spacer
spacer

PDBsum entry 2hpm

Go to PDB code: 
protein ligands metals links
Transferase PDB id
2hpm

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
1143 a.a. *
Ligands
3PO
Metals
_ZN ×2
_MG ×2
_CL ×2
* Residue conservation analysis
PDB id:
2hpm
Name: Transferase
Title: Eubacterial and eukaryotic replicative DNA polymerases are not homologous: x-ray structure of DNA polymerase iii
Structure: DNA polymerase iii alpha subunit. Chain: a. Engineered: yes
Source: Thermus aquaticus. Organism_taxid: 271. Expressed in: escherichia coli. Expression_system_taxid: 562.
Resolution:
3.70Å     R-factor:   0.243     R-free:   0.311
Authors: S.Bailey,R.A.Wing,T.A.Steitz
Key ref:
S.Bailey et al. (2006). The structure of T. aquaticus DNA polymerase III is distinct from eukaryotic replicative DNA polymerases. Cell, 126, 893-904. PubMed id: 16959569 DOI: 10.1016/j.cell.2006.07.027
Date:
17-Jul-06     Release date:   19-Sep-06    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
Q9XDH5  (DPO3A_THEAQ) -  DNA polymerase III subunit alpha from Thermus aquaticus
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
1220 a.a.
1143 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.2.7.7.7  - DNA-directed Dna polymerase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: DNA(n) + a 2'-deoxyribonucleoside 5'-triphosphate = DNA(n+1) + diphosphate
DNA(n)
+ 2'-deoxyribonucleoside 5'-triphosphate
= DNA(n+1)
Bound ligand (Het Group name = 3PO)
matches with 69.23% similarity
+ diphosphate
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    Added reference    
 
 
DOI no: 10.1016/j.cell.2006.07.027 Cell 126:893-904 (2006)
PubMed id: 16959569  
 
 
The structure of T. aquaticus DNA polymerase III is distinct from eukaryotic replicative DNA polymerases.
S.Bailey, R.A.Wing, T.A.Steitz.
 
  ABSTRACT  
 
The crystal structure of Thermus aquaticus DNA polymerase III alpha subunit reveals that the structure of the catalytic domain of the eubacterial replicative polymerase is unrelated to that of the eukaryotic replicative polymerase but rather belongs to the Polbeta-like nucleotidyltransferase superfamily. A model of the polymerase complexed with both DNA and beta-sliding clamp interacting with a reoriented binding domain and internal beta binding site was constructed that is consistent with existing biochemical data. Within the crystal, two C-terminal domains are interacting through a surface that is larger than many dimer interfaces. Since replicative polymerases of eubacteria and eukaryotes/archaea are not homologous, the nature of the replicative polymerase in the last common ancestor is unknown. Although other possibilities have been proposed, the plausibility of a ribozyme DNA polymerase should be considered.
 
  Selected figure(s)  
 
Figure 1.
Figure 1. A Representative Region of Electron Density
Unbiased F[o] − F[c] electron density map contoured at 3σ. The residues, which are represented as sticks, were omitted from the map calculation.
Figure 2.
Figure 2. Crystal Structure of Taq DNA Polymerase III α Subunit
(Top middle) A schematic diagram of the domain positions in the PolIIIα sequence. The domains are labeled and colored as follows: the PHP domain in yellow, the palm in magenta, the thumb in green, the fingers in light blue, the β binding domain in orange, and the CTD in red. (Center) Two orthogonal views of the surface of PolIIIα colored as in the schematic above. Ribbon diagrams of the individual domains are shown around the outside.
 
  The above figures are reprinted by permission from Cell Press: Cell (2006, 126, 893-904) copyright 2006.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21120860 T.Zeng, J.Li, and J.Liu (2011).
Distinct interfacial biclique patterns between ssDNA-binding proteins and those with dsDNAs.
  Proteins, 79, 598-610.  
20974932 B.Baños, L.Villar, M.Salas, and M.de Vega (2010).
Intrinsic apurinic/apyrimidinic (AP) endonuclease activity enables Bacillus subtilis DNA polymerase X to recognize, incise, and further repair abasic sites.
  Proc Natl Acad Sci U S A, 107, 19219-19224.  
20615954 D.F.Warner, D.E.Ndwandwe, G.L.Abrahams, B.D.Kana, E.E.Machowski, C.Venclovas, and V.Mizrahi (2010).
Essential roles for imuA'- and imuB-encoded accessory factors in DnaE2-dependent mutagenesis in Mycobacterium tuberculosis.
  Proc Natl Acad Sci U S A, 107, 13093-13098.  
20184361 H.G.Dallmann, O.J.Fackelmayer, G.Tomer, J.Chen, A.Wiktor-Becker, T.Ferrara, C.Pope, M.T.Oliveira, P.M.Burgers, L.S.Kaguni, and C.S.McHenry (2010).
Parallel multiplicative target screening against divergent bacterial replicases: identification of specific inhibitors with broad spectrum potential.
  Biochemistry, 49, 2551-2562.  
20123134 J.D.Pata (2010).
Structural diversity of the Y-family DNA polymerases.
  Biochim Biophys Acta, 1804, 1124-1135.  
20129942 S.Sugiman-Marangos, and M.S.Junop (2010).
The structure of DdrB from Deinococcus: a new fold for single-stranded DNA binding proteins.
  Nucleic Acids Res, 38, 3432-3440.
PDB code: 3kdv
19881914 F.J.López de Saro (2009).
Regulation of interactions with sliding clamps during DNA replication and repair.
  Curr Genomics, 10, 206-215.  
19173290 M.J.McCauley, and M.C.Williams (2009).
Optical tweezers experiments resolve distinct modes of DNA-protein binding.
  Biopolymers, 91, 265-282.  
19251692 N.Leulliot, L.Cladière, F.Lecointe, D.Durand, U.Hübscher, and H.van Tilbeurgh (2009).
The Family X DNA Polymerase from Deinococcus radiodurans Adopts a Non-standard Extended Conformation.
  J Biol Chem, 284, 11992-11999.
PDB code: 2w9m
19696739 R.E.Georgescu, I.Kurth, N.Y.Yao, J.Stewart, O.Yurieva, and M.O'Donnell (2009).
Mechanism of polymerase collision release from sliding clamps on the lagging strand.
  EMBO J, 28, 2981-2991.  
19482467 R.I.Sadreyev, B.H.Kim, and N.V.Grishin (2009).
Discrete-continuous duality of protein structure space.
  Curr Opin Struct Biol, 19, 321-328.  
19211662 S.Nakane, N.Nakagawa, S.Kuramitsu, and R.Masui (2009).
Characterization of DNA polymerase X from Thermus thermophilus HB8 reveals the POLXc and PHP domains are both required for 3'-5' exonuclease activity.
  Nucleic Acids Res, 37, 2037-2052.  
19296856 T.H.Tahirov, K.S.Makarova, I.B.Rogozin, Y.I.Pavlov, and E.V.Koonin (2009).
Evolution of DNA polymerases: an inactivated polymerase-exonuclease module in Pol epsilon and a chimeric origin of eukaryotic polymerases from two classes of archaeal ancestors.
  Biol Direct, 4, 11.  
18523437 A.T.McGeoch, and S.D.Bell (2008).
Extra-chromosomal elements and the evolution of cellular DNA replication machineries.
  Nat Rev Mol Cell Biol, 9, 569-574.  
18776221 B.Baños, J.M.Lázaro, L.Villar, M.Salas, and M.de Vega (2008).
Editing of misaligned 3'-termini by an intrinsic 3'-5' exonuclease activity residing in the PHP domain of a family X DNA polymerase.
  Nucleic Acids Res, 36, 5736-5749.  
18032433 J.Wardle, P.M.Burgers, I.K.Cann, K.Darley, P.Heslop, E.Johansson, L.J.Lin, P.McGlynn, J.Sanvoisin, C.M.Stith, and B.A.Connolly (2008).
Uracil recognition by replicative DNA polymerases is limited to the archaea, not occurring with bacteria and eukarya.
  Nucleic Acids Res, 36, 705-711.  
18663010 K.Ozawa, S.Jergic, A.Y.Park, N.E.Dixon, and G.Otting (2008).
The proofreading exonuclease subunit epsilon of Escherichia coli DNA polymerase III is tethered to the polymerase subunit alpha via a flexible linker.
  Nucleic Acids Res, 36, 5074-5082.
PDB codes: 4gx8 4gx9
19106294 M.H.Lamers, and M.O'Donnell (2008).
A consensus view of DNA binding by the C family of replicative DNA polymerases.
  Proc Natl Acad Sci U S A, 105, 20565-20566.  
  18652472 M.J.McCauley, L.Shokri, J.Sefcikova, C.Venclovas, P.J.Beuning, and M.C.Williams (2008).
Distinct double- and single-stranded DNA binding of E. coli replicative DNA polymerase III alpha subunit.
  ACS Chem Biol, 3, 577-587.  
18931783 N.Y.Yao, and M.O'Donnell (2008).
Replisome dynamics and use of DNA trombone loops to bypass replication blocks.
  Mol Biosyst, 4, 1075-1084.  
18691598 R.A.Wing, S.Bailey, and T.A.Steitz (2008).
Insights into the replisome from the structure of a ternary complex of the DNA polymerase III alpha-subunit.
  J Mol Biol, 382, 859-869.
PDB code: 3e0d
19106298 R.J.Evans, D.R.Davies, J.M.Bullard, J.Christensen, L.S.Green, J.W.Guiles, J.D.Pata, W.K.Ribble, N.Janjic, and T.C.Jarvis (2008).
Structure of PolC reveals unique DNA binding and fidelity determinants.
  Proc Natl Acad Sci U S A, 105, 20695-20700.
PDB codes: 3f2b 3f2c 3f2d
18496613 M.Garcia-Diaz, and K.Bebenek (2007).
Multiple functions of DNA polymerases.
  CRC Crit Rev Plant Sci, 26, 105-122.  
17784911 N.Soler, A.Justome, S.Quevillon-Cheruel, F.Lorieux, E.Le Cam, E.Marguet, and P.Forterre (2007).
The rolling-circle plasmid pTN1 from the hyperthermophilic archaeon Thermococcus nautilus.
  Mol Microbiol, 66, 357-370.  
19404443 P.Forterre, and S.Gribaldo (2007).
The origin of modern terrestrial life.
  HFSP J, 1, 156-168.  
17355988 S.Jergic, K.Ozawa, N.K.Williams, X.C.Su, D.D.Scott, S.M.Hamdan, J.A.Crowther, G.Otting, and N.E.Dixon (2007).
The unstructured C-terminus of the tau subunit of Escherichia coli DNA polymerase III holoenzyme is the site of interaction with the alpha subunit.
  Nucleic Acids Res, 35, 2813-2824.  
17452361 X.C.Su, S.Jergic, M.A.Keniry, N.E.Dixon, and G.Otting (2007).
Solution structure of Domains IVa and V of the tau subunit of Escherichia coli DNA polymerase III and interaction with the alpha subunit.
  Nucleic Acids Res, 35, 2825-2832.
PDB code: 2aya
17176463 E.V.Koonin (2006).
Temporal order of evolution of DNA replication systems inferred by comparison of cellular and viral DNA polymerases.
  Biol Direct, 1, 39.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer