Literature for peptidase C30.005: SARS coronavirus picornain 3C-like peptidase

Summary Alignment Tree Sequences Sequence features Distribution Structure Literature Substrates Pharma

(Topics flags: A Assay, S Structure, T Target, P Specificity, I Inhibitor, E Expression, V Review. To select only the references relevant to a single topic, click the link above. See explanation.)

    2024
  1. Jiang,H., Li,W., Zhou,X., Zhang,J. and Li,J.
    Crystal structures of coronaviral main proteases in complex with the non-covalent inhibitor X77
    Int J Biol Macromol276, 133706-133706. PubMed  Europe PubMed DOI  I
  2. Li,F. and Zhang,J.
    Time-resolved fluorescence studies reveal differences in dynamic motion between main proteases of SARS-CoV-2 and SARS-CoV
    Int J Biol Macromol287, 138313-138313. PubMed  Europe PubMed DOI
  3. Vlachou,A., Nchioua,R., Regensburger,K., Kirchhoff,F. and Kmiec,D.
    A Gaussia luciferase reporter assay for the evaluation of coronavirus Nsp5/3CLpro activity
    Sci Rep14, 20697-20697. PubMed  Europe PubMed DOI
  4. 2023
  5. Li,F., Fang,T., Guo,F., Zhao,Z. and Zhang,J.
    Comprehensive Understanding of the Kinetic Behaviors of Main Protease from SARS-CoV-2 and SARS-CoV: New Data and Comparison to Published Parameters
    Molecules28, PubMed  Europe PubMed DOI
  6. Li,X. and Song,Y.
    Structure and function of SARS-CoV and SARS-CoV-2 main proteases and their inhibition: A comprehensive review
    Eur J Med Chem260, 115772-115772. PubMed  Europe PubMed DOI
  7. 2022
  8. Campitelli,P., Lu,J. and Ozkan,S.B.
    Dynamic allostery highlights the evolutionary differences between the CoV-1 and CoV-2 main proteases
    Biophys J121, 1483-1492. PubMed  Europe PubMed DOI
  9. Kuo,C.J. and Liang,P.H.
    SARS-CoV-2 3CL(pro) displays faster self-maturation in vitro than SARS-CoV 3CL(pro) due to faster C-terminal cleavage
    FEBS Lett596, 1214-1224. PubMed  Europe PubMed DOI
  10. 2021
  11. Behnam,M.A.M.
    Protein structural heterogeneity: A hypothesis for the basis of proteolytic recognition by the main protease of SARS-CoV and SARS-CoV-2
    Biochimie182, 177-184. PubMed  Europe PubMed DOI
  12. Hu,Y., Ma,C., Szeto,T., Hurst,B., Tarbet,B. and Wang,J.
    Boceprevir, Calpain Inhibitors II and XII, and GC-376 Have Broad-Spectrum Antiviral Activity against Coronaviruses
    ACS Infect Dis7, 586-597. PubMed  Europe PubMed DOI  I
  13. Kidera,A., Moritsugu,K., Ekimoto,T. and Ikeguchi,M.
    Allosteric Regulation of 3CL Protease of SARS-CoV-2 and SARS-CoV Observed in the Crystal Structure Ensemble
    J Mol Biol433, 167324-167324. PubMed  Europe PubMed DOI
  14. Lata,S. and Akif,M.
    Comparative protein structure network analysis on 3CL(pro) from SARS-CoV-1 and SARS-CoV-2
    Proteins PubMed  Europe PubMed DOI
  15. Sharma,A., Kaliya,K. and Maurya,S.K.
    Recent Advances in Discovery of Potent Proteases Inhibitors Targeting the SARS Coronaviruses
    Curr Top Med Chem21, 307-328. PubMed  Europe PubMed DOI  V
  16. Tekpinar,M. and Yildirim,A.
    Impact of dimerization and N3 binding on molecular dynamics of SARS-CoV and SARS-CoV-2 main proteases
    J Biomol Struct Dyn1-12. PubMed  Europe PubMed DOI
  17. 2020
  18. Bahadur Gurung,A., Ajmal Ali,M., Lee,J., Abul Farah,M. and Mashay Al-Anazi,K.
    Structure-based virtual screening of phytochemicals and repurposing of FDA approved antiviral drugs unravels lead molecules as potential inhibitors of coronavirus 3C-like protease enzyme
    J King Saud Univ Sci32, 2845-2853. PubMed  Europe PubMed DOI
  19. Chunduru,K., Sankhe,R., Begum,F., Sodum,N., Kumar,N., Kishore,A., Shenoy,R.R., Rao,C.M. and Saravu,K.
    In silico study to evaluate the antiviral activity of novel structures against 3C-like protease of Novel Coronavirus (COVID-19) and SARS-CoV
    Med Chem PubMed  Europe PubMed DOI
  20. Griffin,J.W.D.
    SARS-CoV and SARS-CoV-2 main protease residue interaction networks change when bound to inhibitor N3
    J Struct Biol211, 107575-107575. PubMed  Europe PubMed DOI  I
  21. Gurung,A.B., Ali,M.A., Lee,J., Abul Farah,M. and Al-Anazi,K.M.
    In silico screening of FDA approved drugs reveals ergotamine and dihydroergotamine as potential coronavirus main protease enzyme inhibitors
    Saudi J Biol Sci27, 2674-2682. PubMed  Europe PubMed DOI  I
  22. Jo,S., Kim,S., Shin,D.H. and Kim,M.S.
    Inhibition of SARS-CoV 3CL protease by flavonoids
    J Enzyme Inhib Med Chem35, 145-151. PubMed  Europe PubMed DOI  I
  23. Oso,B.J., Adeoye,A.O. and Olaoye,I.F.
    Pharmacoinformatics and hypothetical studies on allicin, curcumin, and gingerol as potential candidates against COVID-19-associated proteases
    J Biomol Struct Dyn1-12. PubMed  Europe PubMed DOI  I
  24. Toropov,A.A., Toropova,A.P., Veselinovic,A.M., Leszczynska,D. and Leszczynski,J.
    SARS-CoV M(pro) inhibitory activity of aromatic disulfide compounds: QSAR model
    J Biomol Struct Dyn1-7. PubMed  Europe PubMed DOI
  25. Umadevi,P., Manivannan,S., Fayad,A.M. and Shelvy,S.
    In silico analysis of phytochemicals as potential inhibitors of proteases involved in SARS-CoV-2 infection
    J Biomol Struct Dyn1-9. PubMed  Europe PubMed DOI  I
  26. Wang,H., He,S., Deng,W., Zhang,Y., Li,G., Sun,J., Zhao,W., Guo,Y., Yin,Z., Li,D. and Shang,L.
    Comprehensive insights into the catalytic mechanism of Middle East Respiratory Syndrome 3C-Like protease and Severe Acute Respiratory Syndrome 3C-like protease
    ACS Catal10, 5871-5890. PubMed  Europe PubMed DOI
  27. Zhang,L., Lin,D., Kusov,Y., Nian,Y., Ma,Q., Wang,J., von Brunn,A., Leyssen,P., Lanko,K., Neyts,J., de Wilde,A., Snijder,E.J., Liu,H. and Hilgenfeld,R.
    alpha-Ketoamides as broad-spectrum inhibitors of coronavirus and enterovirus replication: structure-based design, synthesis, and activity assessment
    J Med Chem63, 4562-4578. PubMed  Europe PubMed DOI  I
  28. 2019
  29. Ohnishi,K., Hattori,Y., Kobayashi,K. and Akaji,K.
    Evaluation of a non-prime site substituent and warheads combined with a decahydroisoquinolin scaffold as a SARS 3CL protease inhibitor
    Bioorg Med Chem27, 425-435. PubMed  Europe PubMed DOI  I
  30. Yoshizawa,S.I., Hattori,Y., Kobayashi,K. and Akaji,K.
    Evaluation of an octahydroisochromene scaffold used as a novel SARS 3CL protease inhibitor
    Bioorg Med Chem115273-115273. PubMed  Europe PubMed DOI  I
  31. 2017
  32. Daczkowski,C.M., Dzimianski,J.V., Clasman,J.R., Goodwin,O., Mesecar,A.D. and Pegan,S.D.
    Structural insights into the interaction of coronavirus papain-like proteases and interferon-stimulated gene product 15 from different species
    J Mol Biol429, 1661-1683. PubMed  Europe PubMed DOI
  33. Konno,H., Onuma,T., Nitanai,I., Wakabayashi,M., Yano,S., Teruya,K. and Akaji,K.
    Synthesis and evaluation of phenylisoserine derivatives for the SARS-CoV 3CL protease inhibitor
    Bioorg Med Chem Lett27, 2746-2751. PubMed  Europe PubMed DOI  I
  34. Park,J.Y., Yuk,H.J., Ryu,H.W., Lim,S.H., Kim,K.S., Park,K.H., Ryu,Y.B. and Lee,W.S.
    Evaluation of polyphenols from Broussonetia papyrifera as coronavirus protease inhibitors
    J Enzyme Inhib Med Chem32, 504-515. PubMed  Europe PubMed DOI  I
  35. Wang,L., Bao,B.B., Song,G.Q., Chen,C., Zhang,X.M., Lu,W., Wang,Z., Cai,Y., Li,S., Fu,S., Song,F.H., Yang,H. and Wang,J.G.
    Discovery of unsymmetrical aromatic disulfides as novel inhibitors of SARS-CoV main protease: chemical synthesis, biological evaluation, molecular docking and 3D-QSAR study
    Eur J Med Chem137, 450-461. PubMed  Europe PubMed DOI  I
  36. 2016
  37. Abd El-All,A.S., Atta,S.M., Roaiah,H.M., Awad,E.M. and Abdalla,M.M.
    New potent SARS-CoV 3C-like protease inhibitors derived from thieno[2,3-d]-pyrimidine derivatives
    Arch Pharm (Weinheim)349, 202-210. PubMed  Europe PubMed DOI  I
  38. Konno,H., Wakabayashi,M., Takanuma,D., Saito,Y. and Akaji,K.
    Design and synthesis of a series of serine derivatives as small molecule inhibitors of the SARS coronavirus 3CL protease
    Bioorg Med Chem24, 1241-1254. PubMed  Europe PubMed DOI  I
  39. Kumar,V., Tan,K.P., Wang,Y.M., Lin,S.W. and Liang,P.H.
    Identification, synthesis and evaluation of SARS-CoV and MERS-CoV 3C-like protease inhibitors
    Bioorg Med Chem24, 3035-3042. PubMed  Europe PubMed DOI  I
  40. Li,C., Teng,X., Qi,Y., Tang,B., Shi,H., Ma,X. and Lai,L.
    Conformational flexibility of a short loop near the active site of the SARS-3CLpro is essential to maintain catalytic activity
    Sci Rep6, 20918-20918. PubMed  Europe PubMed DOI
  41. Muramatsu,T., Takemoto,C., Kim,Y.T., Wang,H., Nishii,W., Terada,T., Shirouzu,M. and Yokoyama,S.
    SARS-CoV 3CL protease cleaves its C-terminal autoprocessing site by novel subsite cooperativity
    Proc Natl Acad Sci U S A113, 12997-13002. PubMed  Europe PubMed DOI  S
  42. Pillaiyar,T., Manickam,M., Namasivayam,V., Hayashi,Y. and Jung,S.H.
    An overview of severe acute respiratory syndrome-coronavirus (SARS-CoV) 3CL protease inhibitors: peptidomimetics and small molecule chemotherapy
    J Med Chem59, 6595-6628. PubMed  Europe PubMed DOI  I
  43. Teruya,K., Hattori,Y., Shimamoto,Y., Kobayashi,K., Sanjoh,A., Nakagawa,A., Yamashita,E. and Akaji,K.
    Structural basis for the development of SARS 3CL protease inhibitors from a peptide mimic to an aza-decaline scaffold
    Biopolymers106, 391-403. PubMed  Europe PubMed DOI  S  I
  44. 2015
  45. Mohamed,S.F., Ibrahiem,A.A., Amr,A.E.G.E. and Abdalla,M.M.
    SARS-CoV 3C-like protease inhibitors of some newly synthesized substituted pyrazoles and substituted pyrimidines based on 1-(3-aminophenyl)-3-(1Hindol-3-yl)prop-2-en-1-one
    Int J Pharmacol11, 749-756. DOI  I
  46. Shimamoto,Y., Hattori,Y., Kobayashi,K., Teruya,K., Sanjoh,A., Nakagawa,A., Yamashita,E. and Akaji,K.
    Fused-ring structure of decahydroisoquinolin as a novel scaffold for SARS 3CL protease inhibitors
    Bioorg Med Chem23, 876-890. PubMed  Europe PubMed DOI  I
  47. 2014
  48. Chuck,C.P., Ke,Z.H., Chen,C., Wan,D.C., Chow,H.F. and Wong,K.B.
    Profiling of substrate-specificity and rational design of broad-spectrum peptidomimetic inhibitors for main proteases of coronaviruses
    Hong Kong Med J20, 22-25. PubMed  Europe PubMed
  49. Hilgenfeld,R.
    From SARS to MERS: crystallographic studies on coronaviral proteases enable antiviral drug design
    FEBS J281, 4085-4096. PubMed  Europe PubMed DOI  V  S
  50. Lee,H., Mittal,A., Patel,K., Gatuz,J.L., Truong,L., Torres,J., Mulhearn,D.C. and Johnson,M.E.
    Identification of novel drug scaffolds for inhibition of SARS-CoV 3-chymotrypsin-like protease using virtual and high-throughput screenings
    Bioorg Med Chem22, 167-177. PubMed  Europe PubMed DOI  I
  51. Lim,L., Shi,J., Mu,Y. and Song,J.
    Dynamically-driven enhancement of the catalytic machinery of the SARS 3C-like protease by the S284-T285-I286/A mutations on the extra domain
    PLoS ONE9, e101941-e101941. PubMed  Europe PubMed DOI
  52. Mielech,A.M., Chen,Y., Mesecar,A.D. and Baker,S.C.
    Nidovirus papain-like proteases: Multifunctional enzymes with protease, deubiquitinating and deISGylating activities
    Virus Res194, 184-190. PubMed  Europe PubMed DOI
  53. Paasche,A., Zipper,A., Schafer,S., Ziebuhr,J., Schirmeister,T. and Engels,B.
    Evidence for substrate binding-induced zwitterion formation in the catalytic Cys-His dyad of the SARS-CoV main protease
    Biochemistry53, 5930-5946. PubMed  Europe PubMed DOI
  54. Wong,K.B., Wan,D.C. and Chow,H.F.
    Substrate specificity and rational design of peptidomimetic inhibitors for SARS coronavirus main protease
    Hong Kong Med J20 Suppl 4, 18-21. PubMed  Europe PubMed  I
  55. 2013
  56. Cho,J.K., Curtis-Long,M.J., Lee,K.H., Kim,D.W., Ryu,H.W., Yuk,H.J. and Park,K.H.
    Geranylated flavonoids displaying SARS-CoV papain-like protease inhibition from the fruits of Paulownia tomentosa
    Bioorg Med Chem21, 3051-3057. PubMed  Europe PubMed DOI  I
  57. Chuck,C.P., Chen,C., Ke,Z., Chi-Cheong Wan,D., Chow,H.F. and Wong,K.B.
    Design, synthesis and crystallographic analysis of nitrile-based broad-spectrum peptidomimetic inhibitors for coronavirus 3C-like proteases
    Eur J Med Chem59, 1-6. PubMed  Europe PubMed DOI  S  I
  58. Jacobs,J., Grum-Tokars,V., Zhou,Y., Turlington,M., Saldanha,S.A., Chase,P., Eggler,A., Dawson,E.S., Baez-Santos,Y.M., Tomar,S., Mielech,A.M., Baker,S.C., Lindsley,C.W., Hodder,P., Mesecar,A. and Stauffer,S.R.
    Discovery, synthesis, and structure-based optimization of a series of N-(tert-butyl)-2-(N-arylamido)-2-(pyridin-3-yl) acetamides (ML188) as potent noncovalent small molecule inhibitors of the severe acute respiratory syndrome coronavirus (SARS-CoV) 3CL protease
    J Med Chem56, 534-546. PubMed  Europe PubMed DOI  I
  59. Konno,S., Thanigaimalai,P., Yamamoto,T., Nakada,K., Kakiuchi,R., Takayama,K., Yamazaki,Y., Yakushiji,F., Akaji,K., Kiso,Y., Kawasaki,Y., Chen,S.E., Freire,E. and Hayashi,Y.
    Design and synthesis of new tripeptide-type SARS-CoV 3CL protease inhibitors containing an electrophilic arylketone moiety
    Bioorg Med Chem21, 412-424. PubMed  Europe PubMed DOI  I
  60. Mandadapu,S.R., Weerawarna,P.M., Prior,A.M., Uy,R.A., Aravapalli,S., Alliston,K.R., Lushington,G.H., Kim,Y., Hua,D.H., Chang,K.O. and Groutas,W.C.
    Macrocyclic inhibitors of 3C and 3C-like proteases of picornavirus, norovirus, and coronavirus
    Bioorg Med Chem Lett23, 3709-3712. PubMed  Europe PubMed DOI  I
  61. Muramatsu,T., Kim,Y.T., Nishii,W., Terada,T., Shirouzu,M. and Yokoyama,S.
    Autoprocessing mechanism of severe acute respiratory syndrome coronavirus 3C-like protease (SARS-CoV 3CLpro) from its polyproteins
    FEBS J280, 2002-2013. PubMed  Europe PubMed DOI
  62. Stobart,C.C., Sexton,N.R., Munjal,H., Lu,X., Molland,K.L., Tomar,S., Mesecar,A.D. and Denison,M.R.
    Chimeric exchange of coronavirus nsp5 proteases (3CLpro) identifies common and divergent regulatory determinants of protease activity
    J Virol87, 12611-12618. PubMed  Europe PubMed DOI
  63. Thanigaimalai,P., Konno,S., Yamamoto,T., Koiwai,Y., Taguchi,A., Takayama,K., Yakushiji,F., Akaji,K., Kiso,Y., Kawasaki,Y., Chen,S.E., Naser-Tavakolian,A., Schon,A., Freire,E. and Hayashi,Y.
    Design, synthesis, and biological evaluation of novel dipeptide-type SARS-CoV 3CL protease inhibitors: Structure-activity relationship study
    Eur J Med Chem65, 436-447. PubMed  Europe PubMed DOI  I
  64. Thanigaimalai,P., Konno,S., Yamamoto,T., Koiwai,Y., Taguchi,A., Takayama,K., Yakushiji,F., Akaji,K., Chen,S.E., Naser-Tavakolian,A., Schon,A., Freire,E. and Hayashi,Y.
    Development of potent dipeptide-type SARS-CoV 3CL protease inhibitors with novel P3 scaffolds: Design, synthesis, biological evaluation, and docking studies
    Eur J Med Chem68, 372-384. PubMed  Europe PubMed DOI  I
  65. Wu,C.G., Cheng,S.C., Chen,S.C., Li,J.Y., Fang,Y.H., Chen,Y.H. and Chou,C.Y.
    Mechanism for controlling the monomer-dimer conversion of SARS coronavirus main protease
    Acta Crystallogr D Biol Crystallogr69, 747-755. PubMed  Europe PubMed DOI  S
  66. Zhao,Q., Weber,E. and Yang,H.
    Recent developments on coronavirus main protease/3C like protease inhibitors
    Recent Pat Antiinfect Drug Discov8, 150-156. PubMed  Europe PubMed DOI  I
  67. 2012
  68. Kang,X., Zhong,N., Zou,P., Zhang,S., Jin,C. and Xia,B.
    Foldon unfolding mediates the interconversion between M(pro)-C monomer and 3D domain-swapped dimer
    Proc Natl Acad Sci U S A109, 14900-14905. PubMed  Europe PubMed DOI
  69. Nguyen,T.T., Woo,H.J., Kang,H.K., Nguyen,V.D., Kim,Y.M., Kim,D.W., Ahn,S.A., Xia,Y. and Kim,D.
    Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris
    Biotechnol Lett34, 831-838. PubMed  Europe PubMed DOI  E  I
  70. Park,J.Y., Kim,J.H., Kim,Y.M., Jeong,H.J., Kim,D.W., Park,K.H., Kwon,H.J., Park,S.J., Lee,W.S. and Ryu,Y.B.
    Tanshinones as selective and slow-binding inhibitors for SARS-CoV cysteine proteases
    Bioorg Med Chem20, 5928-5935. PubMed  Europe PubMed DOI  I
  71. Stobart,C.C. and Denison,M.R.
    Coronavirus picornain-like cysteine proteinase
    [ISSN:978-0-12-407743-0]3, 2436-2441. DOI
  72. 2011
  73. Akaji,K., Konno,H., Mitsui,H., Teruya,K., Shimamoto,Y., Hattori,Y., Ozaki,T., Kusunoki,M. and Sanjoh,A.
    Structure-based design, synthesis, and evaluation of peptide-mimetic SARS 3CL protease inhibitors
    J Med Chem54, 7962-7973. PubMed  Europe PubMed DOI  I
  74. Chuck,C.P., Chow,H.F., Wan,D.C. and Wong,K.B.
    Profiling of substrate specificities of 3C-like proteases from group 1, 2a, 2b, and 3 coronaviruses
    PLoS ONE6, e27228-e27228. PubMed  Europe PubMed DOI  P
  75. Hanh Nguyen,T.T., Ryu,H.J., Lee,S.H., Hwang,S., Breton,V., Rhee,J.H. and Kim,D.
    Virtual screening identification of novel severe acute respiratory syndrome 3C-like protease inhibitors and in vitro confirmation
    Bioorg Med Chem Lett21, 3088-3091. PubMed  Europe PubMed DOI  I
  76. Mukherjee,P., Shah,F., Desai,P. and Avery,M.
    Inhibitors of SARS-3CLpro: virtual screening, biological evaluation, and molecular dynamics simulation studies
    J Chem Inf Model51, 1376-1392. PubMed  Europe PubMed DOI  I
  77. Ramajayam,R., Tan,K.P. and Liang,P.H.
    Recent development of 3C and 3CL protease inhibitors for anti-coronavirus and anti-picornavirus drug discovery
    Biochem Soc Trans39, 1371-1375. PubMed  Europe PubMed DOI  I
  78. Shi,J., Han,N., Lim,L., Lua,S., Sivaraman,J., Wang,L., Mu,Y. and Song,J.
    Dynamically-driven inactivation of the catalytic machinery of the SARS 3C-like protease by the N214A mutation on the extra domain
    PLoS Comput Biol7, e1001084-e1001084. PubMed  Europe PubMed DOI
  79. Xia,B. and Kang,X.
    Activation and maturation of SARS-CoV main protease
    Protein Cell2, 282-290. PubMed  Europe PubMed DOI  V
  80. Zhang,S., Zhong,N., Ren,X., Jin,C. and Xia,B.
    1H, 13C and 15N resonance assignments of SARS-CoV main protease N-terminal domain
    Biomol NMR Assign5, 143-145. PubMed  Europe PubMed DOI
  81. Zhu,L., George,S., Schmidt,M.F., Al-Gharabli,S.I., Rademann,J. and Hilgenfeld,R.
    Peptide aldehyde inhibitors challenge the substrate specificity of the SARS-coronavirus main protease
    Antiviral Res92, 204-212. PubMed  Europe PubMed DOI  P  S  I
  82. 2010
  83. Ahn,T.Y., Kuo,C.J., Liu,H.G., Ha,D.C., Liang,P.H. and Jung,Y.S.
    Synthesis and evaluation of benzoquinolinone derivatives as SARS-CoV 3CL protease inhibitors
    Bull Korean Chem Soc31, 87-91. DOI  I
  84. Barrila,J., Gabelli,S.B., Bacha,U., Amzel,L.M. and Freire,E.
    Mutation of Asn28 disrupts the dimerization and enzymatic activity of SARS 3CL(pro)
    Biochemistry49, 4308-4317. PubMed  Europe PubMed DOI
  85. Chen,S., Jonas,F., Shen,C. and Higenfeld,R.
    Liberation of SARS-CoV main protease from the viral polyprotein: N-terminal autocleavage does not depend on the mature dimerization mode
    Protein Cell1, 59-74. PubMed  Europe PubMed DOI
  86. Cheng,S.C., Chang,G.G. and Chou,C.Y.
    Mutation of Glu-166 blocks the substrate-induced dimerization of SARS coronavirus main protease
    Biophys J98, 1327-1336. PubMed  Europe PubMed DOI
  87. Chuck,C.P., Chong,L.T., Chen,C., Chow,H.F., Wan,D.C. and Wong,K.B.
    Profiling of substrate specificity of SARS-CoV 3CL
    PLoS ONE5, e13197-e13197. PubMed  Europe PubMed DOI  P
  88. Li,C., Qi,Y., Teng,X., Yang,Z., Wei,P., Zhang,C., Tan,L., Zhou,L., Liu,Y. and Lai,L.
    Maturation mechanism of severe acute respiratory syndrome (SARS) coronavirus 3C-like proteinase
    J Biol Chem285, 28134-28140. PubMed  Europe PubMed DOI
  89. Okamoto,D.N., Oliveira,L.C., Kondo,M.Y., Cezari,M.H., Szeltner,Z., Juhasz,T., Juliano,M.A., Polgar,L., Juliano,L. and Gouvea,I.E.
    Increase of SARS-CoV 3CL peptidase activity due to macromolecular crowding effects in the milieu composition
    Biol Chem391, 1461-1468. PubMed  Europe PubMed DOI
  90. Ramajayam,R., Tan,K.P., Liu,H.G. and Liang,P.H.
    Synthesis, docking studies, and evaluation of pyrimidines as inhibitors of SARS-CoV 3CL protease
    Bioorg Med Chem Lett20, 3569-3572. PubMed  Europe PubMed DOI  I
  91. Ramajayam,R., Tan,K.P., Liu,H.G. and Liang,P.H.
    Synthesis and evaluation of pyrazolone compounds as SARS-coronavirus 3C-like protease inhibitors
    Bioorg Med Chem18, 7849-7854. PubMed  Europe PubMed DOI  I
  92. Shah,F., Mukherjee,P., Desai,P. and Avery,M.
    Computational approaches for the discovery of cysteine protease inhibitors against malaria and SARS
    Curr Comput Aided Drug Des6, 1-23. PubMed  Europe PubMed DOI  I
  93. Steuber,H. and Hilgenfeld,R.
    Recent advances in targeting viral proteases for the discovery of novel antivirals
    Curr Top Med Chem10, 323-345. PubMed  Europe PubMed DOI  V
  94. Tsai,M.Y., Chang,W.H., Liang,J.Y., Lin,L.L., Chang,G.G. and Chang,H.P.
    Essential covalent linkage between the chymotrypsin-like domain and the extra domain of the SARS-CoV main protease
    J Biochem148, 349-358. PubMed  Europe PubMed DOI
  95. Turlington,M., Chun,A., Jacobs,J., Dawson,E., Daniels,J.S., Saldanha,A., Chase,P., Hodder,P., Eggler,A., Tokars,V., Mesecar,A., Lindsley,C.W. and Stauffer,S.R.
    Non-covalent triazole-based inhibitors of the SARS main proteinase 3CLpro
    [ISSN:NBK143547 [bookaccession]] PubMed  Europe PubMed  I
  96. Wei,P., Li,C.M., Zhou,L., Liu,Y. and Lai,L.H.
    Substrate binding and homo-dimerization of SARS 3CL proteinase are mutual allosteric effectors
    Acta Physico-Chim Sinica26, 1093-1098.
  97. Zhang,S., Zhong,N., Xue,F., Kang,X., Ren,X., Chen,J., Jin,C., Lou,Z. and Xia,B.
    Three-dimensional domain swapping as a mechanism to lock the active conformation in a super-active octamer of SARS-CoV main protease
    Protein Cell1, 371-383. PubMed  Europe PubMed DOI  S
  98. 2009
  99. Hu,T., Zhang,Y., Li,L., Wang,K., Chen,S., Chen,J., Ding,J., Jiang,H. and Shen,X.
    Two adjacent mutations on the dimer interface of SARS coronavirus 3C-like protease cause different conformational changes in crystal structure
    Virology388, 324-334. PubMed  Europe PubMed DOI  S
  100. Kuo,C.J., Shih,Y.P., Kan,D. and Liang,P.H.
    Engineering a novel endopeptidase based on SARS 3CL(pro)
    Biotechniques47, 1029-1032. PubMed  Europe PubMed DOI
  101. Kuo,C.J., Liu,H.G., Lo,Y.K., Seong,C.M., Lee,K.I., Jung,Y.S. and Liang,P.H.
    Individual and common inhibitors of coronavirus and picornavirus main proteases
    FEBS Lett583, 549-555. PubMed  Europe PubMed DOI  I
  102. Luo,W., Su,X., Gong,S., Qin,Y., Liu,W., Li,J., Yu,H. and Xu,Q.
    Anti-SARS coronavirus 3C-like protease effects of Rheum palmatum L. extracts
    Biosci Trends3, 124-126. PubMed  Europe PubMed  I
  103. Phakthanakanok,K., Ratanakhanokchai,K., Kyu,K.L., Sompornpisut,P., Watts,A. and Pinitglang,S.
    A computational analysis of SARS cysteine proteinase-octapeptide substrate interaction: implication for structure and active site binding mechanism
    BMC Bioinformatics10 Suppl 1, S48-S48. PubMed  Europe PubMed DOI
  104. Regnier,T., Sarma,D., Hidaka,K., Bacha,U., Freire,E., Hayashi,Y. and Kiso,Y.
    New developments for the design, synthesis and biological evaluation of potent SARS-CoV 3CL(pro) inhibitors
    Bioorg Med Chem Lett19, 2722-2727. PubMed  Europe PubMed DOI  I
  105. Zhong,N., Zhang,S., Xue,F., Kang,X., Zou,P., Chen,J., Liang,C., Rao,Z., Jin,C., Lou,Z. and Xia,B.
    C-terminal domain of SARS-CoV main protease can form a 3D domain-swapped dimer
    Protein Sci18, 839-844. PubMed  Europe PubMed DOI  S
  106. 2008
  107. Akaji,K., Konno,H., Onozuka,M., Makino,A., Saito,H. and Nosaka,K.
    Evaluation of peptide-aldehyde inhibitors using R188I mutant of SARS 3CL protease as a proteolysis-resistant mutant
    Bioorg Med Chem16, 9400-9408. PubMed  Europe PubMed DOI  I
  108. Bacha,U., Barrila,J., Gabelli,S.B., Kiso,Y., Mario Amzel,L. and Freire,E.
    Development of broad-spectrum halomethyl ketone inhibitors against coronavirus main protease 3CL(pro)
    Chem Biol Drug Des72, 34-49. PubMed  Europe PubMed DOI  S  I
  109. Chen,S., Hu,T., Zhang,J., Chen,J., Chen,K., Ding,J., Jiang,H. and Shen,X.
    Mutation of Gly-11 on the dimer interface results in the complete crystallographic dimer dissociation of severe acute respiratory syndrome coronavirus 3C-like protease: crystal structure with molecular dynamics simulations
    J Biol Chem283, 554-564. PubMed  Europe PubMed DOI  S
  110. Chen,S., Zhang,J., Hu,T., Chen,K., Jiang,H. and Shen,X.
    Residues on the dimer interface of SARS coronavirus 3C-like protease: dimer stability characterization and enzyme catalytic activity analysis
    J Biochem143, 525-536. PubMed  Europe PubMed DOI
  111. Drag,M., Mikolajczyk,J., Bekes,M., Reyes-Turcu,F.E., Ellman,J.A., Wilkinson,K.D. and Salvesen,G.S.
    Positional-scanning fluorigenic substrate libraries reveal unexpected specificity determinants of DUBs (deubiquitinating enzymes)
    Biochem J415, 367-375. PubMed  Europe PubMed DOI  P
  112. Ghosh,A.K., Gong,G., Grum-Tokars,V., Mulhearn,D.C., Baker,S.C., Coughlin,M., Prabhakar,B.S., Sleeman,K., Johnson,M.E. and Mesecar,A.D.
    Design, synthesis and antiviral efficacy of a series of potent chloropyridyl ester-derived SARS-CoV 3CLpro inhibitors
    Bioorg Med Chem Lett18, 5684-5688. PubMed  Europe PubMed DOI  I
  113. Grum-Tokars,V., Ratia,K., Begaye,A., Baker,S.C. and Mesecar,A.D.
    Evaluating the 3C-like protease activity of SARS-coronavirus: recommendations for standardized assays for drug discovery
    Virus Res133, 63-73. PubMed  Europe PubMed DOI  A
  114. Lin,P.Y., Chou,C.Y., Chang,H.C., Hsu,W.C. and Chang,G.G.
    Correlation between dissociation and catalysis of SARS-CoV main protease
    Arch Biochem Biophys472, 34-42. PubMed  Europe PubMed DOI
  115. Mukherjee,P., Desai,P., Ross,L., White,E.L. and Avery,M.A.
    Structure-based virtual screening against SARS-3CL(pro) to identify novel non-peptidic hits
    Bioorg Med Chem16, 4138-4149. PubMed  Europe PubMed DOI  I
  116. Niu,C., Yin,J., Zhang,J., Vederas,J.C. and James,M.N.
    Molecular docking identifies the binding of 3-chloropyridine moieties specifically to the S1 pocket of SARS-CoV Mpro
    Bioorg Med Chem16, 293-302. PubMed  Europe PubMed DOI  T  I
  117. Nukoolkarn,V., Lee,V.S., Malaisree,M., Aruksakulwong,O. and Hannongbua,S.
    Molecular dynamic simulations analysis of ritonavir and lopinavir as SARS-CoV 3CL(pro) inhibitors
    J Theor Biol254, 861-867. PubMed  Europe PubMed DOI  I
  118. Shao,Y.M., Yang,W.B., Kuo,T.H., Tsai,K.C., Lin,C.H., Yang,A.S., Liang,P.H. and Wong,C.H.
    Design, synthesis, and evaluation of trifluoromethyl ketones as inhibitors of SARS-CoV 3CL protease
    Bioorg Med Chem16, 4652-4660. PubMed  Europe PubMed DOI  I
  119. Shi,J., Sivaraman,J. and Song,J.
    Mechanism for controlling the dimer-monomer switch and coupling dimerization to catalysis of the severe acute respiratory syndrome coronavirus 3C-like protease
    J Virol82, 4620-4629. PubMed  Europe PubMed DOI
  120. Solowiej,J., Thomson,J.A., Ryan,K., Luo,C., He,M., Lou,J. and Murray,B.W.
    Steady-state and pre-steady-state kinetic evaluation of severe acute respiratory syndrome coronavirus (SARS-CoV) 3CLpro cysteine protease: development of an ion-pair model for catalysis
    Biochemistry47, 2617-2630. PubMed  Europe PubMed DOI
  121. Taranto,A.G., Carvalho,P. and Avery,M.A.
    QM/QM studies for Michael reaction in coronavirus main protease (3CLPro)
    J Mol Graph Model27, 275-285. PubMed  Europe PubMed DOI  I
  122. Verschueren,K.H., Pumpor,K., Anemuller,S., Chen,S., Mesters,J.R. and Hilgenfeld,R.
    A structural view of the inactivation of the SARS coronavirus main proteinase by benzotriazole esters
    Chem Biol15, 597-606. PubMed  Europe PubMed DOI  S  I
  123. Xue,X., Yu,H., Yang,H., Xue,F., Wu,Z., Shen,W., Li,J., Zhou,Z., Ding,Y., Zhao,Q., Zhang,X.C., Liao,M., Bartlam,M. and Rao,Z.
    Structures of two coronavirus main proteases: implications for substrate binding and antiviral drug design
    J Virol82, 2515-2527. PubMed  Europe PubMed DOI  S  I
  124. Yang,Q., Chen,L., He,X., Gao,Z., Shen,X. and Bai,D.
    Design and synthesis of cinanserin analogs as severe acute respiratory syndrome coronavirus 3CL protease inhibitors
    Chem Pharm Bull (Tokyo)56, 1400-1405. PubMed  Europe PubMed DOI  I
  125. Zhang,J., Huitema,C., Niu,C., Yin,J., James,M.N., Eltis,L.D. and Vederas,J.C.
    Aryl methylene ketones and fluorinated methylene ketones as reversible inhibitors for severe acute respiratory syndrome (SARS) 3C-like proteinase
    Bioorg Chem36, 229-240. PubMed  Europe PubMed DOI  I
  126. Zhong,N., Zhang,S., Zou,P., Chen,J., Kang,X., Li,Z., Liang,C., Jin,C. and Xia,B.
    Without its N-finger, the main protease of severe acute respiratory syndrome coronavirus can form a novel dimer through its C-terminal domain
    J Virol82, 4227-4234. PubMed  Europe PubMed DOI
  127. 2007
  128. Basak,A., Mitra,A., Basak,S., Pasko,C., Chretien,M. and Seaton,P.
    A fluorogenic peptide containing the processing site of human SARS corona virus S-protein: kinetic evaluation and NMR structure elucidation
    Chembiochem8, 1029-1037. PubMed  Europe PubMed DOI
  129. Chang,H.P., Chou,C.Y. and Chang,G.G.
    Reversible unfolding of the severe acute respiratory syndrome coronavirus main protease in guanidinium chloride
    Biophys J92, 1374-1383. PubMed  Europe PubMed DOI
  130. Du,Q.S., Sun,H. and Chou,K.C.
    Inhibitor design for SARS coronavirus main protease based on "distorted key theory"
    Med Chem3, 1-6. PubMed  Europe PubMed DOI  I
  131. Ghosh,A.K., Xi,K., Grum-Tokars,V., Xu,X., Ratia,K., Fu,W., Houser,K.V., Baker,S.C., Johnson,M.E. and Mesecar,A.D.
    Structure-based design, synthesis, and biological evaluation of peptidomimetic SARS-CoV 3CLpro inhibitors
    Bioorg Med Chem Lett17, 5876-5880. PubMed  Europe PubMed DOI  I
  132. Goetz,D.H., Choe,Y., Hansell,E., Chen,Y.T., McDowell,M., Jonsson,C.B., Roush,W.R., McKerrow,J. and Craik,C.S.
    Substrate specificity profiling and identification of a new class of inhibitor for the major protease of the SARS coronavirus
    Biochemistry46, 8744-8752. PubMed  Europe PubMed DOI  P  S  I
  133. Lai,C.C., Jou,M.J., Huang,S.Y., Li,S.W., Wan,L., Tsai,F.J. and Lin,C.W.
    Proteomic analysis of up-regulated proteins in human promonocyte cells expressing severe acute respiratory syndrome coronavirus 3C-like protease
    Proteomics7, 1446-1460. PubMed  Europe PubMed DOI
  134. Lee,C.C., Kuo,C.J., Hsu,M.F., Liang,P.H., Fang,J.M., Shie,J.J. and Wang,A.H.
    Structural basis of mercury- and zinc-conjugated complexes as SARS-CoV 3C-like protease inhibitors
    FEBS Lett581, 5454-5458. PubMed  Europe PubMed DOI  S  I
  135. Lee,T.W., Cherney,M.M., Liu,J., James,K.E., Powers,J.C., Eltis,L.D. and James,M.N.
    Crystal structures reveal an induced-fit binding of a substrate-like aza-peptide epoxide to SARS coronavirus main peptidase
    J Mol Biol366, 916-932. PubMed  Europe PubMed DOI  S
  136. Plewczynski,D., Hoffmann,M., von Grotthuss,M., Ginalski,K. and Rychewski,L.
    In silico prediction of SARS protease inhibitors by virtual high throughput screening
    Chem Biol Drug Des69, 269-279. PubMed  Europe PubMed DOI  I
  137. Plewczynski,D., Hoffmann,M., von Grotthuss,M., Knizewski,L., Rychewski,L., Eitner,K. and Ginalski,K.
    Modelling of potentially promising SARS protease inhibitors
    J Phys Condens Matter19, 285207-285207. DOI  I
  138. Shao,Y.M., Yang,W.B., Peng,H.P., Hsu,M.F., Tsai,K.C., Kuo,T.H., Wang,A.H., Liang,P.H., Lin,C.H., Yang,A.S. and Wong,C.H.
    Structure-based design and synthesis of highly potent SARS-CoV 3CL protease inhibitors
    Chembiochem8, 1654-1657. PubMed  Europe PubMed DOI  I
  139. Yin,J., Niu,C., Cherney,M.M., Zhang,J., Huitema,C., Eltis,L.D., Vederas,J.C. and James,M.N.
    A mechanistic view of enzyme inhibition and peptide hydrolysis in the active site of the SARS-CoV 3C-like peptidase
    J Mol Biol371, 1060-1074. PubMed  Europe PubMed DOI  S  I
  140. Zhang,J., Pettersson,H.I., Huitema,C., Niu,C., Yin,J., James,M.N., Eltis,L.D. and Vederas,J.C.
    Design, synthesis, and evaluation of inhibitors for severe acute respiratory syndrome 3C-like protease based on phthalhydrazide ketones or heteroaromatic esters
    J Med Chem50, 1850-1864. PubMed  Europe PubMed DOI  I
  141. 2006
  142. [YEAR:10-5-2006]Al-Gharabli,S.I., Shah,S.T., Weik,S., Schmidt,M.F., Mesters,J.R., Kuhn,D., Klebe,G., Hilgenfeld,R. and Rademann,J.
    An efficient method for the synthesis of peptide aldehyde libraries employed in the discovery of reversible SARS coronavirus main protease (SARS-CoV Mpro) inhibitors
    Chembiochem7, 1048-1055. PubMed  Europe PubMed DOI  I
  143. [YEAR:19-12-2006]Barrila,J., Bacha,U. and Freire,E.
    Long-range cooperative interactions modulate dimerization in SARS 3CLpro
    Biochemistry45, 14908-14916. PubMed  Europe PubMed DOI
  144. [YEAR:24-3-2006]Chen,H., Wei,P., Huang,C., Tan,L., Liu,Y. and Lai,L.
    Only one protomer is active in the dimer of SARS 3C-like proteinase
    J Biol Chem281, 13894-13898. PubMed  Europe PubMed DOI
  145. Chen,L., Chen,S., Gui,C., Shen,J., Shen,X. and Jiang,H.
    Discovering severe acute respiratory syndrome coronavirus 3CL protease inhibitors: virtual screening, surface plasmon resonance, and fluorescence resonance energy transfer assays
    J Biomol Screen11, 915-921. PubMed  Europe PubMed DOI  A  I
  146. [YEAR:11-10-2006]Chen,L., Li,J., Luo,C., Liu,H., Xu,W., Chen,G., Liew,O.W., Zhu,W., Puah,C.M., Shen,X. and Jiang,H.
    Binding interaction of quercetin-3-beta-galactoside and its synthetic derivatives with SARS-CoV 3CL(pro): structure-activity relationship studies reveal salient pharmacophore features
    Bioorg Med Chem14, 8295-8306. PubMed  Europe PubMed DOI  I
  147. Chu,L.H., Choy,W.Y., Tsai,S.N., Rao,Z. and Ngai,S.M.
    Rapid peptide-based screening on the substrate specificity of severe acute respiratory syndrome (SARS) coronavirus 3C-like protease by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry
    Protein Sci15, 699-709. PubMed  Europe PubMed DOI  P
  148. [YEAR:17-10-2006]Gan,Y.R., Huang,H., Huang,Y.D., Rao,C.M., Zhao,Y., Liu,J.S., Wu,L. and Wei,D.Q.
    Synthesis and activity of an octapeptide inhibitor designed for SARS coronavirus main proteinase
    Peptides27, 622-625. PubMed  Europe PubMed DOI  I
  149. [YEAR:15-5-2006]Graziano,V., McGrath,W.J., DeGruccio,A.M., Dunn,J.J. and Mangel,W.F.
    Enzymatic activity of the SARS coronavirus main proteinase dimer
    FEBS Lett580, 2577-2583. PubMed  Europe PubMed DOI
  150. [YEAR:12-12-2006]Graziano,V., McGrath,W.J., Yang,L. and Mangel,W.F.
    SARS CoV main proteinase: the monomer-dimer equilibrium dissociation constant
    Biochemistry45, 14632-14641. PubMed  Europe PubMed DOI
  151. Hamill,P., Hudson,D., Kao,R.Y., Chow,P., Raj,M., Xu,H., Richer,M.J. and Jean,F.
    Development of a red-shifted fluorescence-based assay for SARS-coronavirus 3CL protease: identification of a novel class of anti-SARS agents from the tropical marine sponge Axinella corrugata
    Biol Chem387, 1063-1074. PubMed  Europe PubMed DOI  A
  152. Hilgenfeld,R., Anand,K., Mesters,J.R., Rao,Z., Shen,X., Jiang,H., Tan,J. and Verschueren,K.H.
    Structure and dynamics of SARS coronavirus main proteinase (Mpro)
    Adv Exp Med Biol581, 585-591. PubMed  Europe PubMed DOI
  153. Lai,L., Han,X., Chen,H., Wei,P., Huang,C., Liu,S., Fan,K., Zhou,L., Liu,Z., Pei,J. and Liu,Y.
    Quaternary structure, substrate selectivity and inhibitor design for SARS 3C-like proteinase
    Curr Pharm Des12, 4555-4564. PubMed  Europe PubMed DOI
  154. Liang,P.H.
    Characterization and inhibition of SARS-coronavirus main protease
    Curr Top Med Chem6, 361-376. PubMed  Europe PubMed DOI  I
  155. Lin,C.W., Lin,K.H., Hsieh,T.H., Shiu,S.Y. and Li,J.Y.
    Severe acute respiratory syndrome coronavirus 3C-like protease-induced apoptosis
    FEMS Immunol Med Microbiol46, 375-380. PubMed  Europe PubMed DOI
  156. [YEAR:24-8-2006]Lu,I.L., Mahindroo,N., Liang,P.H., Peng,Y.H., Kuo,C.J., Tsai,K.C., Hsieh,H.P., Chao,Y.S. and Wu,S.Y.
    Structure-based drug design and structural biology study of novel nonpeptide inhibitors of severe acute respiratory syndrome coronavirus main protease
    J Med Chem49, 5154-5161. PubMed  Europe PubMed DOI  I
  157. Shi,J. and Song,J.
    The catalysis of the SARS 3C-like protease is under extensive regulation by its extra domain
    FEBS J273, 1035-1045. PubMed  Europe PubMed DOI
  158. Sydnes,M.O., Hayashi,Y., Sharma,V.K., Hamada,T., Bacha,U., Barrila,J., Freire,E. and Kiso,Y.
    Synthesis of glutamic acid and glutamine peptides possessing a trifluoromethyl ketone group as SARS-CoV 3CL protease inhibitors
    Tetrahedron62, 8601-8609. DOI  I
  159. [YEAR:15-6-2006]Tsai,K.C., Chen,S.Y., Liang,P.H., Lu,I.L., Mahindroo,N., Hsieh,H.P., Chao,Y.S., Liu,L., Liu,D., Lien,W., Lin,T.H. and Wu,S.Y.
    Discovery of a novel family of SARS-CoV protease inhibitors by virtual screening and 3D-QSAR studies
    J Med Chem49, 3485-3495. PubMed  Europe PubMed DOI  I
  160. [YEAR:20-1-2006]Wei,P., Fan,K., Chen,H., Ma,L., Huang,C., Tan,L., Xi,D., Li,C., Liu,Y., Cao,A. and Lai,L.
    The N-terminal octapeptide acts as a dimerization inhibitor of SARS coronavirus 3C-like proteinase
    Biochem Biophys Res Commun339, 865-872. PubMed  Europe PubMed DOI
  161. Wu,C.Y., King,K.Y., Kuo,C.J., Fang,J.M., Wu,Y.T., Ho,M.Y., Liao,C.L., Shie,J.J., Liang,P.H. and Wong,C.H.
    Stable benzotriazole esters as mechanism-based inactivators of the severe acute respiratory syndrome 3CL protease
    Chem Biol13, 261-268. PubMed  Europe PubMed DOI  I
  162. Yang,H., Bartlam,M. and Rao,Z.
    Drug design targeting the main protease, the Achilles' heel of coronaviruses
    Curr Pharm Des12, 4573-4590. PubMed  Europe PubMed DOI  V
  163. [YEAR:10-8-2006]Yang,S., Chen,S.J., Hsu,M.F., Wu,J.D., Tseng,C.T., Liu,Y.F., Chen,H.C., Kuo,C.W., Wu,C.S., Chang,L.W., Chen,W.C., Liao,S.Y., Chang,T.Y., Hung,H.H., Shr,H.L., Liu,C.Y., Huang,Y.A., Chang,L.Y., Hsu,J.C., Peters,C.J., Wang,A.H. and Hsu,M.C.
    Synthesis, crystal structure, structure-activity relationships, and antiviral activity of a potent SARS coronavirus 3CL protease inhibitor
    J Med Chem49, 4971-4980. PubMed  Europe PubMed DOI  S  I
  164. [YEAR:15-6-2006]Zhou,L., Liu,Y., Zhang,W., Wei,P., Huang,C., Pei,J., Yuan,Y. and Lai,L.
    Isatin compounds as noncovalent SARS coronavirus 3C-like protease inhibitors
    J Med Chem49, 3440-3443. PubMed  Europe PubMed DOI  I
  165. 2005
  166. Chen,S., Chen,L.L., Luo,H.B., Sun,T., Chen,J., Ye,F., Cai,J.H., Shen,J.K., Shen,X. and Jiang,H.L.
    Enzymatic activity characterization of SARS coronavirus 3C-like protease by fluorescence resonance energy transfer technique
    Acta Pharmacol Sin26, 99-106. PubMed  Europe PubMed DOI  A
  167. [YEAR:26-10-2005]Chen,S., Chen,L., Tan,J., Chen,J., Du,L., Sun,T., Shen,J., Chen,K., Jiang,H. and Shen,X.
    Severe acute respiratory syndrome coronavirus 3C-like proteinase N terminus is indispensable for proteolytic activity but not for enzyme dimerization. Biochemical and thermodynamic investigation in conjunction with molecular dynamics simulations
    J Biol Chem280, 164-173. PubMed  Europe PubMed DOI
  168. [YEAR:31-5-2005]Ding,L., Zhang,X.X., Wei,P., Fan,K. and Lai,L.
    The interaction between severe acute respiratory syndrome coronavirus 3C-like proteinase and a dimeric inhibitor by capillary electrophoresis
    Anal Biochem343, 159-165. PubMed  Europe PubMed DOI
  169. [YEAR:15-2-2005]Du,Q., Wang,S., Wei,D., Sirois,S. and Chou,K.C.
    Molecular modeling and chemical modification for finding peptide inhibitor against severe acute respiratory syndrome coronavirus main proteinase
    Anal Biochem337, 262-270. PubMed  Europe PubMed DOI
  170. [YEAR:15-4-2005]Fan,K., Ma,L., Han,X., Liang,H., Wei,P., Liu,Y. and Lai,L.
    The substrate specificity of SARS coronavirus 3C-like proteinase
    Biochem Biophys Res Commun329, 934-940. PubMed  Europe PubMed DOI  P
  171. [YEAR:3-11-2005]Ghosh,A.K., Xi,K., Ratia,K., Santarsiero,B.D., Fu,W., Harcourt,B.H., Rota,P.A., Baker,S.C., Johnson,M.E. and Mesecar,A.D.
    Design and synthesis of peptidomimetic Severe Acute Respiratory Syndrome chymotrypsin-like protease inhibitors
    J Med Chem48, 6767-6771. PubMed  Europe PubMed DOI  I
  172. [YEAR:23-3-2005]Hsu,M.F., Kuo,C.J., Chang,K.T., Chang,H.C., Chou,C.C., Ko,T.P., Shr,H.L., Chang,G.G., Wang,A.H. and Liang,P.H.
    Mechanism of the maturation process of SARS-CoV 3CL protease
    J Biol Chem280, 31257-31266. PubMed  Europe PubMed DOI  S
  173. [YEAR:14-4-2005]Hsu,W.C., Chang,H.C., Chou,C.Y., Tsai,P.J., Lin,P.I. and Chang,G.G.
    Critical assessment of important regions in the subunit association and catalytic action of the severe acute respiratory syndrome coronavirus main protease
    J Biol Chem280, 22741-22748. PubMed  Europe PubMed DOI
  174. [YEAR:3-11-2005]Kaeppler,U., Stiefl,N., Schiller,M., Vicik,R., Breuning,A., Schmitz,W., Rupprecht,D., Schmuck,C., Baumann,K., Ziebuhr,J. and Schirmeister,T.
    A new lead for nonpeptidic active-site-directed inhibitors of the severe acute respiratory syndrome coronavirus main protease discovered by a combination of screening and docking methods
    J Med Chem48, 6832-6842. PubMed  Europe PubMed DOI  I
  175. [YEAR:17-6-2005]Kuang,W.F., Chow,L.P., Wu,M.H. and Hwang,L.H.
    Mutational and inhibitive analysis of SARS coronavirus 3C-like protease by fluorescence resonance energy transfer-based assays
    Biochem Biophys Res Commun331, 1554-1559. PubMed  Europe PubMed DOI  A
  176. [YEAR:27-9-2005]Lee,T.W., Cherney,M.M., Huitema,C., Liu,J., James,K.E., Powers,J.C., Eltis,L.D. and James,M.N.
    Crystal structures of the main peptidase from the SARS coronavirus inhibited by a substrate-like aza-peptide epoxide
    J Mol Biol353, 1137-1151. PubMed  Europe PubMed DOI  S
  177. [YEAR:6-10-2005]Lin,C.W., Tsai,F.J., Wan,L., Lai,C.C., Lin,K.H., Hsieh,T.H., Shiu,S.Y. and Li,J.Y.
    Binding interaction of SARS coronavirus 3CL(pro) protease with vacuolar-H+ ATPase G1 subunit
    FEBS Lett579, 6089-6094. PubMed  Europe PubMed DOI
  178. [YEAR:15-4-2005]Liu,B. and Zhou,J.
    SARS-CoV protease inhibitors design using virtual screening method from natural products libraries
    J Comput Chem26, 484-490. PubMed  Europe PubMed DOI  I
  179. [YEAR:8-6-2005]Liu,Y.C., Huang,V., Chao,T.C., Hsiao,C.D., Lin,A., Chang,M.F. and Chow,L.P.
    Screening of drugs by FRET analysis identifies inhibitors of SARS-CoV 3CL protease
    Biochem Biophys Res Commun333, 194-199. PubMed  Europe PubMed DOI
  180. [YEAR:7-10-2005]Martina,E., Stiefl,N., Degel,B., Schulz,F., Breuning,A., Schiller,M., Vicik,R., Baumann,K., Ziebuhr,J. and Schirmeister,T.
    Screening of electrophilic compounds yields an aziridinyl peptide as new active-site directed SARS-CoV main protease inhibitor
    Bioorg Med Chem Lett15, 5365-5369. PubMed  Europe PubMed DOI  I
  181. Shan,Y.F. and Xu,G.J.
    Study on substrate specificity at subsites for severe acute respiratory syndrome coronavirus 3CL protease
    Acta Biochim Biophys Sin (Shanghai)37, 807-813. PubMed  Europe PubMed DOI  P
  182. [YEAR:30-6-2005]Shie,J.J., Fang,J.M., Kuo,C.J., Kuo,T.H., Liang,P.H., Huang,H.J., Yang,W.B., Lin,C.H., Chen,J.L., Wu,Y.T. and Wong,C.H.
    Discovery of potent anilide inhibitors against the severe acute respiratory syndrome 3CL protease
    J Med Chem48, 4469-4473. PubMed  Europe PubMed DOI  I
  183. [YEAR:30-6-2005]Shie,J.J., Fang,J.M., Kuo,T.H., Kuo,C.J., Liang,P.H., Huang,H.J., Wu,Y.T., Jan,J.T., Cheng,Y.S. and Wong,C.H.
    Inhibition of the severe acute respiratory syndrome 3CL protease by peptidomimetic alpha,beta-unsaturated esters
    Bioorg Med Chem13, 5240-5252. PubMed  Europe PubMed DOI  I
  184. [YEAR:18-11-2005]Tan,J., Verschueren,K.H., Anand,K., Shen,J., Yang,M., Xu,Y., Rao,Z., Bigalke,J., Heisen,B., Mesters,J.R., Chen,K., Shen,X., Jiang,H. and Hilgenfeld,R.
    pH-Dependent conformational flexibility of the SARS-CoV main proteinase (M(pro)) dimer: molecular dynamics simulations and multiple X-ray structure analyses
    J Mol Biol354, 25-40. PubMed  Europe PubMed DOI  S
  185. [YEAR:1-11-2005]Xu,T., Ooi,A., Lee,H.C., Wilmouth,R., Liu,D.X. and Lescar,J.
    Structure of the SARS coronavirus main proteinase as an active C2 crystallographic dimer
    Acta Crystallograph Sect F Struct Biol Cryst Commun61, 964-966. PubMed  Europe PubMed DOI  S
  186. Yang,H., Xie,W., Xue,X., Yang,K., Ma,J., Liang,W., Zhao,Q., Zhou,Z., Pei,D., Ziebuhr,J., Hilgenfeld,R., Yuen,K.Y., Wong,L., Gao,G., Chen,S., Chen,Z., Ma,D., Bartlam,M. and Rao,Z.
    Design of wide-spectrum inhibitors targeting coronavirus main proteases
    PLoS Biol3, e324-e324. PubMed  Europe PubMed DOI  S  I
  187. [YEAR:29-3-2005]Yang,Z.R.
    Mining SARS-CoV protease cleavage data using non-orthogonal decision trees: a novel method for decisive template selection
    Bioinformatics21, 2644-2650. PubMed  Europe PubMed DOI  P
  188. Zhang,X.W., Yap,Y.L. and Altmeyer,R.M.
    Generation of predictive pharmacophore model for SARS-coronavirus main proteinase
    Eur J Med Chem40, 57-62. PubMed  Europe PubMed DOI
  189. 2004
  190. [YEAR:4-5-2004]Bacha,U., Barrila,J., Velazquez-Campoy,A., Leavitt,S.A. and Freire,E.
    Identification of novel inhibitors of the SARS coronavirus main protease 3CLpro
    Biochemistry43, 4906-4912. PubMed  Europe PubMed DOI  S  I
  191. Blanchard,J.E., Elowe,N.H., Huitema,C., Fortin,P.D., Cechetto,J.D., Eltis,L.D. and Brown,E.D.
    High-throughput screening identifies inhibitors of the SARS coronavirus main proteinase
    Chem Biol11, 1445-1453. PubMed  Europe PubMed DOI  I
  192. [YEAR:30-11-2004]Chou,C.Y., Chang,H.C., Hsu,W.C., Lin,T.Z., Lin,C.H. and Chang,G.G.
    Quaternary structure of the severe acute respiratory syndrome (SARS) coronavirus main protease
    Biochemistry43, 14958-14970. PubMed  Europe PubMed DOI
  193. Denison,M.R.
    Coronavirus picornain-like cysteine proteinase
    [ISSN:0-12-079610-4]2, 1382-1385.  V
  194. Du,Q.S., Wang,S.Q., Zhu,Y., Wei,D.Q., Guo,H., Sirois,S. and Chou,K.C.
    Polyprotein cleavage mechanism of SARS CoV Mpro and chemical modification of the octapeptide
    Peptides25, 1857-1864. PubMed  Europe PubMed DOI  I
  195. Fan,K., Wei,P., Feng,Q., Chen,S., Huang,C., Ma,L., Lai,B., Pei,J., Liu,Y., Chen,J. and Lai,L.
    Biosynthesis, purification, and substrate specificity of severe acute respiratory syndrome coronavirus 3C-like proteinase
    J Biol Chem279 , 1637-1642. PubMed  Europe PubMed DOI  P
  196. [YEAR:10-9-2004]Hsu,J.T., Kuo,C.J., Hsieh,H.P., Wang,Y.C., Huang,K.K., Lin,C.P., Huang,P.F., Chen,X. and Liang,P.H.
    Evaluation of metal-conjugated compounds as inhibitors of 3CL protease of SARS-CoV
    FEBS Lett574, 116-120. PubMed  Europe PubMed DOI  I
  197. [YEAR:20-4-2004]Huang,C., Wei,P., Fan,K., Liu,Y. and Lai,L.
    3C-like proteinase from SARS coronavirus catalyzes substrate hydrolysis by a general base mechanism
    Biochemistry43, 4568-4574. PubMed  Europe PubMed DOI
  198. [YEAR:2-12-2004]Jain,R.P., Pettersson,H.I., Zhang,J., Aull,K.D., Fortin,P.D., Huitema,C., Eltis,L.D., Parrish,J.C., James,M.N., Wishart,D.S. and Vederas,J.C.
    Synthesis and evaluation of keto-glutamine analogues as potent inhibitors of severe acute respiratory syndrome 3CLpro
    J Med Chem47, 6113-6116. PubMed  Europe PubMed DOI  I
  199. [YEAR:22-11-2004]Kao,R.Y., To,A.P., Ng,L.W., Tsui,W.H., Lee,T.S., Tsoi,H.W. and Yuen,K.Y.
    Characterization of SARS-CoV main protease and identification of biologically active small molecule inhibitors using a continuous fluorescence-based assay
    FEBS Lett576, 325-330. PubMed  Europe PubMed DOI  A  I
  200. [YEAR:6-6-2004]Kiemer,L., Lund,O., Brunak,S. and Blom,N.
    Coronavirus 3CLpro proteinase cleavage sites: possible relevance to SARS virus pathology
    BMC Bioinformatics5, 72-72. PubMed  Europe PubMed DOI  P
  201. [YEAR:11-6-2004]Kuo,C.J., Chi,Y.H., Hsu,J.T. and Liang,P.H.
    Characterization of SARS main protease and inhibitor assay using a fluorogenic substrate
    Biochem Biophys Res Commun318, 862-867. PubMed  Europe PubMed DOI  A  I
  202. [YEAR:10-9-2004]Lin,C.W., Tsai,C.H., Tsai,F.J., Chen,P.J., Lai,C.C., Wan,L., Chiu,H.H. and Lin,K.H.
    Characterization of trans- and cis-cleavage activity of the SARS coronavirus 3CLpro protease: basis for the in vitro screening of anti-SARS drugs
    FEBS Lett574, 131-137. PubMed  Europe PubMed DOI
  203. Liu,H.L., Lin,J.C., Ho,Y., Hsieh,W.C., Chen,C.W. and Su,Y.C.
    Molecular dynamics simulations of various coronavirus main proteinases
    J Biomol Struct Dyn22, 65-77. PubMed  Europe PubMed DOI
  204. Liu,H.L., Lin,J.C., Ho,Y., Hsieh,W.C., Chen,C.W. and Su,Y.C.
    Homology models and molecular dynamics simulations of main proteinase from coronavirus associated with Severe Acute Respiratory Syndrome (SARS)
    J Chin Chem Soc51, 889-900.
  205. [YEAR:1-12-2004]Pang,Y.P.
    Three-dimensional model of a substrate-bound SARS chymotrypsin-like cysteine proteinase predicted by multiple molecular dynamics simulations: catalytic efficiency regulated by substrate binding
    Proteins57, 747-757. PubMed  Europe PubMed DOI
  206. Parera,M., Clotet,B. and Martinez,M.A.
    Genetic screen for monitoring severe acute respiratory syndrome coronavirus 3C-like protease
    J Virol78, 14057-14061. PubMed  Europe PubMed DOI
  207. Prentice,E., McAuliffe,J., Lu,X., Subbarao,K. and Denison,M.R.
    Identification and characterization of severe acute respiratory syndrome coronavirus replicase proteins
    J Virol78, 9977-9986. PubMed  Europe PubMed DOI
  208. [YEAR:20-8-2004]Rajnarayanan,R.V., Dakshanamurthy,S. and Pattabiraman,N.
    "Teaching old drugs to kill new bugs": structure-based discovery of anti-SARS drugs
    Biochem Biophys Res Commun321, 370-378. PubMed  Europe PubMed DOI
  209. [YEAR:12-11-2004]Shan,Y.F., Li,S.F. and Xu,G.J.
    A novel auto-cleavage assay for studying mutational effects on the active site of severe acute respiratory syndrome coronavirus 3C-like protease
    Biochem Biophys Res Commun324, 579-583. PubMed  Europe PubMed DOI
  210. [YEAR:22-3-2004]Shi,J., Wei,Z. and Song,J.
    Dissection study on the severe acute respiratory syndrome 3C-like protease reveals the critical role of the extra domain in dimerization of the enzyme: defining the extra domain as a new target for design of highly specific protease inhibitors
    J Biol Chem279, 24765-24773. PubMed  Europe PubMed DOI
  211. [YEAR:1-5-2004]Zhang,X.W. and Yap,Y.L.
    Exploring the binding mechanism of the main proteinase in SARS-associated coronavirus and its implication to anti-SARS drug design
    Bioorg Med Chem12, 2219-2223. PubMed  Europe PubMed DOI
  212. Zheng,K.W., Yu,Q.S., Wang,Y.H., Zhang,B. and Hu,G.X.
    Electrostatic and hydrophobic interactions in SARS coronavirus main proteinase dimer
    Acta Chimica Sinica62, 542-549.
  213. 2003
  214. [YEAR:13-6-2003]Anand,K., Ziebuhr,J., Wadhwani,P., Mesters,J.R. and Hilgenfeld,R.
    Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs
    Science300, 1763-1767. PubMed  Europe PubMed DOI  S
  215. [YEAR:15-8-2003]Chou,K.C., Wei,D.Q. and Zhong,W.Z.
    Binding mechanism of coronavirus main proteinase with ligands and its implication to drug design against SARS
    Biochem Biophys Res Commun308, 148-151. PubMed  Europe PubMed DOI  S  I
  216. [YEAR:23-10-2003]Gao,F., Ou,H.Y., Chen,L.L., Zheng,W.X. and Zhang,C.T.
    Prediction of proteinase cleavage sites in polyproteins of coronaviruses and its applications in analyzing SARS-CoV genomes
    FEBS Lett553, 451-456. PubMed  Europe PubMed DOI
  217. Sun,H., Luo,H., Yu,C., Sun,T., Chen,J., Peng,S., Qin,J., Shen,J., Yang,Y., Xie,Y., Chen,K., Wang,Y., Shen,X. and Jiang,H.
    Molecular cloning, expression, purification, and mass spectrometric characterization of 3C-like protease of SARS coronavirus
    Protein Expr Purif32, 302-308. PubMed  Europe PubMed DOI
  218. Thiel,V., Ivanov,K.A., Putics,A., Hertzig,T., Schelle,B., Bayer,S., Weissbrich,B., Snijder,E.J., Rabenau,H., Doerr,H.W., Gorbalenya,A.E. and Ziebuhr,J.
    Mechanisms and enzymes involved in SARS coronavirus genome expression
    J Gen Virol84, 2305-2315. PubMed  Europe PubMed DOI
  219. [YEAR:11-11-2003]Yang,H., Yang,M., Ding,Y., Liu,Y., Lou,Z., Zhou,Z., Sun,L., Mo,L., Ye,S., Pang,H., Gao,G.F., Anand,K., Bartlam,M., Hilgenfeld,R. and Rao,Z.
    The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor
    Proc Natl Acad Sci U S A100, 13190-13195. PubMed  Europe PubMed DOI  S  I