Literature for peptidase A02.002: HIV-2 retropepsin

Summary Alignment Sequences Sequence features Distribution Structure Literature Substrates Pharma

(Topics flags: A Assay, S Structure, P Specificity, I Inhibitor, E Expression, V Review. To select only the references relevant to a single topic, click the link above. See explanation.)

    2021
  1. Laville,P., Petitjean,M. and Regad,L.
    Structural Impacts of Drug-Resistance Mutations Appearing in HIV-2 Protease
    Molecules26, PubMed  Europe PubMed DOI
  2. 2019
  3. Triki,D., Kermarrec,M., Visseaux,B., Descamps,D., Flatters,D., Camproux,A.C. and Regad,L.
    Exploration of the effects of sequence variations between HIV-1 and HIV-2 proteases on their three-dimensional structures
    J Biomol Struct Dyn1-13. PubMed  Europe PubMed DOI
  4. Triki,D., Fartek,S., Visseaux,B., Descamps,D., Camproux,A.C. and Regad,L.
    Characterizing the structural variability of HIV-2 protease upon the binding of diverse ligands using a structural alphabet approach
    J Biomol Struct Dyn37, 4658-4670. PubMed  Europe PubMed DOI  S
  5. 2018
  6. Triki,D., Billot,T., Visseaux,B., Descamps,D., Flatters,D., Camproux,A.C. and Regad,L.
    Exploration of the effect of sequence variations located inside the binding pocket of HIV-1 and HIV-2 proteases
    Sci Rep8, 5789-5789. PubMed  Europe PubMed DOI
  7. Triki,D., Cano Contreras,M.E., Flatters,D., Visseaux,B., Descamps,D., Camproux,A.C. and Regad,L.
    Analysis of the HIV-2 protease's adaptation to various ligands: characterization of backbone asymmetry using a structural alphabet
    Sci Rep8, 710-710. PubMed  Europe PubMed DOI
  8. 2015
  9. Mahdi,M., Szojka,Z., Motyan,J.A. and Tozser,J.
    Inhibition profiling of retroviral protease inhibitors using an HIV-2 modular system
    Viruses7, 6152-6162. PubMed  Europe PubMed DOI  I
  10. Raugi,D.N., Smith,R.A. and Gottlieb,G.S.
    Four amino acid changes in HIV-2 protease confer class-wide sensitivity to protease inhibitors
    J Virol90, 1062-1069. PubMed  Europe PubMed DOI  I
  11. 2014
  12. Chen,J., Liang,Z., Wang,W., Yi,C., Zhang,S. and Zhang,Q.
    Revealing origin of decrease in potency of darunavir and amprenavir against HIV-2 relative to HIV-1 protease by molecular dynamics simulations
    Sci Rep4, 6872-6872. PubMed  Europe PubMed DOI  I
  13. Mahdi,M., Matuz,K., Toth,F. and Tozser,J.
    A modular system to evaluate the efficacy of protease inhibitors against HIV-2
    PLoS ONE9, e113221-e113221. PubMed  Europe PubMed DOI  I
  14. 2012
  15. Goldfarb,N.E. and Dunn,B.M.
    Human immunodeficiency virus 2 retropepsin
    [ISSN:978-0-12-407744-7]3, 199-204. DOI
  16. Kar,P. and Knecht,V.
    Origin of decrease in potency of darunavir and two related antiviral inhibitors against HIV-2 compared to HIV-1 protease
    J Phys Chem B116, 2605-2614. PubMed  Europe PubMed DOI  I
  17. Tie,Y., Wang,Y.F., Boross,P.I., Chiu,T.Y., Ghosh,A.K., Tozser,J., Louis,J.M., Harrison,R.W. and Weber,I.T.
    Critical differences in HIV-1 and HIV-2 protease specificity for clinical inhibitors
    Protein Sci21, 339-350. PubMed  Europe PubMed DOI  P  S  I
  18. 2009
  19. Kontijevskis,A., Petrovska,R., Yahorava,S., Komorowski,J. and Wikberg,J.E.
    Proteochemometrics mapping of the interaction space for retroviral proteases and their substrates
    Bioorg Med Chem17, 5229-5237. PubMed  Europe PubMed DOI  V  I
  20. Louis,J.M., Ishima,R., Aniana,A. and Sayer,J.M.
    Revealing the dimer dissociation and existence of a folded monomer of the mature HIV-2 protease
    Protein Sci18, 2442-2453. PubMed  Europe PubMed DOI  E
  21. 2008
  22. Brower,E.T., Bacha,U.M., Kawasaki,Y. and Freire,E.
    Inhibition of HIV-2 protease by HIV-1 protease inhibitors in clinical use
    Chem Biol Drug Des71, 298-305. PubMed  Europe PubMed DOI  I
  23. Eizert,H., Bander,P., Bagossi,P., Sperka,T., Miklossy,G., Boross,P., Weber,I.T. and Tozser,J.
    Amino acid preferences of retroviral proteases for amino-terminal positions in a type 1 cleavage site
    J Virol82, 10111-10117. PubMed  Europe PubMed DOI  P
  24. Ghosh,A.K. and Takayama,J.
    Enantioselective synthesis of cyclopentyltetrahydrofuran (Cp-THF), an important high-affinity P2-ligand for HIV-1 protease inhibitors
    Tetrahedron Lett49, 3409-3412. PubMed  Europe PubMed DOI  I
  25. Kovalevsky,A.Y., Louis,J.M., Aniana,A., Ghosh,A.K. and Weber,I.T.
    Structural evidence for effectiveness of darunavir and two related antiviral inhibitors against HIV-2 protease
    J Mol Biol384, 178-192. PubMed  Europe PubMed DOI  S  I
  26. 2007
  27. Ntemgwa,M., Brenner,B.G., Oliveira,M., Moisi,D. and Wainberg,M.A.
    Natural polymorphisms in the human immunodeficiency virus type 2 protease can accelerate time to development of resistance to protease inhibitors
    Antimicrob Agents Chemother51, 604-610. PubMed  Europe PubMed DOI
  28. 2006
  29. [YEAR:1-6-2006]Alvarez,E., Castello,A., Menendez-Arias,L. and Carrasco,L.
    HIV protease cleaves poly(A)-binding protein
    Biochem J396, 219-226. PubMed  Europe PubMed DOI  P
  30. [YEAR:1-6-2006]Collier,B. and Gray,N.K.
    Cleavage, a real turn-off? HIV-mediated proteolysis of PABP1
    Biochem J396, e9-e11. PubMed  Europe PubMed DOI  P
  31. [YEAR:6-9-2006]M'Barek,N.B., Audoly,G., Raoult,D. and Gluschankof,P.
    HIV-2 protease resistance defined in yeast cells
    Retrovirology3, 58-58. PubMed  Europe PubMed DOI
  32. 2005
  33. Bagossi,P., Sperka,T., Feher,A., Kadas,J., Zahuczky,G., Miklossy,G., Boross,P. and Tozser,J.
    Amino acid preferences for a critical substrate binding subsite of retroviral proteases in type 1 cleavage sites
    J Virol79, 4213-4218. PubMed  Europe PubMed DOI  P
  34. Damond,F., Brun-Vezinet,F., Matheron,S., Peytavin,G., Campa,P., Pueyo,S., Mammano,F., Lastere,S., Farfara,I., Simon,F., Chene,G. and Descamps,D.
    Polymorphism of the human immunodeficiency virus type 2 (HIV-2) protease gene and selection of drug resistance mutations in HIV-2-infected patients treated with protease inhibitors
    J Clin Microbiol43, 484-487. PubMed  Europe PubMed DOI
  35. Kandula,V.R., Khanlou,H. and Farthing,C.
    Tipranavir: a novel second-generation nonpeptidic protease inhibitor
    Expert Rev Anti Infect Ther3, 9-21. PubMed  Europe PubMed DOI  I
  36. Rezacova,P., Brynda,J., Lescar,J., Fabry,M., Horejsi,M., Sieglova,I., Sedlacek,J. and Bentley,G.A.
    Crystal structure of a cross-reaction complex between an anti-HIV-1 protease antibody and an HIV-2 protease peptide
    J Struct Biol149, 332-337. PubMed  Europe PubMed DOI  S
  37. 2004
  38. Dunn,B.M.
    Human immunodeficiency virus 2 retropepsin
    [ISSN:0-12-079610-4]2, 154-157.  V
  39. 2000
  40. [YEAR:1-3-2000]Davis,D.A., Newcomb,F.M., Moskovitz,J., Wingfield,P.T., Stahl,S.J., Kaufman,J., Fales,H.M., Levine,R.L. and Yarchoan,R.
    HIV-2 protease is inactivated after oxidation at the dimer interface and activity can be partly restored with methionine sulphoxide reductase
    Biochem J346, 305-311. PubMed  Europe PubMed DOI
  41. [YEAR:15-5-2000]Snasel,J., Shoeman,R., Horejsi,M., Hruskova-Heidingsfeldova,O., Sedlacek,J., Ruml,T. and Pichova,I.
    Cleavage of vimentin by different retroviral proteases
    Arch Biochem Biophys377, 241-245. PubMed  Europe PubMed DOI
  42. [YEAR:21-9-2000]Tyndall,J.D., Reid,R.C., Tyssen,D.P., Jardine,D.K., Todd,B., Passmore,M., March,D.R., Pattenden,L.K., Bergman,D.A., Alewood,D., Hu,S.H., Alewood,P.F., Birch,C.J., Martin,J.L. and Fairlie,D.P.
    Synthesis, stability, antiviral activity, and protease-bound structures of substrate-mimicking constrained macrocyclic inhibitors of HIV-1 protease
    J Med Chem43, 3495-3504. PubMed  Europe PubMed DOI  I
  43. [YEAR:7-3-2000]Wlodawer,A. and Gustchina,A.
    Structural and biochemical studies of retroviral proteases
    Biochim Biophys Acta1477, 16-34. PubMed  Europe PubMed DOI
  44. 1999
  45. Boross,P., Bagossi,P., Copeland,T.D., Oroszlan,S., Louis,J.M. and Tozser,J.
    Effect of substrate residues on the P2 ' preference of retroviral proteinases
    Eur J Biochem264, 921-929. PubMed  Europe PubMed DOI
  46. 1998
  47. Bagossi,P., Cheng,Y.S., Oroszlan,S. and Tozser,J.
    Comparison of the specificity of homo- and heterodimeric linked HIV-1 and HIV-2 proteinase dimers
    Protein Eng11, 439-445. PubMed  Europe PubMed
  48. 1997
  49. Pichova,I., Weber,J., Litera,J., Konvalinka,J., Vondrasek,J., Soucek,M., Strop,P., Majer,P., Heuser,A.M. and Kraeusslich,H.G.
    Peptide inhibitors of HIV-1 and HIV-2 proteases: a comparative study
    Leukemia11 Suppl 3, 120-122. PubMed  Europe PubMed
  50. Tozser,J.
    Specificity of retroviral proteinases based on substrates containing tyrosine and proline at the site of cleavage
    Pathol Oncol Res3, 142-146. PubMed  Europe PubMed  P
  51. 1995
  52. Fan,N., Rank,K.B., Leone,J.W., Heinrikson,R.L., Bannow,C.A., Smith,C.W., Evans,D.B., Poppe,S.M., Tarpley,W.G. and Rothrock,D.J.
    The differential processing of homodimers of reverse transcriptases from human immunodeficiency viruses type 1 and 2 is a consequence of the distinct specificities of the viral proteases
    J Biol Chem270, 13573-13579. PubMed  Europe PubMed
  53. Priestle,J.P., Fassler,A., Rosel,J., Tintelnot-Blomley,M., Strop,P. and Grutter,M.G.
    Erratum: Comparative analysis of the X-ray structures of HIV-1 and HIV-2 proteases in complex with CGP 53820, a novel pseudosymmetric inhibitor (vol 3, pg 381, 1995)
    Structure3, 629-629. PubMed  Europe PubMed  I
  54. Thaisrivongs,S., Watenpaugh,K.D., Howe,W.J., Tomich,P.K., Dolak,L.A., Chong,K.T., Tomich,C.C., Tomasselli,A.G., Turner,S.R. and Strohbach,J.W.
    Structure-based design of novel HIV protease inhibitors: carboxamide-containing 4-hydroxycoumarins and 4-hydroxy-2-pyrones as potent nonpeptidic inhibitors
    J Med Chem38, 3624-3637. PubMed  Europe PubMed  S  I
  55. Tong,L., Pav,S., Mui,S., Lamarre,D., Yoakim,C., Beaulieu,P. and Anderson,P.C.
    Crystal structures of HIV-2 protease in complex with inhibitors containing the hydroxyethylamine dipeptide isostere
    Structure3, 33-40. PubMed  Europe PubMed  S  I
  56. 1994
  57. Chen,Z., Li,Y., Chen,E., Hall,D.L., Darke,P.L., Culberson,C., Shafer,J.A. and Kuo,L.C.
    Crystal structure at 1.9-A resolution of human immunodeficiency virus (HIV) II protease complexed with L-735,524, an orally bioavailable inhibitor of the HIV proteases
    J Biol Chem269, 26344-26348. PubMed  Europe PubMed  S  I
  58. Dunn,B.M., Gustchina,A., Wlodawer,A. and Kay,J.
    Subsite preferences of retroviral proteinases
    Methods Enzymol241, 254-278. PubMed  Europe PubMed  V
  59. Tomasselli,A.G. and Heinrikson,R.L.
    Specificity of retroviral proteases: an analysis of viral and nonviral protein substrates
    Methods Enzymol241, 279-301. PubMed  Europe PubMed  P
  60. 1993
  61. Mulichak,A.M., Hui,J.O., Tomasselli,A.G., Heinrikson,R.L., Curry,K.A., Tomich,C.S., Thaisrivongs,S., Sawyer,T.K. and Watenpaugh,K.D.
    The crystallographic structure of the protease from human immunodeficiency virus type 2 with two synthetic peptidic transition state analog inhibitors
    J Biol Chem268, 13103-13109. PubMed  Europe PubMed  S  I
  62. Tong,L., Pav,S., Pargellis,C., Do,F., Lamarre,D. and Anderson,P.C.
    Crystal structure of human immunodeficiency virus (HIV) type 2 protease in complex with a reduced amide inhibitor and comparison with HIV-1 protease structures
    Proc Natl Acad Sci U S A90, 8387-8391. PubMed  Europe PubMed  S  I
  63. 1992
  64. Blaha,I., Tozser,J., Kim,Y., Copeland,T.D. and Oroszlan,S.
    Solid phase synthesis of the proteinase of bovine leukemia virus. Comparison of its specificity to that of HIV-2 proteinase
    FEBS Lett309, 389-393. PubMed  Europe PubMed DOI
  65. 1991
  66. Pettit,S.C., Simsic,J., Loeb,D.D., Everitt,L., Hutchison,C.A., III and Swanstrom,R.
    Analysis of retroviral protease cleavage sites reveals two types of cleavage sites and the structural requirements of the P1 amino acid
    J Biol Chem266, 14539-14547. PubMed  Europe PubMed
  67. Poorman,R.A., Tomasselli,A.G., Heinrikson,R.L. and Kezdy,F.J.
    A cumulative specificity model for proteases from human immunodeficiency virus types 1 and 2, inferred from statistical analysis of an extended substrate data base
    J Biol Chem266, 14554-14561. PubMed  Europe PubMed
  68. Tomasselli,A.G., Howe,W.J., Hui,J.O., Sawyer,T.K., Reardon,I.M., DeCamp,D.L., Craik,C.S. and Heinrikson,R.L.
    Calcium-free calmodulin is a substrate of proteases from human immunodeficiency viruses 1 and 2
    Proteins10, 1-9. PubMed  Europe PubMed DOI
  69. 1990
  70. [YEAR:31-5-1990]Copeland,T.D., Wondrak,E.M., Tozser,J., Roberts,M.M. and Oroszlan,S.
    Substitution of proline with pipecolic acid at the scissile bond converts a peptide substrate of HIV proteinase into a selective inhibitor
    Biochem Biophys Res Commun169, 310-314. PubMed  Europe PubMed DOI  I
  71. Phylip,L.H., Richards,A.D., Kay,J., Konvalinka,J., Strop,P., Blaha,I., Velek,J., Kostka,V., Ritchie,A.J., Broadhurst,A.V., Farmerie,W.G., Scarborough,P.E. and Dunn,B.M.
    Hydrolysis of synthetic chromogenic substrates by HIV-1 and HIV- 2 proteinases
    Biochem Biophys Res Commun171, 439-444. PubMed  Europe PubMed DOI  A  P
  72. [YEAR:15-8-1990]Pichuantes,S., Babe,L.M., Barr,P.J., DeCamp,D.L. and Craik,C.S.
    Recombinant HIV2 protease processes HIV1 Pr53gag and analogous junction peptides in vitro
    J Biol Chem265, 13890-13898. PubMed  Europe PubMed
  73. [YEAR:25-8-1990]Tomasselli,A.G., Hui,J.O., Sawyer,T.K., Staples,D.J., Bannow,C., Reardon,I.M., Howe,W.J., DeCamp,D.L., Craik,C.S. and Heinrikson,R.L.
    Specificity and inhibition of proteases from human immunodeficiency viruses 1 and 2
    J Biol Chem265, 14675-14683. PubMed  Europe PubMed
  74. Wu,J.C., Carr,S.F., Jarnagin,K., Kirsher,S., Barnett,J., Chow,J., Chan,H.W., Chen,M.S., Medzihradszky,D., Yamashiro,D. and Santi,D.V.
    Synthetic HIV-2 protease cleaves the GAG precursor of HIV-1 with the same specificity as HIV-1 protease
    Arch Biochem Biophys277, 306-311. PubMed  Europe PubMed DOI
  75. 1989
  76. [YEAR:14-8-1989]Richards,A.D., Broadhurst,A.V., Ritchie,A.J., Dunn,B.M. and Kay,J.
    Inhibition of the aspartic proteinase from HIV-2
    FEBS Lett253, 214-216. PubMed  Europe PubMed DOI  I