, 5, e10588.  
20534858 S.E.Hobdey, B.J.Kempf, B.P.Steil, D.J.Barton, and O.B.Peersen (2010).
Poliovirus polymerase residue 5 plays a critical role in elongation complex stability.
  J Virol, 84, 8072-8084.  
18487072 C.C.Kok, and P.C.McMinn (2009).
Picornavirus RNA-dependent RNA polymerase.
  Int J Biochem Cell Biol, 41, 498-502.  
19182223 N.Lewis-Rogers, M.L.Bendall, and K.A.Crandall (2009).
Phylogenetic relationships and molecular adaptation dynamics of human rhinoviruses.
  Mol Biol Evol, 26, 969-981.  
18632861 A.Gruez, B.Selisko, M.Roberts, G.Bricogne, C.Bussetta, I.Jabafi, B.Coutard, A.M.De Palma, J.Neyts, and B.Canard (2008).
The crystal structure of coxsackievirus B3 RNA-dependent RNA polymerase in complex with its protein primer VPg confirms the existence of a second VPg binding site on Picornaviridae polymerases.
  J Virol, 82, 9577-9590.
PDB codes: 3cdu 3cdw
18032495 D.N.Harrison, E.V.Gazina, D.F.Purcell, D.A.Anderson, and S.Petrou (2008).
Amiloride derivatives inhibit coxsackievirus B3 RNA replication.
  J Virol, 82, 1465-1473.  
18632862 G.Campagnola, M.Weygandt, K.Scoggin, and O.Peersen (2008).
Crystal structure of coxsackievirus B3 3Dpol highlights the functional importance of residue 5 in picornavirus polymerases.
  J Virol, 82, 9458-9464.
PDB code: 3ddk
18321727 I.I.Mendez, S.G.Weiner, Y.M.She, M.Yeager, and K.M.Coombs (2008).
Conformational changes accompany activation of reovirus RNA-dependent RNA transcription.
  J Struct Biol, 162, 277-289.  
  18268843 K.K.Ng, J.J.Arnold, and C.E.Cameron (2008).
Structure-function relationships among RNA-dependent RNA polymerases.
  Curr Top Microbiol Immunol, 320, 137-156.  
18667512 M.Hass, M.Lelke, C.Busch, B.Becker-Ziaja, and S.Günther (2008).
Mutational evidence for a structural model of the Lassa virus RNA polymerase domain and identification of two residues, Gly1394 and Asp1395, that are critical for transcription but not replication of the genome.
  J Virol, 82, 10207-10217.  
18442978 S.Chinnaswamy, I.Yarbrough, S.Palaninathan, C.T.Kumar, V.Vijayaraghavan, B.Demeler, S.M.Lemon, J.C.Sacchettini, and C.C.Kao (2008).
A locking mechanism regulates RNA synthesis and host protein interaction by the hepatitis C virus polymerase.
  J Biol Chem, 283, 20535-20546.  
17223130 A.A.Thompson, R.A.Albertini, and O.B.Peersen (2007).
Stabilization of poliovirus polymerase by NTP binding and fingers-thumb interactions.
  J Mol Biol, 366, 1459-1474.
PDB codes: 2ily 2ilz 2im0 2im1 2im2 2im3
17251299 L.L.Marcotte, A.B.Wass, D.W.Gohara, H.B.Pathak, J.J.Arnold, D.J.Filman, C.E.Cameron, and J.M.Hogle (2007).
Crystal structure of poliovirus 3CD protein: virally encoded protease and precursor to the RNA-dependent RNA polymerase.
  J Virol, 81, 3583-3596.
PDB codes: 2ijd 2ijf
17855535 M.Shen, Q.Wang, Y.Yang, H.B.Pathak, J.J.Arnold, C.Castro, S.M.Lemon, and C.E.Cameron (2007).
Human rhinovirus type 14 gain-of-function mutants for oriI utilization define residues of 3C(D) and 3Dpol that contribute to assembly and stability of the picornavirus VPg uridylylation complex.
  J Virol, 81, 12485-12495.  
17121797 S.W.Fullerton, M.Blaschke, B.Coutard, J.Gebhardt, A.Gorbalenya, B.Canard, P.A.Tucker, and J.Rohayem (2007).
Structural and functional characterization of sapovirus RNA-dependent RNA polymerase.
  J Virol, 81, 1858-1871.
PDB code: 2ckw
16456546 C.Ferrer-Orta, A.Arias, R.Agudo, R.Pérez-Luque, C.Escarmís, E.Domingo, and N.Verdaguer (2006).
The structure of a protein primer-polymerase complex in the initiation of genome replication.
  EMBO J, 25, 880-888.
PDB codes: 2d7s 2f8e
16498624 C.H.Schein, D.E.Volk, N.Oezguen, and A.Paul (2006).
Novel, structure-based mechanism for uridylylation of the genome-linked peptide (VPg) of picornaviruses.
  Proteins, 63, 719-726.  
16373481 C.T.Ranjith-Kumar, and C.C.Kao (2006).
Recombinant viral RdRps can initiate RNA synthesis from circular templates.
  RNA, 12, 303-312.  
16719717 J.Ortín, and F.Parra (2006).
Structure and function of RNA replication.
  Annu Rev Microbiol, 60, 305-326.  
17085042 J.R.Mesters, J.Tan, and R.Hilgenfeld (2006).
Viral enzymes.
  Curr Opin Struct Biol, 16, 776-786.  
16840321 O.C.Richards, J.F.Spagnolo, J.M.Lyle, S.E.Vleck, R.D.Kuchta, and K.Kirkegaard (2006).
Intramolecular and intermolecular uridylylation by poliovirus RNA-dependent RNA polymerase.
  J Virol, 80, 7405-7415.  
16188890 G.Kukolj, G.A.McGibbon, G.McKercher, M.Marquis, S.Lefèbvre, L.Thauvette, J.Gauthier, S.Goulet, M.A.Poupart, and P.L.Beaulieu (2005).
Binding site characterization and resistance to a class of non-nucleoside inhibitors of the hepatitis C virus NS5B polymerase.
  J Biol Chem, 280, 39260-39267.  
15878882 J.J.Arnold, M.Vignuzzi, J.K.Stone, R.Andino, and C.E.Cameron (2005).
Remote site control of an active site fidelity checkpoint in a viral RNA-dependent RNA polymerase.
  J Biol Chem, 280, 25706-25716.  
15955819 S.Di Marco, C.Volpari, L.Tomei, S.Altamura, S.Harper, F.Narjes, U.Koch, M.Rowley, R.De Francesco, G.Migliaccio, and A.Carfí (2005).
Interdomain communication in hepatitis C virus polymerase abolished by small molecule inhibitors bound to a novel allosteric site.
  J Biol Chem, 280, 29765-29770.
PDB codes: 2brk 2brl
15735337 T.C.Appleby, G.Larson, I.W.Cheney, H.Walker, J.Z.Wu, W.Zhong, Z.Hong, and N.Yao (2005).
Structure of human uridine-cytidine kinase 2 determined by SIRAS using a rotating-anode X-ray generator and a single samarium derivative.
  Acta Crystallogr D Biol Crystallogr, 61, 278-284.
PDB code: 1xrj
15296725 S.Crowder, and K.Kirkegaard (2004).
Complete three-dimensional structures of picornaviral RNA-dependent RNA polymerases.
  Structure, 12, 1336-1339.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer