 |
PDBsum entry 2bpf
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Transferase/DNA
|
PDB id
|
|
|
|
2bpf
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Transferase/DNA
|
 |
|
Title:
|
 |
Structures of ternary complexes of rat DNA polymerase beta, a DNA template-primer, and ddctp
|
|
Structure:
|
 |
DNA (5'-d( Gp Gp Gp Cp Gp Cp Cp G)-3'). Chain: t. Engineered: yes. DNA (5'-d( Cp Gp Gp Cp Gp Cp C)-3'). Chain: p. Engineered: yes. Protein (DNA polymerase beta . Chain: a. Engineered: yes
|
|
Source:
|
 |
Synthetic: yes. Rattus norvegicus. Norway rat. Organism_taxid: 10116. Expressed in: escherichia coli. Expression_system_taxid: 562
|
|
Biol. unit:
|
 |
Trimer (from
)
|
|
Resolution:
|
 |
|
|
Authors:
|
 |
H.Pelletier,M.R.Sawaya,A.Kumar,S.H.Wilson,J.Kraut
|
|
Key ref:
|
 |
H.Pelletier
et al.
(1994).
Structures of ternary complexes of rat DNA polymerase beta, a DNA template-primer, and ddCTP.
Science,
264,
1891-1903.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
19-May-94
|
Release date:
|
14-Dec-94
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
P06766
(DPOLB_RAT) -
DNA polymerase beta from Rattus norvegicus
|
|
|
|
Seq: Struc:
|
 |
 |
 |
335 a.a.
324 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
Key: |
 |
PfamA domain |
 |
 |
 |
Secondary structure |
 |
 |
CATH domain |
 |
|
|
|
|
|
|
|
|
|
G-G-G-C-G-C-C-G
8 bases
|
|
|
|
C-G-G-C-G-C-C
7 bases
|
|
|
 |
 |
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class 1:
|
 |
E.C.2.7.7.7
- DNA-directed Dna polymerase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
DNA(n) + a 2'-deoxyribonucleoside 5'-triphosphate = DNA(n+1) + diphosphate
|
 |
 |
 |
 |
 |
DNA(n)
|
+
|
2'-deoxyribonucleoside 5'-triphosphate
|
=
|
DNA(n+1)
|
+
|
diphosphate
|
|
 |
 |
 |
 |
 |
 |
 |
 |
Enzyme class 2:
|
 |
E.C.4.2.99.-
- ?????
|
|
 |
 |
 |
 |
 |
Enzyme class 3:
|
 |
E.C.4.2.99.18
- DNA-(apurinic or apyrimidinic site) lyase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
2'-deoxyribonucleotide-(2'-deoxyribose 5'-phosphate)- 2'-deoxyribonucleotide-DNA = a 3'-end 2'-deoxyribonucleotide-(2,3- dehydro-2,3-deoxyribose 5'-phosphate)-DNA + a 5'-end 5'-phospho- 2'-deoxyribonucleoside-DNA + H+
|
 |
 |
 |
 |
 |
 |
 |
|
Note, where more than one E.C. class is given (as above), each may
correspond to a different protein domain or, in the case of polyprotein
precursors, to a different mature protein.
|
|
 |
|
Molecule diagrams generated from .mol files obtained from the
KEGG ftp site
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
| |
|
DOI no:
|
Science
264:1891-1903
(1994)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structures of ternary complexes of rat DNA polymerase beta, a DNA template-primer, and ddCTP.
|
|
H.Pelletier,
M.R.Sawaya,
A.Kumar,
S.H.Wilson,
J.Kraut.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
Two ternary complexes of rat DNA polymerase beta (pol beta), a DNA
template-primer, and dideoxycytidine triphosphate (ddCTP) have been determined
at 2.9 A and 3.6 A resolution, respectively. ddCTP is the triphosphate of
dideoxycytidine (ddC), a nucleoside analog that targets the reverse
transcriptase of human immunodeficiency virus (HIV) and is at present used to
treat AIDS. Although crystals of the two complexes belong to different space
groups, the structures are similar, suggesting that the polymerase-DNA-ddCTP
interactions are not affected by crystal packing forces. In the pol beta active
site, the attacking 3'-OH of the elongating primer, the ddCTP phosphates, and
two Mg2+ ions are all clustered around Asp190, Asp192, and Asp256. Two of these
residues, Asp190 and Asp256, are present in the amino acid sequences of all
polymerases so far studied and are also spatially similar in the four
polymerases--the Klenow fragment of Escherichia coli DNA polymerase I, HIV-1
reverse transcriptase, T7 RNA polymerase, and rat DNA pol beta--whose crystal
structures are now known. A two-metal ion mechanism is described for the
nucleotidyl transfer reaction and may apply to all polymerases. In the ternary
complex structures analyzed, pol beta binds to the DNA template-primer in a
different manner from that recently proposed for other polymerase-DNA models.
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
T.Nakamura,
Y.Zhao,
Y.Yamagata,
Y.J.Hua,
and
W.Yang
(2012).
Watching DNA polymerase η make a phosphodiester bond.
|
| |
Nature,
487,
196-201.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
B.Knobloch,
A.Mucha,
B.P.Operschall,
H.Sigel,
M.Jeżowska-Bojczuk,
H.Kozłowski,
and
R.K.Sigel
(2011).
Stability and structure of mixed-ligand metal ion complexes that contain Ni2+, Cu2+, or Zn2+, and Histamine, as well as adenosine 5'-triphosphate (ATP4-) or uridine 5'-triphosphate (UTP(4-): an intricate network of equilibria.
|
| |
Chemistry,
17,
5393-5403.
|
 |
|
|
|
|
 |
D.C.Knapp,
S.Serva,
J.D'Onofrio,
A.Keller,
A.Lubys,
A.Kurg,
M.Remm,
and
J.W.Engels
(2011).
Fluoride-cleavable, fluorescently labelled reversible terminators: synthesis and use in primer extension.
|
| |
Chemistry,
17,
2903-2915.
|
 |
|
|
|
|
 |
J.Orans,
E.A.McSweeney,
R.R.Iyer,
M.A.Hast,
H.W.Hellinga,
P.Modrich,
and
L.S.Beese
(2011).
Structures of human exonuclease 1 DNA complexes suggest a unified mechanism for nuclease family.
|
| |
Cell,
145,
212-223.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
P.Xie
(2011).
A model for the dynamics of mammalian family X DNA polymerases.
|
| |
J Theor Biol,
277,
111-122.
|
 |
|
|
|
|
 |
S.E.Tsutakawa,
S.Classen,
B.R.Chapados,
A.S.Arvai,
L.D.Finger,
G.Guenther,
C.G.Tomlinson,
P.Thompson,
A.H.Sarker,
B.Shen,
P.K.Cooper,
J.A.Grasby,
and
J.A.Tainer
(2011).
Human flap endonuclease structures, DNA double-base flipping, and a unified understanding of the FEN1 superfamily.
|
| |
Cell,
145,
198-211.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Fernández-Botello,
B.P.Operschall,
A.Holy,
V.Moreno,
and
H.Sigel
(2010).
Metal ion-binding properties of 9-[(2-phosphonomethoxy)ethyl]-2-aminopurine (PME2AP), an isomer of the antiviral nucleotide analogue 9-[(2-phosphonomethoxy)ethyl]adenine (PMEA). Steric guiding of metal ion-coordination by the purine-amino group.
|
| |
Dalton Trans,
39,
6344-6354.
|
 |
|
|
|
|
 |
G.Zhao,
and
Y.Guan
(2010).
Polymerization behavior of Klenow fragment and Taq DNA polymerase in short primer extension reactions.
|
| |
Acta Biochim Biophys Sin (Shanghai),
42,
722-728.
|
 |
|
|
|
|
 |
J.A.Brown,
K.A.Fiala,
J.D.Fowler,
S.M.Sherrer,
S.A.Newmister,
W.W.Duym,
and
Z.Suo
(2010).
A novel mechanism of sugar selection utilized by a human X-family DNA polymerase.
|
| |
J Mol Biol,
395,
282-290.
|
 |
|
|
|
|
 |
J.Guo,
L.Yu,
N.J.Turro,
and
J.Ju
(2010).
An integrated system for DNA sequencing by synthesis using novel nucleotide analogues.
|
| |
Acc Chem Res,
43,
551-563.
|
 |
|
|
|
|
 |
J.Yamtich,
D.Starcevic,
J.Lauper,
E.Smith,
I.Shi,
S.Rangarajan,
J.Jaeger,
and
J.B.Sweasy
(2010).
Hinge residue I174 is critical for proper dNTP selection by DNA polymerase beta.
|
| |
Biochemistry,
49,
2326-2334.
|
 |
|
|
|
|
 |
J.Yamtich,
and
J.B.Sweasy
(2010).
DNA polymerase family X: function, structure, and cellular roles.
|
| |
Biochim Biophys Acta,
1804,
1136-1150.
|
 |
|
|
|
|
 |
K.A.Johnson
(2010).
The kinetic and chemical mechanism of high-fidelity DNA polymerases.
|
| |
Biochim Biophys Acta,
1804,
1041-1048.
|
 |
|
|
|
|
 |
K.Singh,
B.Marchand,
K.A.Kirby,
E.Michailidis,
and
S.G.Sarafianos
(2010).
Structural Aspects of Drug Resistance and Inhibition of HIV-1 Reverse Transcriptase.
|
| |
Viruses,
2,
606-638.
|
 |
|
|
|
|
 |
M.de Vega,
J.M.Lázaro,
M.Mencía,
L.Blanco,
and
M.Salas
(2010).
Improvement of φ29 DNA polymerase amplification performance by fusion of DNA binding motifs.
|
| |
Proc Natl Acad Sci U S A,
107,
16506-16511.
|
 |
|
|
|
|
 |
N.Staiger,
and
A.Marx
(2010).
A DNA polymerase with increased reactivity for ribonucleotides and C5-modified deoxyribonucleotides.
|
| |
Chembiochem,
11,
1963-1966.
|
 |
|
|
|
|
 |
R.G.Federley,
and
L.J.Romano
(2010).
DNA polymerase: structural homology, conformational dynamics, and the effects of carcinogenic DNA adducts.
|
| |
J Nucleic Acids,
2010,
0.
|
 |
|
|
|
|
 |
S.H.Wilson,
W.A.Beard,
D.D.Shock,
V.K.Batra,
N.A.Cavanaugh,
R.Prasad,
E.W.Hou,
Y.Liu,
K.Asagoshi,
J.K.Horton,
D.F.Stefanick,
P.S.Kedar,
M.J.Carrozza,
A.Masaoka,
and
M.L.Heacock
(2010).
Base excision repair and design of small molecule inhibitors of human DNA polymerase β.
|
| |
Cell Mol Life Sci,
67,
3633-3647.
|
 |
|
|
|
|
 |
S.J.Hyde,
B.E.Eckenroth,
B.A.Smith,
W.A.Eberley,
N.H.Heintz,
J.E.Jackman,
and
S.Doublié
(2010).
tRNA(His) guanylyltransferase (THG1), a unique 3'-5' nucleotidyl transferase, shares unexpected structural homology with canonical 5'-3' DNA polymerases.
|
| |
Proc Natl Acad Sci U S A,
107,
20305-20310.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.K.Perumal,
H.Yue,
Z.Hu,
M.M.Spiering,
and
S.J.Benkovic
(2010).
Single-molecule studies of DNA replisome function.
|
| |
Biochim Biophys Acta,
1804,
1094-1112.
|
 |
|
|
|
|
 |
Y.Zhang,
E.L.Pohlmann,
J.Serate,
M.C.Conrad,
and
G.P.Roberts
(2010).
Mutagenesis and functional characterization of the four domains of GlnD, a bifunctional nitrogen sensor protein.
|
| |
J Bacteriol,
192,
2711-2721.
|
 |
|
|
|
|
 |
F.Romain,
I.Barbosa,
J.Gouge,
F.Rougeon,
and
M.Delarue
(2009).
Conferring a template-dependent polymerase activity to terminal deoxynucleotidyltransferase by mutations in the Loop1 region.
|
| |
Nucleic Acids Res,
37,
4642-4656.
|
 |
|
|
|
|
 |
J.D.Fowler,
J.A.Brown,
M.Kvaratskhelia,
and
Z.Suo
(2009).
Probing conformational changes of human DNA polymerase lambda using mass spectrometry-based protein footprinting.
|
| |
J Mol Biol,
390,
368-379.
|
 |
|
|
|
|
 |
K.S.Keating,
S.C.Flores,
M.B.Gerstein,
and
L.A.Kuhn
(2009).
StoneHinge: hinge prediction by network analysis of individual protein structures.
|
| |
Protein Sci,
18,
359-371.
|
 |
|
|
|
|
 |
M.A.van Bochove,
M.Swart,
and
F.M.Bickelhaupt
(2009).
Stepwise walden inversion in nucleophilic substitution at phosphorus.
|
| |
Phys Chem Chem Phys,
11,
259-267.
|
 |
|
|
|
|
 |
P.B.Balbo,
and
A.Bohm
(2009).
Proton transfer in the mechanism of polyadenylate polymerase.
|
| |
Biochem J,
420,
229-238.
|
 |
|
|
|
|
 |
S.G.Sarafianos,
B.Marchand,
K.Das,
D.M.Himmel,
M.A.Parniak,
S.H.Hughes,
and
E.Arnold
(2009).
Structure and function of HIV-1 reverse transcriptase: molecular mechanisms of polymerization and inhibition.
|
| |
J Mol Biol,
385,
693-713.
|
 |
|
|
|
|
 |
T.G.Upton,
B.A.Kashemirov,
C.E.McKenna,
M.F.Goodman,
G.K.Prakash,
R.Kultyshev,
V.K.Batra,
D.D.Shock,
L.C.Pedersen,
W.A.Beard,
and
S.H.Wilson
(2009).
Alpha,beta-difluoromethylene deoxynucleoside 5'-triphosphates: a convenient synthesis of useful probes for DNA polymerase beta structure and function.
|
| |
Org Lett,
11,
1883-1886.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
W.A.Beard,
D.D.Shock,
V.K.Batra,
L.C.Pedersen,
and
S.H.Wilson
(2009).
DNA polymerase beta substrate specificity: side chain modulation of the "A-rule".
|
| |
J Biol Chem,
284,
31680-31689.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
Y.Toh,
D.Takeshita,
T.Numata,
S.Fukai,
O.Nureki,
and
K.Tomita
(2009).
Mechanism for the definition of elongation and termination by the class II CCA-adding enzyme.
|
| |
EMBO J,
28,
3353-3365.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
Z.Song,
K.J.Parker,
I.Enoh,
H.Zhao,
and
O.Olubajo
(2009).
Myosin-catalyzed ATP hydrolysis elucidated by 31P NMR kinetic studies and 1H PFG-diffusion measurements.
|
| |
Anal Bioanal Chem,
395,
1453-1459.
|
 |
|
|
|
|
 |
B.Baños,
J.M.Lázaro,
L.Villar,
M.Salas,
and
M.de Vega
(2008).
Editing of misaligned 3'-termini by an intrinsic 3'-5' exonuclease activity residing in the PHP domain of a family X DNA polymerase.
|
| |
Nucleic Acids Res,
36,
5736-5749.
|
 |
|
|
|
|
 |
D.L.Croteau,
Y.Peng,
and
B.Van Houten
(2008).
DNA repair gets physical: mapping an XPA-binding site on ERCC1.
|
| |
DNA Repair (Amst),
7,
819-826.
|
 |
|
|
|
|
 |
F.Liang,
N.Jain,
T.Hutchens,
D.D.Shock,
W.A.Beard,
S.H.Wilson,
M.P.Chiarelli,
and
B.P.Cho
(2008).
Alpha,beta-methylene-2'-deoxynucleoside 5'-triphosphates as noncleavable substrates for DNA polymerases: isolation, characterization, and stability studies of novel 2'-deoxycyclonucleosides, 3,5'-cyclo-dG, and 2,5'-cyclo-dT.
|
| |
J Med Chem,
51,
6460-6470.
|
 |
|
|
|
|
 |
G.Lahoud,
V.Timoshchuk,
A.Lebedev,
M.de Vega,
M.Salas,
K.Arar,
Y.M.Hou,
and
H.Gamper
(2008).
Enzymatic synthesis of structure-free DNA with pseudo-complementary properties.
|
| |
Nucleic Acids Res,
36,
3409-3419.
|
 |
|
|
|
|
 |
G.T.Hwang,
and
F.E.Romesberg
(2008).
Unnatural substrate repertoire of A, B, and X family DNA polymerases.
|
| |
J Am Chem Soc,
130,
14872-14882.
|
 |
|
|
|
|
 |
J.Cramer,
G.Rangam,
A.Marx,
and
T.Restle
(2008).
Varied active-site constraints in the klenow fragment of E. coli DNA polymerase I and the lesion-bypass Dbh DNA polymerase.
|
| |
Chembiochem,
9,
1243-1250.
|
 |
|
|
|
|
 |
M.H.Lamers,
and
M.O'Donnell
(2008).
A consensus view of DNA binding by the C family of replicative DNA polymerases.
|
| |
Proc Natl Acad Sci U S A,
105,
20565-20566.
|
 |
|
|
|
|
 |
R.A.Wing,
S.Bailey,
and
T.A.Steitz
(2008).
Insights into the replisome from the structure of a ternary complex of the DNA polymerase III alpha-subunit.
|
| |
J Mol Biol,
382,
859-869.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Dalal,
D.Starcevic,
J.Jaeger,
and
J.B.Sweasy
(2008).
The I260Q variant of DNA polymerase beta extends mispaired primer termini due to its increased affinity for deoxynucleotide triphosphate substrates.
|
| |
Biochemistry,
47,
12118-12125.
|
 |
|
|
|
|
 |
S.J.Garforth,
M.A.Parniak,
and
V.R.Prasad
(2008).
Utilization of a deoxynucleoside diphosphate substrate by HIV reverse transcriptase.
|
| |
PLoS ONE,
3,
e2074.
|
 |
|
|
|
|
 |
S.Kumar,
M.Bakhtina,
and
M.D.Tsai
(2008).
Altered order of substrate binding by DNA polymerase X from African Swine Fever virus.
|
| |
Biochemistry,
47,
7875-7887.
|
 |
|
|
|
|
 |
S.O.Yesylevskyy,
V.N.Kharkyanen,
and
A.P.Demchenko
(2008).
The blind search for the closed states of hinge-bending proteins.
|
| |
Proteins,
71,
831-843.
|
 |
|
|
|
|
 |
W.J.Allen,
P.J.Rothwell,
and
G.Waksman
(2008).
An intramolecular FRET system monitors fingers subdomain opening in Klentaq1.
|
| |
Protein Sci,
17,
401-408.
|
 |
|
|
|
|
 |
W.Yang
(2008).
An equivalent metal ion in one- and two-metal-ion catalysis.
|
| |
Nat Struct Mol Biol,
15,
1228-1231.
|
 |
|
|
|
|
 |
A.F.Moon,
M.Garcia-Diaz,
V.K.Batra,
W.A.Beard,
K.Bebenek,
T.A.Kunkel,
S.H.Wilson,
and
L.C.Pedersen
(2007).
The X family portrait: structural insights into biological functions of X family polymerases.
|
| |
DNA Repair (Amst),
6,
1709-1725.
|
 |
|
|
|
|
 |
A.J.Berman,
S.Kamtekar,
J.L.Goodman,
J.M.Lázaro,
M.de Vega,
L.Blanco,
M.Salas,
and
T.A.Steitz
(2007).
Structures of phi29 DNA polymerase complexed with substrate: the mechanism of translocation in B-family polymerases.
|
| |
EMBO J,
26,
3494-3505.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.Castro,
E.Smidansky,
K.R.Maksimchuk,
J.J.Arnold,
V.S.Korneeva,
M.Götte,
W.Konigsberg,
and
C.E.Cameron
(2007).
Two proton transfers in the transition state for nucleotidyl transfer catalyzed by RNA- and DNA-dependent RNA and DNA polymerases.
|
| |
Proc Natl Acad Sci U S A,
104,
4267-4272.
|
 |
|
|
|
|
 |
G.C.Lin,
J.Jaeger,
and
J.B.Sweasy
(2007).
Loop II of DNA polymerase beta is important for polymerization activity and fidelity.
|
| |
Nucleic Acids Res,
35,
2924-2935.
|
 |
|
|
|
|
 |
G.Luo,
M.Wang,
W.H.Konigsberg,
and
X.S.Xie
(2007).
Single-molecule and ensemble fluorescence assays for a functionally important conformational change in T7 DNA polymerase.
|
| |
Proc Natl Acad Sci U S A,
104,
12610-12615.
|
 |
|
|
|
|
 |
G.Martin,
and
W.Keller
(2007).
RNA-specific ribonucleotidyl transferases.
|
| |
RNA,
13,
1834-1849.
|
 |
|
|
|
|
 |
L.T.Chen,
T.P.Ko,
Y.W.Chang,
K.A.Lin,
A.H.Wang,
and
T.F.Wang
(2007).
Structural and functional analyses of five conserved positively charged residues in the L1 and N-terminal DNA binding motifs of archaeal RADA protein.
|
| |
PLoS ONE,
2,
e858.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
P.B.Balbo,
J.Toth,
and
A.Bohm
(2007).
X-ray crystallographic and steady state fluorescence characterization of the protein dynamics of yeast polyadenylate polymerase.
|
| |
J Mol Biol,
366,
1401-1415.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
P.M.Gordon,
R.Fong,
and
J.A.Piccirilli
(2007).
A second divalent metal ion in the group II intron reaction center.
|
| |
Chem Biol,
14,
607-612.
|
 |
|
|
|
|
 |
P.R.Meyer,
W.Rutvisuttinunt,
S.E.Matsuura,
A.G.So,
and
W.A.Scott
(2007).
Stable complexes formed by HIV-1 reverse transcriptase at distinct positions on the primer-template controlled by binding deoxynucleoside triphosphates or foscarnet.
|
| |
J Mol Biol,
369,
41-54.
|
 |
|
|
|
|
 |
P.Xu,
L.Oum,
L.S.Beese,
N.E.Geacintov,
and
S.Broyde
(2007).
Following an environmental carcinogen N2-dG adduct through replication: elucidating blockage and bypass in a high-fidelity DNA polymerase.
|
| |
Nucleic Acids Res,
35,
4275-4288.
|
 |
|
|
|
|
 |
S.Beetz,
D.Diekhoff,
and
L.A.Steiner
(2007).
Characterization of terminal deoxynucleotidyl transferase and polymerase mu in zebrafish.
|
| |
Immunogenetics,
59,
735-744.
|
 |
|
|
|
|
 |
B.A.Sampoli Benítez,
K.Arora,
and
T.Schlick
(2006).
In silico studies of the African swine fever virus DNA polymerase X support an induced-fit mechanism.
|
| |
Biophys J,
90,
42-56.
|
 |
|
|
|
|
 |
J.Ju,
D.H.Kim,
L.Bi,
Q.Meng,
X.Bai,
Z.Li,
X.Li,
M.S.Marma,
S.Shi,
J.Wu,
J.R.Edwards,
A.Romu,
and
N.J.Turro
(2006).
Four-color DNA sequencing by synthesis using cleavable fluorescent nucleotide reversible terminators.
|
| |
Proc Natl Acad Sci U S A,
103,
19635-19640.
|
 |
|
|
|
|
 |
M.H.Lamers,
R.E.Georgescu,
S.G.Lee,
M.O'Donnell,
and
J.Kuriyan
(2006).
Crystal structure of the catalytic alpha subunit of E. coli replicative DNA polymerase III.
|
| |
Cell,
126,
881-892.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
O.Potapova,
C.Chan,
A.M.DeLucia,
S.A.Helquist,
E.T.Kool,
N.D.Grindley,
and
C.M.Joyce
(2006).
DNA polymerase catalysis in the absence of Watson-Crick hydrogen bonds: analysis by single-turnover kinetics.
|
| |
Biochemistry,
45,
890-898.
|
 |
|
|
|
|
 |
P.Lin,
L.C.Pedersen,
V.K.Batra,
W.A.Beard,
S.H.Wilson,
and
L.G.Pedersen
(2006).
Energy analysis of chemistry for correct insertion by DNA polymerase beta.
|
| |
Proc Natl Acad Sci U S A,
103,
13294-13299.
|
 |
|
|
|
|
 |
R.Juárez,
J.F.Ruiz,
S.A.Nick McElhinny,
D.Ramsden,
and
L.Blanco
(2006).
A specific loop in human DNA polymerase mu allows switching between creative and DNA-instructed synthesis.
|
| |
Nucleic Acids Res,
34,
4572-4582.
|
 |
|
|
|
|
 |
S.Bailey,
R.A.Wing,
and
T.A.Steitz
(2006).
The structure of T. aquaticus DNA polymerase III is distinct from eukaryotic replicative DNA polymerases.
|
| |
Cell,
126,
893-904.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
V.K.Batra,
W.A.Beard,
D.D.Shock,
J.M.Krahn,
L.C.Pedersen,
and
S.H.Wilson
(2006).
Magnesium-induced assembly of a complete DNA polymerase catalytic complex.
|
| |
Structure,
14,
757-766.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
W.Yang,
J.Y.Lee,
and
M.Nowotny
(2006).
Making and breaking nucleic acids: two-Mg2+-ion catalysis and substrate specificity.
|
| |
Mol Cell,
22,
5.
|
 |
|
|
|
|
 |
D.A.Bernstein,
and
J.L.Keck
(2005).
Conferring substrate specificity to DNA helicases: role of the RecQ HRDC domain.
|
| |
Structure,
13,
1173-1182.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.Ruparel,
L.Bi,
Z.Li,
X.Bai,
D.H.Kim,
N.J.Turro,
and
J.Ju
(2005).
Design and synthesis of a 3'-O-allyl photocleavable fluorescent nucleotide as a reversible terminator for DNA sequencing by synthesis.
|
| |
Proc Natl Acad Sci U S A,
102,
5932-5937.
|
 |
|
|
|
|
 |
H.Sigel,
and
R.Griesser
(2005).
Nucleoside 5'-triphosphates: self-association, acid-base, and metal ion-binding properties in solution.
|
| |
Chem Soc Rev,
34,
875-900.
|
 |
|
|
|
|
 |
J.Deng,
N.L.Ernst,
S.Turley,
K.D.Stuart,
and
W.G.Hol
(2005).
Structural basis for UTP specificity of RNA editing TUTases from Trypanosoma brucei.
|
| |
EMBO J,
24,
4007-4017.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.Florián,
M.F.Goodman,
and
A.Warshel
(2005).
Computer simulations of protein functions: searching for the molecular origin of the replication fidelity of DNA polymerases.
|
| |
Proc Natl Acad Sci U S A,
102,
6819-6824.
|
 |
|
|
|
|
 |
J.L.Fornsaglio,
T.J.O'Brien,
and
S.R.Patierno
(2005).
Differential impact of ionic and coordinate covalent chromium (Cr)-DNA binding on DNA replication.
|
| |
Mol Cell Biochem,
279,
149-155.
|
 |
|
|
|
|
 |
P.J.Rothwell,
V.Mitaksov,
and
G.Waksman
(2005).
Motions of the fingers subdomain of klentaq1 are fast and not rate limiting: implications for the molecular basis of fidelity in DNA polymerases.
|
| |
Mol Cell,
19,
345-355.
|
 |
|
|
|
|
 |
R.C.Holmberg,
A.A.Henry,
and
F.E.Romesberg
(2005).
Directed evolution of novel polymerases.
|
| |
Biomol Eng,
22,
39-49.
|
 |
|
|
|
|
 |
S.González-Barrera,
A.Sánchez,
J.F.Ruiz,
R.Juárez,
A.J.Picher,
G.Terrados,
P.Andrade,
and
L.Blanco
(2005).
Characterization of SpPol4, a unique X-family DNA polymerase in Schizosaccharomyces pombe.
|
| |
Nucleic Acids Res,
33,
4762-4774.
|
 |
|
|
|
|
 |
S.H.Lao-Sirieix,
R.K.Nookala,
P.Roversi,
S.D.Bell,
and
L.Pellegrini
(2005).
Structure of the heterodimeric core primase.
|
| |
Nat Struct Mol Biol,
12,
1137-1144.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Prakash,
R.E.Johnson,
and
L.Prakash
(2005).
Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function.
|
| |
Annu Rev Biochem,
74,
317-353.
|
 |
|
|
|
|
 |
V.Kempeneers,
M.Renders,
M.Froeyen,
and
P.Herdewijn
(2005).
Investigation of the DNA-dependent cyclohexenyl nucleic acid polymerization and the cyclohexenyl nucleic acid-dependent DNA polymerization.
|
| |
Nucleic Acids Res,
33,
3828-3836.
|
 |
|
|
|
|
 |
W.Zheng,
B.R.Brooks,
S.Doniach,
and
D.Thirumalai
(2005).
Network of dynamically important residues in the open/closed transition in polymerases is strongly conserved.
|
| |
Structure,
13,
565-577.
|
 |
|
|
|
|
 |
X.Bai,
J.Edwards,
and
J.Ju
(2005).
Molecular engineering approaches for DNA sequencing and analysis.
|
| |
Expert Rev Mol Diagn,
5,
797-808.
|
 |
|
|
|
|
 |
D.W.Gohara,
J.J.Arnold,
and
C.E.Cameron
(2004).
Poliovirus RNA-dependent RNA polymerase (3Dpol): kinetic, thermodynamic, and structural analysis of ribonucleotide selection.
|
| |
Biochemistry,
43,
5149-5158.
|
 |
|
|
|
|
 |
I.Ivanov,
and
M.L.Klein
(2004).
First principles computational study of the active site of arginase.
|
| |
Proteins,
54,
1-7.
|
 |
|
|
|
|
 |
K.Ramadan,
I.Shevelev,
and
U.Hübscher
(2004).
The DNA-polymerase-X family: controllers of DNA quality?
|
| |
Nat Rev Mol Cell Biol,
5,
1038-1043.
|
 |
|
|
|
|
 |
K.Tomita,
S.Fukai,
R.Ishitani,
T.Ueda,
N.Takeuchi,
D.G.Vassylyev,
and
O.Nureki
(2004).
Structural basis for template-independent RNA polymerization.
|
| |
Nature,
430,
700-704.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
L.Yang,
W.A.Beard,
S.H.Wilson,
S.Broyde,
and
T.Schlick
(2004).
Highly organized but pliant active site of DNA polymerase beta: compensatory mechanisms in mutant enzymes revealed by dynamics simulations and energy analyses.
|
| |
Biophys J,
86,
3392-3408.
|
 |
|
|
|
|
 |
M.Garcia-Diaz,
K.Bebenek,
J.M.Krahn,
L.Blanco,
T.A.Kunkel,
and
L.C.Pedersen
(2004).
A structural solution for the DNA polymerase lambda-dependent repair of DNA gaps with minimal homology.
|
| |
Mol Cell,
13,
561-572.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.B.Gómez-Coca,
L.E.Kapinos,
A.Holý,
R.A.Vilaplana,
F.González-Vílchez,
and
H.Sigel
(2004).
Quantification of isomeric equilibria formed by metal ion complexes of 8-[2-(phosphonomethoxy)ethyl]-8-azaadenine (8,8aPMEA) and 9-[2-(phosphonomethoxy)ethyl]-8-azaadenine (9,8aPMEA). Derivatives of the antiviral nucleotide analogue 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA).
|
| |
J Biol Inorg Chem,
9,
961-972.
|
 |
|
|
|
|
 |
R.L.Crowther,
D.P.Remeta,
C.A.Minetti,
D.Das,
S.P.Montano,
and
M.M.Georgiadis
(2004).
Structural and energetic characterization of nucleic acid-binding to the fingers domain of Moloney murine leukemia virus reverse transcriptase.
|
| |
Proteins,
57,
15-26.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.Radhakrishnan,
and
T.Schlick
(2004).
Orchestration of cooperative events in DNA synthesis and repair mechanism unraveled by transition path sampling of DNA polymerase beta's closing.
|
| |
Proc Natl Acad Sci U S A,
101,
5970-5975.
|
 |
|
|
|
|
 |
S.A.Nick McElhinny,
and
D.A.Ramsden
(2004).
Sibling rivalry: competition between Pol X family members in V(D)J recombination and general double strand break repair.
|
| |
Immunol Rev,
200,
156-164.
|
 |
|
|
|
|
 |
S.J.Johnson,
and
L.S.Beese
(2004).
Structures of mismatch replication errors observed in a DNA polymerase.
|
| |
Cell,
116,
803-816.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.A.Steitz,
and
Y.W.Yin
(2004).
Accuracy, lesion bypass, strand displacement and translocation by DNA polymerases.
|
| |
Philos Trans R Soc Lond B Biol Sci,
359,
17-23.
|
 |
|
|
|
|
 |
Y.Xiong,
and
T.A.Steitz
(2004).
Mechanism of transfer RNA maturation by CCA-adding enzyme without using an oligonucleotide template.
|
| |
Nature,
430,
640-645.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.Shah,
and
B.Gold
(2003).
Evidence in Escherichia coli that N3-methyladenine lesions and cytotoxicity induced by a minor groove binding methyl sulfonate ester can be modulated in vivo by netropsin.
|
| |
Biochemistry,
42,
12610-12616.
|
 |
|
|
|
|
 |
I.Shevelev,
G.Blanca,
G.Villani,
K.Ramadan,
S.Spadari,
U.Hübscher,
and
G.Maga
(2003).
Mutagenesis of human DNA polymerase lambda: essential roles of Tyr505 and Phe506 for both DNA polymerase and terminal transferase activities.
|
| |
Nucleic Acids Res,
31,
6916-6925.
|
 |
|
|
|
|
 |
J.F.Ruiz,
R.Juárez,
M.García-Díaz,
G.Terrados,
A.J.Picher,
S.González-Barrera,
A.R.Fernández de Henestrosa,
and
L.Blanco
(2003).
Lack of sugar discrimination by human Pol mu requires a single glycine residue.
|
| |
Nucleic Acids Res,
31,
4441-4449.
|
 |
|
|
|
|
 |
J.Florián,
M.F.Goodman,
and
A.Warshel
(2003).
Computer simulation studies of the fidelity of DNA polymerases.
|
| |
Biopolymers,
68,
286-299.
|
 |
|
|
|
|
 |
J.M.Krahn,
W.A.Beard,
H.Miller,
A.P.Grollman,
and
S.H.Wilson
(2003).
Structure of DNA polymerase beta with the mutagenic DNA lesion 8-oxodeoxyguanine reveals structural insights into its coding potential.
|
| |
Structure,
11,
121-127.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.E.McGinness,
and
G.F.Joyce
(2003).
In search of an RNA replicase ribozyme.
|
| |
Chem Biol,
10,
5.
|
 |
|
|
|
|
 |
M.Elstner,
Q.Cui,
P.Munih,
E.Kaxiras,
T.Frauenheim,
and
M.Karplus
(2003).
Modeling zinc in biomolecules with the self consistent charge-density functional tight binding (SCC-DFTB) method: applications to structural and energetic analysis.
|
| |
J Comput Chem,
24,
565-581.
|
 |
|
|
|
|
 |
M.J.Jezewska,
R.Galletto,
and
W.Bujalowski
(2003).
Tertiary conformation of the template-primer and gapped DNA substrates in complexes with rat polymerase beta. Fluorescence energy transfer studies using the multiple donor-acceptor approach.
|
| |
Biochemistry,
42,
11864-11878.
|
 |
|
|
|
|
 |
M.T.Washington,
W.T.Wolfle,
T.E.Spratt,
L.Prakash,
and
S.Prakash
(2003).
Yeast DNA polymerase eta makes functional contacts with the DNA minor groove only at the incoming nucleoside triphosphate.
|
| |
Proc Natl Acad Sci U S A,
100,
5113-5118.
|
 |
|
|
|
|
 |
N.Ito,
O.Nureki,
M.Shirouzu,
S.Yokoyama,
and
F.Hanaoka
(2003).
Crystal structure of the Pyrococcus horikoshii DNA primase-UTP complex: implications for the mechanism of primer synthesis.
|
| |
Genes Cells,
8,
913-923.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
N.Kojima,
K.Inoue,
R.Nakajima-Shibata,
S.Kawahara,
and
E.Ohtsuka
(2003).
A new, but old, nucleoside analog: the first synthesis of 1-deaza-2'-deoxyguanosine and its properties as a nucleoside and as oligodeoxynucleotides.
|
| |
Nucleic Acids Res,
31,
7175-7188.
|
 |
|
|
|
|
 |
P.Jałoszyński,
C.Masutani,
F.Hanaoka,
A.B.Perez,
and
S.Nishimura
(2003).
8-Hydroxyguanine in a mutational hotspot of the c-Ha-ras gene causes misreplication, 'action-at-a-distance' mutagenesis and inhibition of replication.
|
| |
Nucleic Acids Res,
31,
6085-6095.
|
 |
|
|
|
|
 |
R.C.Rittenhouse,
W.K.Apostoluk,
J.H.Miller,
and
T.P.Straatsma
(2003).
Characterization of the active site of DNA polymerase beta by molecular dynamics and quantum chemical calculation.
|
| |
Proteins,
53,
667-682.
|
 |
|
|
|
|
 |
R.Hartmann,
J.Justesen,
S.N.Sarkar,
G.C.Sen,
and
V.C.Yee
(2003).
Crystal structure of the 2'-specific and double-stranded RNA-activated interferon-induced antiviral protein 2'-5'-oligoadenylate synthetase.
|
| |
Mol Cell,
12,
1173-1185.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.J.Johnson,
J.S.Taylor,
and
L.S.Beese
(2003).
Processive DNA synthesis observed in a polymerase crystal suggests a mechanism for the prevention of frameshift mutations.
|
| |
Proc Natl Acad Sci U S A,
100,
3895-3900.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
W.A.Beard,
and
S.H.Wilson
(2003).
Structural insights into the origins of DNA polymerase fidelity.
|
| |
Structure,
11,
489-496.
|
 |
|
|
|
|
 |
Y.Xiong,
F.Li,
J.Wang,
A.M.Weiner,
and
T.A.Steitz
(2003).
Crystal structures of an archaeal class I CCA-adding enzyme and its nucleotide complexes.
|
| |
Mol Cell,
12,
1165-1172.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
Z.A.Doddridge,
R.D.Bertram,
C.J.Hayes,
and
P.Soultanas
(2003).
Effects of vinylphosphonate internucleotide linkages on the cleavage specificity of exonuclease III and on the activity of DNA polymerase I.
|
| |
Biochemistry,
42,
3239-3246.
|
 |
|
|
|
|
 |
Z.Li,
X.Bai,
H.Ruparel,
S.Kim,
N.J.Turro,
and
J.Ju
(2003).
A photocleavable fluorescent nucleotide for DNA sequencing and analysis.
|
| |
Proc Natl Acad Sci U S A,
100,
414-419.
|
 |
|
|
|
|
 |
A.K.Showalter,
and
M.D.Tsai
(2002).
A reexamination of the nucleotide incorporation fidelity of DNA polymerases.
|
| |
Biochemistry,
41,
10571-10576.
|
 |
|
|
|
|
 |
A.V.Cherepanov,
and
S.de Vries
(2002).
Dynamic mechanism of nick recognition by DNA ligase.
|
| |
Eur J Biochem,
269,
5993-5999.
|
 |
|
|
|
|
 |
C.A.Dunlap,
and
M.D.Tsai
(2002).
Use of 2-aminopurine and tryptophan fluorescence as probes in kinetic analyses of DNA polymerase beta.
|
| |
Biochemistry,
41,
11226-11235.
|
 |
|
|
|
|
 |
C.M.Wilmot,
and
A.R.Pearson
(2002).
Cryocrystallography of metalloprotein reaction intermediates.
|
| |
Curr Opin Chem Biol,
6,
202-207.
|
 |
|
|
|
|
 |
E.C.Bolton,
A.S.Mildvan,
and
J.D.Boeke
(2002).
Inhibition of reverse transcription in vivo by elevated manganese ion concentration.
|
| |
Mol Cell,
9,
879-889.
|
 |
|
|
|
|
 |
E.T.Kool
(2002).
Active site tightness and substrate fit in DNA replication.
|
| |
Annu Rev Biochem,
71,
191-219.
|
 |
|
|
|
|
 |
F.Li,
Y.Xiong,
J.Wang,
H.D.Cho,
K.Tomita,
A.M.Weiner,
and
T.A.Steitz
(2002).
Crystal structures of the Bacillus stearothermophilus CCA-adding enzyme and its complexes with ATP or CTP.
|
| |
Cell,
111,
815-824.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.T.Idriss,
O.Al-Assar,
and
S.H.Wilson
(2002).
DNA polymerase beta.
|
| |
Int J Biochem Cell Biol,
34,
321-324.
|
 |
|
|
|
|
 |
J.Anastassopoulou,
and
T.Theophanides
(2002).
Magnesium-DNA interactions and the possible relation of magnesium to carcinogenesis. Irradiation and free radicals.
|
| |
Crit Rev Oncol Hematol,
42,
79-91.
|
 |
|
|
|
|
 |
L.K.Zerbe,
and
R.D.Kuchta
(2002).
The p58 subunit of human DNA primase is important for primer initiation, elongation, and counting.
|
| |
Biochemistry,
41,
4891-4900.
|
 |
|
|
|
|
 |
M.Delarue,
J.B.Boulé,
J.Lescar,
N.Expert-Bezançon,
N.Jourdan,
N.Sukumar,
F.Rougeon,
and
C.Papanicolaou
(2002).
Crystal structures of a template-independent DNA polymerase: murine terminal deoxynucleotidyltransferase.
|
| |
EMBO J,
21,
427-439.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
P.Cramer
(2002).
Multisubunit RNA polymerases.
|
| |
Curr Opin Struct Biol,
12,
89-97.
|
 |
|
|
|
|
 |
P.J.Hanic-Joyce,
and
P.B.Joyce
(2002).
Characterization of a gene encoding tRNA nucleotidyltransferase from Candida glabrata.
|
| |
Yeast,
19,
1399-1411.
|
 |
|
|
|
|
 |
S.S.Mandal,
E.Fidalgo da Silva,
and
L.J.Reha-Krantz
(2002).
Using 2-aminopurine fluorescence to detect base unstacking in the template strand during nucleotide incorporation by the bacteriophage T4 DNA polymerase.
|
| |
Biochemistry,
41,
4399-4406.
|
 |
|
|
|
|
 |
T.M.Hall
(2002).
Poly(A) tail synthesis and regulation: recent structural insights.
|
| |
Curr Opin Struct Biol,
12,
82-88.
|
 |
|
|
|
|
 |
U.Hubscher,
G.Maga,
and
S.Spadari
(2002).
Eukaryotic DNA polymerases.
|
| |
Annu Rev Biochem,
71,
133-163.
|
 |
|
|
|
|
 |
V.Truniger,
J.M.Lázaro,
F.J.Esteban,
L.Blanco,
and
M.Salas
(2002).
A positively charged residue of phi29 DNA polymerase, highly conserved in DNA polymerases from families A and B, is involved in binding the incoming nucleotide.
|
| |
Nucleic Acids Res,
30,
1483-1492.
|
 |
|
|
|
|
 |
W.H.Zhang,
E.S.Svarovskaia,
R.Barr,
and
V.K.Pathak
(2002).
Y586F mutation in murine leukemia virus reverse transcriptase decreases fidelity of DNA synthesis in regions associated with adenine-thymine tracts.
|
| |
Proc Natl Acad Sci U S A,
99,
10090-10095.
|
 |
|
|
|
|
 |
Y.Kobayashi,
M.Watanabe,
Y.Okada,
H.Sawa,
H.Takai,
M.Nakanishi,
Y.Kawase,
H.Suzuki,
K.Nagashima,
K.Ikeda,
and
N.Motoyama
(2002).
Hydrocephalus, situs inversus, chronic sinusitis, and male infertility in DNA polymerase lambda-deficient mice: possible implication for the pathogenesis of immotile cilia syndrome.
|
| |
Mol Cell Biol,
22,
2769-2776.
|
 |
|
|
|
|
 |
Z.Wang,
I.B.Castaño,
C.Adams,
C.Vu,
D.Fitzhugh,
and
M.F.Christman
(2002).
Structure/function analysis of the Saccharomyces cerevisiae Trf4/Pol sigma DNA polymerase.
|
| |
Genetics,
160,
381-391.
|
 |
|
|
|
|
 |
A.K.Showalter,
I.J.Byeon,
M.I.Su,
and
M.D.Tsai
(2001).
Solution structure of a viral DNA polymerase X and evidence for a mutagenic function.
|
| |
Nat Struct Biol,
8,
942-946.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.Skandalis,
and
L.A.Loeb
(2001).
Enzymatic properties of rat DNA polymerase beta mutants obtained by randomized mutagenesis.
|
| |
Nucleic Acids Res,
29,
2418-2426.
|
 |
|
|
|
|
 |
C.M.Kondratick,
M.T.Washington,
S.Prakash,
and
L.Prakash
(2001).
Acidic residues critical for the activity and biological function of yeast DNA polymerase eta.
|
| |
Mol Cell Biol,
21,
2018-2025.
|
 |
|
|
|
|
 |
D.N.Frick,
and
C.C.Richardson
(2001).
DNA primases.
|
| |
Annu Rev Biochem,
70,
39-80.
|
 |
|
|
|
|
 |
E.T.Kool
(2001).
Hydrogen bonding, base stacking, and steric effects in dna replication.
|
| |
Annu Rev Biophys Biomol Struct,
30,
1.
|
 |
|
|
|
|
 |
J.F.Ruiz,
O.Domínguez,
T.Laín de Lera,
M.Garcia-Díaz,
A.Bernad,
and
L.Blanco
(2001).
DNA polymerase mu, a candidate hypermutase?
|
| |
Philos Trans R Soc Lond B Biol Sci,
356,
99.
|
 |
|
|
|
|
 |
J.Kawakami,
H.Kamiya,
K.Yasuda,
H.Fujiki,
H.Kasai,
and
N.Sugimoto
(2001).
Thermodynamic stability of base pairs between 2-hydroxyadenine and incoming nucleotides as a determinant of nucleotide incorporation specificity during replication.
|
| |
Nucleic Acids Res,
29,
3289-3296.
|
 |
|
|
|
|
 |
J.W.Arndt,
W.Gong,
X.Zhong,
A.K.Showalter,
J.Liu,
C.A.Dunlap,
Z.Lin,
C.Paxson,
M.D.Tsai,
and
M.K.Chan
(2001).
Insight into the catalytic mechanism of DNA polymerase beta: structures of intermediate complexes.
|
| |
Biochemistry,
40,
5368-5375.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.J.Jezewska,
S.Rajendran,
and
W.Bujalowski
(2001).
Interactions of the 8-kDa domain of rat DNA polymerase beta with DNA.
|
| |
Biochemistry,
40,
3295-3307.
|
 |
|
|
|
|
 |
M.W.Maciejewski,
R.Shin,
B.Pan,
A.Marintchev,
A.Denninger,
M.A.Mullen,
K.Chen,
M.R.Gryk,
and
G.P.Mullen
(2001).
Solution structure of a viral DNA repair polymerase.
|
| |
Nat Struct Biol,
8,
936-941.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
O.Uzun,
and
A.Gabriel
(2001).
A Ty1 reverse transcriptase active-site aspartate mutation blocks transposition but not polymerization.
|
| |
J Virol,
75,
6337-6347.
|
 |
|
|
|
|
 |
S.Taladriz,
T.Hanke,
M.J.Ramiro,
M.García-Díaz,
M.García De Lacoba,
L.Blanco,
and
V.Larraga
(2001).
Nuclear DNA polymerase beta from Leishmania infantum. Cloning, molecular analysis and developmental regulation.
|
| |
Nucleic Acids Res,
29,
3822-3834.
|
 |
|
|
|
|
 |
T.E.Spratt
(2001).
Identification of hydrogen bonds between Escherichia coli DNA polymerase I (Klenow fragment) and the minor groove of DNA by amino acid substitution of the polymerase and atomic substitution of the DNA.
|
| |
Biochemistry,
40,
2647-2652.
|
 |
|
|
|
|
 |
C.I.Wooddell,
and
R.R.Burgess
(2000).
Topology of yeast RNA polymerase II subunits in transcription elongation complexes studied by photoaffinity cross-linking.
|
| |
Biochemistry,
39,
13405-13421.
|
 |
|
|
|
|
 |
E.T.Kool
(2000).
Roles of Watson-Crick and minor groove hydrogen bonds in DNA replication.
|
| |
Cold Spring Harb Symp Quant Biol,
65,
93.
|
 |
|
|
|
|
 |
G.Martin,
W.Keller,
and
S.Doublié
(2000).
Crystal structure of mammalian poly(A) polymerase in complex with an analog of ATP.
|
| |
EMBO J,
19,
4193-4203.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.Liu,
J.H.Naismith,
and
R.T.Hay
(2000).
Identification of conserved residues contributing to the activities of adenovirus DNA polymerase.
|
| |
J Virol,
74,
11681-11689.
|
 |
|
|
|
|
 |
H.Miller,
R.Prasad,
S.H.Wilson,
F.Johnson,
and
A.P.Grollman
(2000).
8-oxodGTP incorporation by DNA polymerase beta is modified by active-site residue Asn279.
|
| |
Biochemistry,
39,
1029-1033.
|
 |
|
|
|
|
 |
J.C.Morales,
and
E.T.Kool
(2000).
Functional hydrogen-bonding map of the minor groove binding tracks of six DNA polymerases.
|
| |
Biochemistry,
39,
12979-12988.
|
 |
|
|
|
|
 |
J.C.Morales,
and
E.T.Kool
(2000).
Varied Molecular Interactions at the Active Sites of Several DNA Polymerases: Nonpolar Nucleoside Isosteres as Probes.
|
| |
J Am Chem Soc,
122,
1001-1007.
|
 |
|
|
|
|
 |
J.H.Drosopoulos,
M.J.Broekman,
N.Islam,
C.R.Maliszewski,
R.B.Gayle,
and
A.J.Marcus
(2000).
Site-directed mutagenesis of human endothelial cell ecto-ADPase/soluble CD39: requirement of glutamate 174 and serine 218 for enzyme activity and inhibition of platelet recruitment.
|
| |
Biochemistry,
39,
6936-6943.
|
 |
|
|
|
|
 |
J.K.Pfeiffer,
M.M.Georgiadis,
and
A.Telesnitsky
(2000).
Structure-based moloney murine leukemia virus reverse transcriptase mutants with altered intracellular direct-repeat deletion frequencies.
|
| |
J Virol,
74,
9629-9636.
|
 |
|
|
|
|
 |
J.Tong,
F.Barany,
and
W.Cao
(2000).
Ligation reaction specificities of an NAD(+)-dependent DNA ligase from the hyperthermophile Aquifex aeolicus.
|
| |
Nucleic Acids Res,
28,
1447-1454.
|
 |
|
|
|
|
 |
K.Chowdhury,
S.Tabor,
and
C.C.Richardson
(2000).
A unique loop in the DNA-binding crevice of bacteriophage T7 DNA polymerase influences primer utilization.
|
| |
Proc Natl Acad Sci U S A,
97,
12469-12474.
|
 |
|
|
|
|
 |
K.Vastmans,
S.Pochet,
A.Peys,
L.Kerremans,
A.Van Aerschot,
C.Hendrix,
P.Marlière,
and
P.Herdewijn
(2000).
Enzymatic incorporation in DNA of 1,5-anhydrohexitol nucleotides.
|
| |
Biochemistry,
39,
12757-12765.
|
 |
|
|
|
|
 |
M.E.Glasner,
C.C.Yen,
E.H.Ekland,
and
D.P.Bartel
(2000).
Recognition of nucleoside triphosphates during RNA-catalyzed primer extension.
|
| |
Biochemistry,
39,
15556-15562.
|
 |
|
|
|
|
 |
N.Kaushik,
K.Chowdhury,
V.N.Pandey,
and
M.J.Modak
(2000).
Valine of the YVDD motif of moloney murine leukemia virus reverse transcriptase: role in the fidelity of DNA synthesis.
|
| |
Biochemistry,
39,
5155-5165.
|
 |
|
|
|
|
 |
N.Sukumar,
J.B.Boulé,
N.Expert-Bezançon,
N.Jourdan,
J.Lescar,
F.Rougeon,
C.Papanicolaou,
and
M.Delarue
(2000).
Crystallization of the catalytic domain of murine terminal deoxynucleotidyl transferase.
|
| |
Acta Crystallogr D Biol Crystallogr,
56,
1662-1664.
|
 |
|
|
|
|
 |
O.Domínguez,
J.F.Ruiz,
T.Laín de Lera,
M.García-Díaz,
M.A.González,
T.Kirchhoff,
C.Martínez-A,
A.Bernad,
and
L.Blanco
(2000).
DNA polymerase mu (Pol mu), homologous to TdT, could act as a DNA mutator in eukaryotic cells.
|
| |
EMBO J,
19,
1731-1742.
|
 |
|
|
|
|
 |
P.H.Patel,
and
L.A.Loeb
(2000).
DNA polymerase active site is highly mutable: evolutionary consequences.
|
| |
Proc Natl Acad Sci U S A,
97,
5095-5100.
|
 |
|
|
|
|
 |
S.Hoenke,
M.Schmid,
and
P.Dimroth
(2000).
Identification of the active site of phosphoribosyl-dephospho-coenzyme A transferase and relationship of the enzyme to an ancient class of nucleotidyltransferases.
|
| |
Biochemistry,
39,
13233-13240.
|
 |
|
|
|
|
 |
S.R.Starck,
J.Z.Deng,
and
S.M.Hecht
(2000).
Naturally occurring alkylresorcinols that mediate DNA damage and inhibit its repair.
|
| |
Biochemistry,
39,
2413-2419.
|
 |
|
|
|
|
 |
T.A.Kunkel,
and
K.Bebenek
(2000).
DNA replication fidelity.
|
| |
Annu Rev Biochem,
69,
497-529.
|
 |
|
|
|
|
 |
T.C.Umland,
S.Q.Wei,
R.Craigie,
and
D.R.Davies
(2000).
Structural basis of DNA bridging by barrier-to-autointegration factor.
|
| |
Biochemistry,
39,
9130-9138.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
V.S.Kraynov,
A.K.Showalter,
J.Liu,
X.Zhong,
and
M.D.Tsai
(2000).
DNA polymerase beta: contributions of template-positioning and dNTP triphosphate-binding residues to catalysis and fidelity.
|
| |
Biochemistry,
39,
16008-16015.
|
 |
|
|
|
|
 |
Y.Mizushina,
T.Ohkubo,
F.Sugawara,
and
K.Sakaguchi
(2000).
Structure of lithocholic acid binding to the N-terminal 8-kDa domain of DNA polymerase beta.
|
| |
Biochemistry,
39,
12606-12613.
|
 |
|
|
|
|
 |
Y.Mizushina,
T.Ueno,
M.Oda,
T.Yamaguchi,
M.Saneyoshi,
and
K.Sakaguchi
(2000).
The biochemical mode of inhibition of DNA polymerase beta by alpha-rubromycin.
|
| |
Biochim Biophys Acta,
1523,
172-181.
|
 |
|
|
|
|
 |
B.W.Kirk,
and
R.D.Kuchta
(1999).
Arg304 of human DNA primase is a key contributor to catalysis and NTP binding: primase and the family X polymerases share significant sequence homology.
|
| |
Biochemistry,
38,
7727-7736.
|
 |
|
|
|
|
 |
C.A.Brautigam,
S.Sun,
J.A.Piccirilli,
and
T.A.Steitz
(1999).
Structures of normal single-stranded DNA and deoxyribo-3'-S-phosphorothiolates bound to the 3'-5' exonucleolytic active site of DNA polymerase I from Escherichia coli.
|
| |
Biochemistry,
38,
696-704.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.Hargreaves,
J.B.Rafferty,
S.E.Sedelnikova,
R.G.Lloyd,
and
D.W.Rice
(1999).
Crystallization of Escherichia coli RuvA complexed with a synthetic Holliday junction.
|
| |
Acta Crystallogr D Biol Crystallogr,
55,
263-265.
|
 |
|
|
|
|
 |
D.J.Hosfield,
Y.Guan,
B.J.Haas,
R.P.Cunningham,
and
J.A.Tainer
(1999).
Structure of the DNA repair enzyme endonuclease IV and its DNA complex: double-nucleotide flipping at abasic sites and three-metal-ion catalysis.
|
| |
Cell,
98,
397-408.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
G.Martin,
P.Jenö,
and
W.Keller
(1999).
Mapping of ATP binding regions in poly(A) polymerases by photoaffinity labeling and by mutational analysis identifies a domain conserved in many nucleotidyltransferases.
|
| |
Protein Sci,
8,
2380-2391.
|
 |
|
|
|
|
 |
J.C.Morales,
and
E.T.Kool
(1999).
Minor Groove Interactions between Polymerase and DNA: More Essential to Replication than Watson-Crick Hydrogen Bonds?
|
| |
J Am Chem Soc,
121,
2323-2324.
|
 |
|
|
|
|
 |
J.Fu,
A.L.Gnatt,
D.A.Bushnell,
G.J.Jensen,
N.E.Thompson,
R.R.Burgess,
P.R.David,
and
R.D.Kornberg
(1999).
Yeast RNA polymerase II at 5 A resolution.
|
| |
Cell,
98,
799-810.
|
 |
|
|
|
|
 |
J.Jäger,
and
J.D.Pata
(1999).
Getting a grip: polymerases and their substrate complexes.
|
| |
Curr Opin Struct Biol,
9,
21-28.
|
 |
|
|
|
|
 |
J.Y.Feng,
and
K.S.Anderson
(1999).
Mechanistic studies comparing the incorporation of (+) and (-) isomers of 3TCTP by HIV-1 reverse transcriptase.
|
| |
Biochemistry,
38,
55-63.
|
 |
|
|
|
|
 |
K.P.Hopfner,
A.Eichinger,
R.A.Engh,
F.Laue,
W.Ankenbauer,
R.Huber,
and
B.Angerer
(1999).
Crystal structure of a thermostable type B DNA polymerase from Thermococcus gorgonarius.
|
| |
Proc Natl Acad Sci U S A,
96,
3600-3605.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
L.Powers,
and
M.A.Griep
(1999).
Escherichia coli primase zinc is sensitive to substrate and cofactor binding.
|
| |
Biochemistry,
38,
7413-7420.
|
 |
|
|
|
|
 |
M.D.Wyatt,
J.M.Allan,
A.Y.Lau,
T.E.Ellenberger,
and
L.D.Samson
(1999).
3-methyladenine DNA glycosylases: structure, function, and biological importance.
|
| |
Bioessays,
21,
668-676.
|
 |
|
|
|
|
 |
N.Kaushik,
K.Singh,
I.Alluru,
and
M.J.Modak
(1999).
Tyrosine 222, a member of the YXDD motif of MuLV RT, is catalytically essential and is a major component of the fidelity center.
|
| |
Biochemistry,
38,
2617-2627.
|
 |
|
|
|
|
 |
S.Bressanelli,
L.Tomei,
A.Roussel,
I.Incitti,
R.L.Vitale,
M.Mathieu,
R.De Francesco,
and
F.A.Rey
(1999).
Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus.
|
| |
Proc Natl Acad Sci U S A,
96,
13034-13039.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Doublié,
M.R.Sawaya,
and
T.Ellenberger
(1999).
An open and closed case for all polymerases.
|
| |
Structure,
7,
R31-R35.
|
 |
|
|
|
|
 |
S.G.Sarafianos,
K.Das,
J.Ding,
P.L.Boyer,
S.H.Hughes,
and
E.Arnold
(1999).
Touching the heart of HIV-1 drug resistance: the fingers close down on the dNTP at the polymerase active site.
|
| |
Chem Biol,
6,
R137-R146.
|
 |
|
|
|
|
 |
S.Hayward
(1999).
Structural principles governing domain motions in proteins.
|
| |
Proteins,
36,
425-435.
|
 |
|
|
|
|
 |
S.X.Li,
J.A.Vaccaro,
and
J.B.Sweasy
(1999).
Involvement of phenylalanine 272 of DNA polymerase beta in discriminating between correct and incorrect deoxynucleoside triphosphates.
|
| |
Biochemistry,
38,
4800-4808.
|
 |
|
|
|
|
 |
A.Ogawa,
T.Murate,
S.Izuta,
M.Takemura,
K.Furuta,
J.Kobayashi,
T.Kamikawa,
Y.Nimura,
and
S.Yoshida
(1998).
Sulfated glycoglycerolipid from archaebacterium inhibits eukaryotic DNA polymerase alpha, beta and retroviral reverse transcriptase and affects methyl methanesulfonate cytotoxicity.
|
| |
Int J Cancer,
76,
512-518.
|
 |
|
|
|
|
 |
C.A.Brautigam,
and
T.A.Steitz
(1998).
Structural and functional insights provided by crystal structures of DNA polymerases and their substrate complexes.
|
| |
Curr Opin Struct Biol,
8,
54-63.
|
 |
|
|
|
|
 |
C.A.Clairmont,
and
J.B.Sweasy
(1998).
The Pol beta-14 dominant negative rat DNA polymerase beta mutator mutant commits errors during the gap-filling step of base excision repair in Saccharomyces cerevisiae.
|
| |
J Bacteriol,
180,
2292-2297.
|
 |
|
|
|
|
 |
C.Roll,
C.Ketterlé,
V.Faibis,
G.V.Fazakerley,
and
Y.Boulard
(1998).
Conformations of nicked and gapped DNA structures by NMR and molecular dynamic simulations in water.
|
| |
Biochemistry,
37,
4059-4070.
|
 |
|
|
|
|
 |
D.A.Connor,
A.M.Falick,
M.C.Young,
and
M.D.Shetlar
(1998).
Probing the binding region of the single-stranded DNA-binding domain of rat DNA polymerase beta using nanosecond-pulse laser-induced cross-linking and mass spectrometry.
|
| |
Photochem Photobiol,
68,
299-308.
|
 |
|
|
|
|
 |
D.Hargreaves,
D.W.Rice,
S.E.Sedelnikova,
P.J.Artymiuk,
R.G.Lloyd,
and
J.B.Rafferty
(1998).
Crystal structure of E.coli RuvA with bound DNA Holliday junction at 6 A resolution.
|
| |
Nat Struct Biol,
5,
441-446.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.Jeruzalmi,
and
T.A.Steitz
(1998).
Structure of T7 RNA polymerase complexed to the transcriptional inhibitor T7 lysozyme.
|
| |
EMBO J,
17,
4101-4113.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.Sun,
S.Jessen,
C.Liu,
X.Liu,
S.Najmudin,
and
M.M.Georgiadis
(1998).
Cloning, expression, and purification of a catalytic fragment of Moloney murine leukemia virus reverse transcriptase: crystallization of nucleic acid complexes.
|
| |
Protein Sci,
7,
1575-1582.
|
 |
|
|
|
|
 |
E.T.Kool
(1998).
Replication of non-hydrogen bonded bases by DNA polymerases: a mechanism for steric matching.
|
| |
Biopolymers,
48,
3.
|
 |
|
|
|
|
 |
J.A.Feng,
C.J.Crasto,
and
Y.Matsumoto
(1998).
Deoxyribose phosphate excision by the N-terminal domain of the polymerase beta: the mechanism revisited.
|
| |
Biochemistry,
37,
9605-9611.
|
 |
|
|
|
|
 |
J.C.Morales,
and
E.T.Kool
(1998).
Efficient replication between non-hydrogen-bonded nucleoside shape analogs.
|
| |
Nat Struct Biol,
5,
950-954.
|
 |
|
|
|
|
 |
J.Singh,
and
E.T.Snow
(1998).
Chromium(III) decreases the fidelity of human DNA polymerase beta.
|
| |
Biochemistry,
37,
9371-9378.
|
 |
|
|
|
|
 |
K.Singh,
and
M.J.Modak
(1998).
A unified DNA- and dNTP-binding mode for DNA polymerases.
|
| |
Trends Biochem Sci,
23,
277-281.
|
 |
|
|
|
|
 |
M.Astatke,
K.Ng,
N.D.Grindley,
and
C.M.Joyce
(1998).
A single side chain prevents Escherichia coli DNA polymerase I (Klenow fragment) from incorporating ribonucleotides.
|
| |
Proc Natl Acad Sci U S A,
95,
3402-3407.
|
 |
|
|
|
|
 |
R.Strick,
and
C.W.Knopf
(1998).
DNA binding properties and processive proofreading of herpes simplex virus type 1 DNA polymerase.
|
| |
Biochim Biophys Acta,
1388,
315-324.
|
 |
|
|
|
|
 |
S.Doublié,
and
T.Ellenberger
(1998).
The mechanism of action of T7 DNA polymerase.
|
| |
Curr Opin Struct Biol,
8,
704-712.
|
 |
|
|
|
|
 |
W.A.Beard,
and
S.H.Wilson
(1998).
Structural insights into DNA polymerase beta fidelity: hold tight if you want it right.
|
| |
Chem Biol,
5,
R7-13.
|
 |
|
|
|
|
 |
W.S.Furey,
C.M.Joyce,
M.A.Osborne,
D.Klenerman,
J.A.Peliska,
and
S.Balasubramanian
(1998).
Use of fluorescence resonance energy transfer to investigate the conformation of DNA substrates bound to the Klenow fragment.
|
| |
Biochemistry,
37,
2979-2990.
|
 |
|
|
|
|
 |
Y.Li,
S.Korolev,
and
G.Waksman
(1998).
Crystal structures of open and closed forms of binary and ternary complexes of the large fragment of Thermus aquaticus DNA polymerase I: structural basis for nucleotide incorporation.
|
| |
EMBO J,
17,
7514-7525.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.V.Efimov
(1997).
Structural trees for protein superfamilies.
|
| |
Proteins,
28,
241-260.
|
 |
|
|
|
|
 |
B.B.Oude Essink,
N.K.Back,
and
B.Berkhout
(1997).
Increased polymerase fidelity of the 3TC-resistant variants of HIV-1 reverse transcriptase.
|
| |
Nucleic Acids Res,
25,
3212-3217.
|
 |
|
|
|
|
 |
C.M.Joyce
(1997).
Choosing the right sugar: how polymerases select a nucleotide substrate.
|
| |
Proc Natl Acad Sci U S A,
94,
1619-1622.
|
 |
|
|
|
|
 |
D.R.Kim,
A.E.Pritchard,
and
C.S.McHenry
(1997).
Localization of the active site of the alpha subunit of the Escherichia coli DNA polymerase III holoenzyme.
|
| |
J Bacteriol,
179,
6721-6728.
|
 |
|
|
|
|
 |
G.Gao,
M.Orlova,
M.M.Georgiadis,
W.A.Hendrickson,
and
S.P.Goff
(1997).
Conferring RNA polymerase activity to a DNA polymerase: a single residue in reverse transcriptase controls substrate selection.
|
| |
Proc Natl Acad Sci U S A,
94,
407-411.
|
 |
|
|
|
|
 |
G.P.Mullen,
and
S.H.Wilson
(1997).
DNA polymerase beta in abasic site repair: a structurally conserved helix-hairpin-helix motif in lesion detection by base excision repair enzymes.
|
| |
Biochemistry,
36,
4713-4717.
|
 |
|
|
|
|
 |
J.Ahn,
B.G.Werneburg,
and
M.D.Tsai
(1997).
DNA polymerase beta: structure-fidelity relationship from Pre-steady-state kinetic analyses of all possible correct and incorrect base pairs for wild type and R283A mutant.
|
| |
Biochemistry,
36,
1100-1107.
|
 |
|
|
|
|
 |
J.Ding,
S.H.Hughes,
and
E.Arnold
(1997).
Protein-nucleic acid interactions and DNA conformation in a complex of human immunodeficiency virus type 1 reverse transcriptase with a double-stranded DNA template-primer.
|
| |
Biopolymers,
44,
125-138.
|
 |
|
|
|
|
 |
J.L.Hansen,
A.M.Long,
and
S.C.Schultz
(1997).
Structure of the RNA-dependent RNA polymerase of poliovirus.
|
| |
Structure,
5,
1109-1122.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Wang,
A.K.Sattar,
C.C.Wang,
J.D.Karam,
W.H.Konigsberg,
and
T.A.Steitz
(1997).
Crystal structure of a pol alpha family replication DNA polymerase from bacteriophage RB69.
|
| |
Cell,
89,
1087-1099.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.Bebenek,
W.A.Beard,
T.A.Darden,
L.Li,
R.Prasad,
B.A.Luton,
D.G.Gorenstein,
S.H.Wilson,
and
T.A.Kunkel
(1997).
A minor groove binding track in reverse transcriptase.
|
| |
Nat Struct Biol,
4,
194-197.
|
 |
|
|
|
|
 |
L.P.Gardner,
K.A.Mookhtiar,
and
J.E.Coleman
(1997).
Initiation, elongation, and processivity of carboxyl-terminal mutants of T7 RNA polymerase.
|
| |
Biochemistry,
36,
2908-2918.
|
 |
|
|
|
|
 |
L.Yu,
A.M.Petros,
A.Schnuchel,
P.Zhong,
J.M.Severin,
K.Walter,
T.F.Holzman,
and
S.W.Fesik
(1997).
Solution structure of an rRNA methyltransferase (ErmAM) that confers macrolide-lincosamide-streptogramin antibiotic resistance.
|
| |
Nat Struct Biol,
4,
483-489.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.R.Sawaya,
R.Prasad,
S.H.Wilson,
J.Kraut,
and
H.Pelletier
(1997).
Crystal structures of human DNA polymerase beta complexed with gapped and nicked DNA: evidence for an induced fit mechanism.
|
| |
Biochemistry,
36,
11205-11215.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.T.Hess,
U.Schwitter,
M.Petretta,
B.Giese,
and
H.Naegeli
(1997).
DNA synthesis arrest at C4'-modified deoxyribose residues.
|
| |
Biochemistry,
36,
2332-2337.
|
 |
|
|
|
|
 |
N.Bhattacharyya,
and
S.Banerjee
(1997).
A variant of DNA polymerase beta acts as a dominant negative mutant.
|
| |
Proc Natl Acad Sci U S A,
94,
10324-10329.
|
 |
|
|
|
|
 |
R.Lu,
H.M.Nash,
and
G.L.Verdine
(1997).
A mammalian DNA repair enzyme that excises oxidatively damaged guanines maps to a locus frequently lost in lung cancer.
|
| |
Curr Biol,
7,
397-407.
|
 |
|
|
|
|
 |
S.L.Washington,
M.S.Yoon,
A.M.Chagovetz,
S.X.Li,
C.A.Clairmont,
B.D.Preston,
K.A.Eckert,
and
J.B.Sweasy
(1997).
A genetic system to identify DNA polymerase beta mutator mutants.
|
| |
Proc Natl Acad Sci U S A,
94,
1321-1326.
|
 |
|
|
|
|
 |
T.E.Spratt
(1997).
Klenow fragment-DNA interaction required for the incorporation of nucleotides opposite guanine and O6-methylguanine.
|
| |
Biochemistry,
36,
13292-13297.
|
 |
|
|
|
|
 |
T.E.Spratt,
and
D.E.Levy
(1997).
Structure of the hydrogen bonding complex of O6-methylguanine with cytosine and thymine during DNA replication.
|
| |
Nucleic Acids Res,
25,
3354-3361.
|
 |
|
|
|
|
 |
T.Hermann,
P.Auffinger,
W.G.Scott,
and
E.Westhof
(1997).
Evidence for a hydroxide ion bridging two magnesium ions at the active site of the hammerhead ribozyme.
|
| |
Nucleic Acids Res,
25,
3421-3427.
|
 |
|
|
|
|
 |
X.Zhong,
S.S.Patel,
B.G.Werneburg,
and
M.D.Tsai
(1997).
DNA polymerase beta: multiple conformational changes in the mechanism of catalysis.
|
| |
Biochemistry,
36,
11891-11900.
|
 |
|
|
|
|
 |
Y.Huang,
A.Beaudry,
J.McSwiggen,
and
R.Sousa
(1997).
Determinants of ribose specificity in RNA polymerization: effects of Mn2+ and deoxynucleoside monophosphate incorporation into transcripts.
|
| |
Biochemistry,
36,
13718-13728.
|
 |
|
|
|
|
 |
Y.Huang,
F.Eckstein,
R.Padilla,
and
R.Sousa
(1997).
Mechanism of ribose 2'-group discrimination by an RNA polymerase.
|
| |
Biochemistry,
36,
8231-8242.
|
 |
|
|
|
|
 |
A.J.Doherty,
L.C.Serpell,
and
C.P.Ponting
(1996).
The helix-hairpin-helix DNA-binding motif: a structural basis for non-sequence-specific recognition of DNA.
|
| |
Nucleic Acids Res,
24,
2488-2497.
|
 |
|
|
|
|
 |
A.Y.Woody,
S.S.Eaton,
P.A.Osumi-Davis,
and
R.W.Woody
(1996).
Asp537 and Asp812 in bacteriophage T7 RNA polymerase as metal ion-binding sites studied by EPR, flow-dialysis, and transcription.
|
| |
Biochemistry,
35,
144-152.
|
 |
|
|
|
|
 |
B.G.Werneburg,
J.Ahn,
X.Zhong,
R.J.Hondal,
V.S.Kraynov,
and
M.D.Tsai
(1996).
DNA polymerase beta: pre-steady-state kinetic analysis and roles of arginine-283 in catalysis and fidelity.
|
| |
Biochemistry,
35,
7041-7050.
|
 |
|
|
|
|
 |
B.M.Moore,
R.K.Jalluri,
and
M.B.Doughty
(1996).
DNA polymerase photoprobe 2-[(4-azidophenacyl)thio]-2'-deoxyadenosine 5'-triphosphate labels an Escherichia coli DNA polymerase I Klenow fragment substrate binding site.
|
| |
Biochemistry,
35,
11642-11651.
|
 |
|
|
|
|
 |
D.J.Mozzherin,
and
P.A.Fisher
(1996).
Human DNA polymerase epsilon: enzymologic mechanism and gap-filling synthesis.
|
| |
Biochemistry,
35,
3572-3577.
|
 |
|
|
|
|
 |
D.K.Srivastava,
R.K.Evans,
A.Kumar,
W.A.Beard,
and
S.H.Wilson
(1996).
dNTP binding site in rat DNA polymerase beta revealed by controlled proteolysis and azido photoprobe cross-linking.
|
| |
Biochemistry,
35,
3728-3734.
|
 |
|
|
|
|
 |
D.Liu,
R.Prasad,
S.H.Wilson,
E.F.DeRose,
and
G.P.Mullen
(1996).
Three-dimensional solution structure of the N-terminal domain of DNA polymerase beta and mapping of the ssDNA interaction interface.
|
| |
Biochemistry,
35,
6188-6200.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
G.Martin,
and
W.Keller
(1996).
Mutational analysis of mammalian poly(A) polymerase identifies a region for primer binding and catalytic domain, homologous to the family X polymerases, and to other nucleotidyltransferases.
|
| |
EMBO J,
15,
2593-2603.
|
 |
|
|
|
|
 |
H.Pelletier,
M.R.Sawaya,
W.Wolfle,
S.H.Wilson,
and
J.Kraut
(1996).
Crystal structures of human DNA polymerase beta complexed with DNA: implications for catalytic mechanism, processivity, and fidelity.
|
| |
Biochemistry,
35,
12742-12761.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.Pelletier,
M.R.Sawaya,
W.Wolfle,
S.H.Wilson,
and
J.Kraut
(1996).
A structural basis for metal ion mutagenicity and nucleotide selectivity in human DNA polymerase beta.
|
| |
Biochemistry,
35,
12762-12777.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.Pelletier,
and
M.R.Sawaya
(1996).
Characterization of the metal ion binding helix-hairpin-helix motifs in human DNA polymerase beta by X-ray structural analysis.
|
| |
Biochemistry,
35,
12778-12787.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.Chowdhury,
N.Kaushik,
V.N.Pandey,
and
M.J.Modak
(1996).
Elucidation of the role of Arg 110 of murine leukemia virus reverse transcriptase in the catalytic mechanism: biochemical characterization of its mutant enzymes.
|
| |
Biochemistry,
35,
16610-16620.
|
 |
|
|
|
|
 |
K.K.Leuther,
D.A.Bushnell,
and
R.D.Kornberg
(1996).
Two-dimensional crystallography of TFIIB- and IIE-RNA polymerase II complexes: implications for start site selection and initiation complex formation.
|
| |
Cell,
85,
773-779.
|
 |
|
|
|
|
 |
M.E.Filipowsky,
M.L.Kopka,
M.Brazil-Zison,
J.W.Lown,
and
R.E.Dickerson
(1996).
Linked lexitropsins and the in vitro inhibition of HIV-1 reverse transcriptase RNA-directed DNA polymerization: a novel induced-fit of 3,5 m-pyridyl bisdistamycin to enzyme-associated template-primer.
|
| |
Biochemistry,
35,
15397-15410.
|
 |
|
|
|
|
 |
M.J.Lutz,
H.A.Held,
M.Hottiger,
U.Hübscher,
and
S.A.Benner
(1996).
Differential discrimination of DNA polymerase for variants of the non-standard nucleobase pair between xanthosine and 2,4-diaminopyrimidine, two components of an expanded genetic alphabet.
|
| |
Nucleic Acids Res,
24,
1308-1313.
|
 |
|
|
|
|
 |
M.McConnell,
H.Miller,
D.J.Mozzherin,
A.Quamina,
C.K.Tan,
K.M.Downey,
and
P.A.Fisher
(1996).
The mammalian DNA polymerase delta--proliferating cell nuclear antigen--template-primer complex: molecular characterization by direct binding.
|
| |
Biochemistry,
35,
8268-8274.
|
 |
|
|
|
|
 |
M.S.Junop,
and
D.B.Haniford
(1996).
Multiple roles for divalent metal ions in DNA transposition: distinct stages of Tn10 transposition have different Mg2+ requirements.
|
| |
EMBO J,
15,
2547-2555.
|
 |
|
|
|
|
 |
M.Suzuki,
D.Baskin,
L.Hood,
and
L.A.Loeb
(1996).
Random mutagenesis of Thermus aquaticus DNA polymerase I: concordance of immutable sites in vivo with the crystal structure.
|
| |
Proc Natl Acad Sci U S A,
93,
9670-9675.
|
 |
|
|
|
|
 |
N.K.Back,
M.Nijhuis,
W.Keulen,
C.A.Boucher,
B.O.Oude Essink,
A.B.van Kuilenburg,
A.H.van Gennip,
and
B.Berkhout
(1996).
Reduced replication of 3TC-resistant HIV-1 variants in primary cells due to a processivity defect of the reverse transcriptase enzyme.
|
| |
EMBO J,
15,
4040-4049.
|
 |
|
|
|
|
 |
N.Kaushik,
N.Rege,
P.N.Yadav,
S.G.Sarafianos,
M.J.Modak,
and
V.N.Pandey
(1996).
Biochemical analysis of catalytically crucial aspartate mutants of human immunodeficiency virus type 1 reverse transcriptase.
|
| |
Biochemistry,
35,
11536-11546.
|
 |
|
|
|
|
 |
P.Heikinheimo,
J.Lehtonen,
A.Baykov,
R.Lahti,
B.S.Cooperman,
and
A.Goldman
(1996).
The structural basis for pyrophosphatase catalysis.
|
| |
Structure,
4,
1491-1508.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
R.A.Spence,
K.S.Anderson,
and
K.A.Johnson
(1996).
HIV-1 reverse transcriptase resistance to nonnucleoside inhibitors.
|
| |
Biochemistry,
35,
1054-1063.
|
 |
|
|
|
|
 |
R.Sousa
(1996).
Structural and mechanistic relationships between nucleic acid polymerases.
|
| |
Trends Biochem Sci,
21,
186-190.
|
 |
|
|
|
|
 |
S.H.Hughes,
Z.Hostomsky,
S.F.Le Grice,
K.Lentz,
and
E.Arnold
(1996).
What is the orientation of DNA polymerases on their templates?
|
| |
J Virol,
70,
2679-2683.
|
 |
|
|
|
|
 |
S.V.Singh,
D.Scalamogna,
H.Xia,
S.O'Toole,
D.Roy,
E.O.Emerson,
V.Gupta,
and
H.A.Zaren
(1996).
Biochemical characterization of a mitomycin C-resistant human bladder cancer cell line.
|
| |
Int J Cancer,
65,
852-857.
|
 |
|
|
|
|
 |
T.Hermann,
and
H.Heumann
(1996).
Strained template under the thumbs. How reverse transcriptase of human immunodeficiency virus type 1 moves along its template.
|
| |
Eur J Biochem,
242,
98.
|
 |
|
|
|
|
 |
T.Yamaguchi,
and
M.Saneyoshi
(1996).
A photolabile 2',3'-dideoxyuridylate analog bearing an aryl(trifluoromethyl)diazirine moiety: photoaffinity labeling of HIV-1 reverse transcriptase.
|
| |
Nucleic Acids Res,
24,
3364-3369.
|
 |
|
|
|
|
 |
V.Mizrahi,
and
P.Huberts
(1996).
Deoxy- and dideoxynucleotide discrimination and identification of critical 5' nuclease domain residues of the DNA polymerase I from Mycobacterium tuberculosis.
|
| |
Nucleic Acids Res,
24,
4845-4852.
|
 |
|
|
|
|
 |
V.Truniger,
J.M.Lázaro,
M.Salas,
and
L.Blanco
(1996).
A DNA binding motif coordinating synthesis and degradation in proofreading DNA polymerases.
|
| |
EMBO J,
15,
3430-3441.
|
 |
|
|
|
|
 |
Y.J.Chyan,
P.R.Strauss,
T.G.Wood,
and
S.H.Wilson
(1996).
Identification of novel mRNA isoforms for human DNA polymerase beta.
|
| |
DNA Cell Biol,
15,
653-659.
|
 |
|
|
|
|
 |
B.Canard,
B.Cardona,
and
R.S.Sarfati
(1995).
Catalytic editing properties of DNA polymerases.
|
| |
Proc Natl Acad Sci U S A,
92,
10859-10863.
|
 |
|
|
|
|
 |
C.M.Joyce,
and
T.A.Steitz
(1995).
Polymerase structures and function: variations on a theme?
|
| |
J Bacteriol,
177,
6321-6329.
|
 |
|
|
|
|
 |
E.Arnold,
J.Ding,
S.H.Hughes,
and
Z.Hostomsky
(1995).
Structures of DNA and RNA polymerases and their interactions with nucleic acid substrates.
|
| |
Curr Opin Struct Biol,
5,
27-38.
|
 |
|
|
|
|
 |
F.Conrad,
A.Hanne,
R.K.Gaur,
and
G.Krupp
(1995).
Enzymatic synthesis of 2'-modified nucleic acids: identification of important phosphate and ribose moieties in RNase P substrates.
|
| |
Nucleic Acids Res,
23,
1845-1853.
|
 |
|
|
|
|
 |
H.C.Thompson,
R.J.Sheaff,
and
R.D.Kuchta
(1995).
Interactions of calf thymus DNA polymerase alpha with primer/templates.
|
| |
Nucleic Acids Res,
23,
4109-4115.
|
 |
|
|
|
|
 |
I.Husain,
B.S.Morton,
W.A.Beard,
R.K.Singhal,
R.Prasad,
S.H.Wilson,
and
J.M.Besterman
(1995).
Specific inhibition of DNA polymerase beta by its 14 kDa domain: role of single- and double-stranded DNA binding and 5'-phosphate recognition.
|
| |
Nucleic Acids Res,
23,
1597-1603.
|
 |
|
|
|
|
 |
J.B.Sweasy,
and
M.S.Yoon
(1995).
Characterization of DNA polymerase beta mutants with amino acid substitutions located in the C-terminal portion of the enzyme.
|
| |
Mol Gen Genet,
248,
217-224.
|
 |
|
|
|
|
 |
J.Horlacher,
M.Hottiger,
V.N.Podust,
U.Hübscher,
and
S.A.Benner
(1995).
Recognition by viral and cellular DNA polymerases of nucleosides bearing bases with nonstandard hydrogen bonding patterns.
|
| |
Proc Natl Acad Sci U S A,
92,
6329-6333.
|
 |
|
|
|
|
 |
J.Janin
(1995).
Elusive affinities.
|
| |
Proteins,
21,
30-39.
|
 |
|
|
|
|
 |
J.S.Hoffmann,
M.J.Pillaire,
G.Maga,
V.Podust,
U.Hübscher,
and
G.Villani
(1995).
DNA polymerase beta bypasses in vitro a single d(GpG)-cisplatin adduct placed on codon 13 of the HRAS gene.
|
| |
Proc Natl Acad Sci U S A,
92,
5356-5360.
|
 |
|
|
|
|
 |
M.A.Martínez,
M.Sala,
J.P.Vartanian,
and
S.Wain-Hobson
(1995).
Reverse transcriptase and substrate dependence of the RNA hypermutagenesis reaction.
|
| |
Nucleic Acids Res,
23,
2573-2578.
|
 |
|
|
|
|
 |
M.M.Georgiadis,
S.M.Jessen,
C.M.Ogata,
A.Telesnitsky,
S.P.Goff,
and
W.A.Hendrickson
(1995).
Mechanistic implications from the structure of a catalytic fragment of Moloney murine leukemia virus reverse transcriptase.
|
| |
Structure,
3,
879-892.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
P.N.Yadav,
J.S.Yadav,
and
M.J.Modak
(1995).
Nucleoside drug resistance in HIV-1 reverse transcriptase.
|
| |
Nat Struct Biol,
2,
193-195.
|
 |
|
|
|
|
 |
R.Sousa,
and
R.Padilla
(1995).
A mutant T7 RNA polymerase as a DNA polymerase.
|
| |
EMBO J,
14,
4609-4621.
|
 |
|
|
|
|
 |
S.A.Jablonski,
and
C.D.Morrow
(1995).
Mutation of the aspartic acid residues of the GDD sequence motif of poliovirus RNA-dependent RNA polymerase results in enzymes with altered metal ion requirements for activity.
|
| |
J Virol,
69,
1532-1539.
|
 |
|
|
|
|
 |
S.A.Shaaban,
B.M.Krupp,
and
B.D.Hall
(1995).
Termination-altering mutations in the second-largest subunit of yeast RNA polymerase III.
|
| |
Mol Cell Biol,
15,
1467-1478.
|
 |
|
|
|
|
 |
S.Korolev,
M.Nayal,
W.M.Barnes,
E.Di Cera,
and
G.Waksman
(1995).
Crystal structure of the large fragment of Thermus aquaticus DNA polymerase I at 2.5-A resolution: structural basis for thermostability.
|
| |
Proc Natl Acad Sci U S A,
92,
9264-9268.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
U.K.Urs,
D.J.Sharkey,
T.S.Peat,
W.A.Hendrickson,
and
K.Murthy
(1995).
Characterization of crystals of the thermostable DNA polymerase I from Thermus aquaticus.
|
| |
Proteins,
23,
111-114.
|
 |
|
|
|
|
 |
G.Dianov,
and
T.Lindahl
(1994).
Reconstitution of the DNA base excision-repair pathway.
|
| |
Curr Biol,
4,
1069-1076.
|
 |
|
|
|
|
 |
W.Zhu,
and
J.Ito
(1994).
Family A and family B DNA polymerases are structurally related: evolutionary implications.
|
| |
Nucleic Acids Res,
22,
5177-5183.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |