Literature for peptidase C01.001: papain

Summary Alignment Sequences Sequence features Distribution Structure Literature Substrates Pharma

(Topics flags: A Assay, S Structure, P Specificity, I Inhibitor, E Expression, U Therapeutic, V Review. To select only the references relevant to a single topic, click the link above. See explanation.)

    2025
  1. Ansari,M., Prajapati,K.P., Mittal,S., Mishra,S., Gupta,V., Anand,B.G. and Kar,K.
    High-low temperature switch induces formation of catalytic and cytotoxic amyloid aggregates of papain
    Food Chem479, 143657-143657. PubMed  Europe PubMed DOI
  2. Choudhary,R., Kaushik,R., Chawla,P. and Manna,S.
    Exploring the extraction, functional properties, and industrial applications of papain from Carica papaya
    J Sci Food Agric105, 1533-1545. PubMed  Europe PubMed DOI  V
  3. 2024
  4. Glahn,J.Z., Wang-Evers,M., Carlson,A.R., Marks,H., Karasik,D., Hilge,F., Goverman,J. and Manstein,D.
    Evaluation of Papain-Urea for Enzymatic Debridement of Coagulation Zones Following Ablative Fractional Laser Treatment
    Lasers Surg Med PubMed  Europe PubMed DOI
  5. 2023
  6. Liu,X., Huang,Q., Pan,P., Fang,M., Zhang,Y., Yang,S., Li,M. and Liu,Y.
    Comparative Study of the Preparation of High-Molecular-Weight Fibroin by Degumming Silk with Several Neutral Proteases
    Polymers (Basel)15, PubMed  Europe PubMed DOI
  7. 2022
  8. Bruce,B.
    Enzyme treatment of red blood cells: use of ficin and papain
    Immunohematology38, 90-95. PubMed  Europe PubMed DOI  V
  9. 2021
  10. Annahazi,A., Schroder,A. and Schemann,M.
    Region-specific effects of the cysteine protease papain on gastric motility
    Neurogastroenterol Motile14105-e14105. PubMed  Europe PubMed DOI
  11. Baidamshina,D.R., Koroleva,V.A., Olshannikova,S.S., Trizna,E.Y., Bogachev,M.I., Artyukhov,V.G., Holyavka,M.G. and Kayumov,A.R.
    Biochemical Properties and Anti-Biofilm Activity of Chitosan-Immobilized Papain
    Mar Drugs19, PubMed  Europe PubMed DOI
  12. Kunimine,S., Takai,T., Kamijo,S., Maruyama,N., Kimitsu,T., Masutani,Y., Yoshimura,T., Suchiva,P., Shimizu,S., Ogawa,H., Okumura,K. and Ikeda,S.
    Epicutaneous vaccination with protease inhibitor-treated papain prevents papain-induced Th2-mediated airway inflammation without inducing Th17 in mice
    Biochem Biophys Res Commun546, 192-199. PubMed  Europe PubMed DOI
  13. 2020
  14. Azarkan,M., Maquoi,E., Delbrassine,F., Herman,R., M'rabet,N., Calvo Esposito,R., Charlier,P. and Kerff,F.
    Structures of the free and inhibitors-bound forms of bromelain and ananain from Ananas comosus stem and in vitro study of their cytotoxicity
    Sci Rep10, 19570-19570. PubMed  Europe PubMed DOI  I
  15. Feng,N., Zhang,H., Li,Y., Liu,Y., Xu,L., Wang,Y., Fei,X. and Tian,J.
    A novel catalytic material for hydrolyzing cow's milk allergenic proteins: papain-Cu3(PO4)2.3H2O-magnetic nanoflowers
    Food Chem311, 125911-125911. PubMed  Europe PubMed DOI
  16. Filippova,I.Y., Dvoryakova,E.A., Sokolenko,N.I., Simonyan,T.R., Tereshchenkova,V.F., Zhiganov,N.I., Dunaevsky,Y.E., Belozersky,M.A., Oppert,B. and Elpidina,E.N.
    New Glutamine-Containing Substrates for the Assay of Cysteine Peptidases From the C1 Papain Family
    Front Mol Biosci7, 578758-578758. PubMed  Europe PubMed DOI
  17. Fukuda,K., Matsuzaki,H., Mikami,Y., Makita,K., Miyakawa,K., Miyashita,N., Hosoki,K., Ishii,T., Noguchi,S., Urushiyama,H., Horie,M., Mitani,A., Yamauchi,Y., Shimura,E., Nakae,S., Saito,A., Nagase,T. and Hiraishi,Y.
    A mouse model of asthma-chronic obstructive pulmonary disease overlap induced by intratracheal papain
    Allergy PubMed  Europe PubMed DOI
  18. Hafid,K., John,J., Sayah,T.M., Dominguez,R., Becila,S., Lamri,M., Dib,A.L., Lorenzo,J.M. and Gagaoua,M.
    One-step recovery of latex papain from Carica papaya using Three Phase Partitioning and its use as milk-clotting and meat-tenderizing agent
    Int J Biol Macromol146, 798-810. PubMed  Europe PubMed DOI
  19. Jastaniah,A., Gaisina,I.N., Knopp,R.C. and Thatcher,G.R.J.
    Synthesis of alpha-Ketoamide-Based Stereoselective Calpain-1 Inhibitors as Neuroprotective Agents
    ChemMedChem PubMed  Europe PubMed DOI  I
  20. Lima,A.M., Barros,N.L.F., Freitas,A.C.O., Tavares,L.S.C., Pirovani,C.P., Siqueira,A.S., Goncalves,E.C. and de Souza,C.R.B.
    A new Piper nigrum cysteine proteinase inhibitor, PnCPI, with antifungal activity: molecular cloning, recombinant expression, functional analyses and molecular modeling
    Planta252, 16-16. PubMed  Europe PubMed DOI
  21. Lin,K.P., Feng,G.J., Pu,F.L., Hou,X.D. and Cao,S.L.
    Enhancing the Thermostability of Papain by Immobilizing on Deep Eutectic Solvents-Treated Chitosan With Optimal Microporous Structure and Catalytic Microenvironment
    Front Bioeng Biotechnol8, 576266-576266. PubMed  Europe PubMed DOI
  22. Meenu,S., Pradeep,B., Ramalingam,S., Sairam,T., Rai,R. and Sankaran,R.
    Papillon-Lefevre syndrome (PLS) with novel compound heterozygous mutation in the exclusion and Peptidase C1A domains of Cathepsin C gene
    Mol Biol Rep PubMed  Europe PubMed DOI
  23. Mishra,M., Singh,V., Tellis,M.B., Joshi,R.S. and Singh,S.
    Repurposing the McoTI-II Rigid Molecular Scaffold in to Inhibitor of 'Papain Superfamily' Cysteine Proteases
    Pharmaceuticals (Basel)14, PubMed  Europe PubMed DOI
  24. Moreira Filho,R.N.F., Vasconcelos,N.F., Andrade,F.K., Rosa,M.F. and Vieira,R.S.
    Papain immobilized on alginate membrane for wound dressing application
    Colloids Surf B Biointerfaces194, 111222-111222. PubMed  Europe PubMed DOI
  25. Shinu,P., Singh,V.A., Nair,A., Venugopala,K.N. and Akrawi,S.H.
    Papain-cetylpyridinium chloride and pepsin-cetylpyridinium chloride; two novel, highly sensitive, concentration, digestion and decontamination techniques for culturing mycobacteria from clinically suspected pulmonary tuberculosis cases
    PLoS ONE15, e0236700-e0236700. PubMed  Europe PubMed DOI
  26. Soares,A.M.B.F., Goncalves,L.M.O., Ferreira,R.D.S., de Souza,J.M., Fangueiro,R., Alves,M.M.M., Carvalho,F.A.A., Mendes,A.N. and Cantanhede,W.
    Immobilization of papain enzyme on a hybrid support containing zinc oxide nanoparticles and chitosan for clinical applications
    Carbohydr Polym243, 116498-116498. PubMed  Europe PubMed DOI
  27. Wang,X., Gao,Y., Guan,Z., Xie,Z., Zhang,D., Yin,P., Yang,G., Hong,D. and Xin,Q.
    Structural analysis of the meiosis-related protein MS5 reveals non-canonical papain enhancement by cystatin-like folds
    FEBS Lett594, 2462-2471. PubMed  Europe PubMed DOI  S
  28. 2019
  29. Gimenez-Dejoz,J., Tsuchiya,K. and Numata,K.
    Insights into the stereospecificity in papain-mediated chemoenzymatic polymerization from quantum mechanics/molecular mechanics simulations
    ACS Chem Biol14, 1280-1292. PubMed  Europe PubMed DOI
  30. Liu,C., Barrett,T.M., Chen,X., Ferrie,J.J. and Petersson,E.J.
    Fluorescent probes for studying thioamide positional effects on proteolysis reveal insight into resistance to cysteine proteases
    Chembiochem20, 2059-2062. PubMed  Europe PubMed DOI  I
  31. Milosevic,J., Jankovic,B., Prodanovic,R. and Polovic,N.
    Comparative stability of ficin and papain in acidic conditions and the presence of ethanol
    Amino Acids51, 829-838. PubMed  Europe PubMed DOI
  32. Mohan,V., Das,N., Das,A., Mishra,V. and Sen,P.
    Spectroscopic insight on ethanol-induced aggregation of papain
    J Phys Chem B123, 2280-2290. PubMed  Europe PubMed DOI
  33. Sang,M., Xu,C., Wei,Z., Wu,X., Guo,Y., Li,J., Wang,Z. and Zhang,J.
    Cloning and high-level SUMO-mediated fusion expression of a serine protease inhibitor from Hyphantria cunea Drury that exhibits activity against papain
    Protein Expr Purif158, 36-43. PubMed  Europe PubMed DOI
  34. Santis,L.P., Garcia,P.C., Secco,V.N.D.P., Ferreira,R.R. and Deffune,E.
    Applicability of papain solutions in immunohematology
    Einstein (Sao Paulo)17, eAO4328-eAO4328. PubMed  Europe PubMed DOI
  35. Yu,L., Zhang,H., Yang,L. and Tian,K.
    Optimization of purification conditions for papain in a polyethylene glycol-phosphate aqueous two-phase system using quaternary ammonium ionic liquids as adjuvants by BBD-RSM
    Protein Expr Purif156, 8-16. PubMed  Europe PubMed DOI
  36. 2018
  37. Gu,X., Gao,J., Li,X. and Wang,Y.
    Immobilization of papain onto graphene oxide nanosheets
    J Nanosci Nanotechnol18, 3543-3547. PubMed  Europe PubMed DOI
  38. Gu,Y.J., Zhu,M.L., Li,Y.L. and Xiong,C.H.
    Research of a new metal chelating carrier preparation and papain immobilization
    Int J Biol Macromol112, 1175-1182. PubMed  Europe PubMed DOI
  39. 2017
  40. Lin,M., Yu,T., Wan,J. and Cao,X.
    Prediction of the reverse micellar extraction of papain using dissipative particle dynamics simulation
    Appl Biochem Biotechnol181, 1338-1346. PubMed  Europe PubMed DOI
  41. Moraes,D., Levenhagen,M.A., Costa-Cruz,J.M., daCosta-Netto,A.P. and Rodrigues,R.M.
    In vitro efficacy of latex and purified papain from Carica papaya against Strongyloides venezuelensis eggs and larvae
    Rev Inst Med Trop Sao Paulo59DOI
  42. Moraes,D., Levenhagen,M.A., Costa-Cruz,J.M., Costa AP Netto and Rodrigues,R.M.
    In vitro efficacy of latex and purified papain from Carica papaya against Strongyloides venezuelensis eggs and larvae
    Rev Inst Med Trop Sao Paulo59, e7-e7. PubMed  Europe PubMed DOI
  43. Mugita,N., Nambu,T., Takahashi,K., Wang,P.L. and Komasa,Y.
    Proteases, actinidin, papain and trypsin reduce oral biofilm on the tongue in elderly subjects and in vitro
    Arch Oral Biol82, 233-240. PubMed  Europe PubMed DOI  U
  44. Prabhu A,A., Chityala,S., Garg,Y. and Venkata Dasu,V.
    Reverse micellar extraction of papain with cationic detergent based system: an optimization approach
    Prep Biochem Biotechnol47, 236-244. PubMed  Europe PubMed DOI
  45. 2016
  46. Dutta,S., Choudhury,D., Roy,S., Dattagupta,J.K. and Biswas,S.
    Mutation in the pro-peptide region of a cysteine protease leads to altered activity and specificity - a structural and biochemical approach
    PLoS ONE11, e0158024-e0158024. PubMed  Europe PubMed DOI
  47. Fekete,A. and Komaromi,I.
    Modeling the archetype cysteine protease reaction using dispersion corrected density functional methods in ONIOM-type hybrid QM/MM calculations; the proteolytic reaction of papain
    Phys Chem Chem Phys18, 32847-32861. PubMed  Europe PubMed DOI
  48. Li,Q., Zhou,Y., Ma,K., Wei,Q. and Nie,Z.
    A mesoporous SiO2/dense SiO2/Fe3O4 multiply coated hollow microsphere: synthesis and application on papain immobilization
    Colloids Surf A Physicochem Eng Asp511, 239-246. DOI
  49. Maria Manohar,C. and Doble,M.
    Papain immobilized polyurethane as an ureteral stent material
    J Biomed Mater Res B Appl Biomater104, 723-731. PubMed  Europe PubMed DOI
  50. Muller,A., Barat,S., Chen,X., Bui,K.C., Bozko,P., Malek,N.P. and Plentz,R.R.
    Comparative study of antitumor effects of bromelain and papain in human cholangiocarcinoma cell lines
    Int J Oncol48, 2025-2034. PubMed  Europe PubMed DOI  U
  51. Rocha,M.V., DiGiacomo,M., Beltramino,S., Loh,W., Romanini,D. and Nerli,B.B.
    A sustainable affinity partitioning process to recover papain from Carica papaya latex using alginate as macro-ligand
    Sep Purif Technol168, 168-176. DOI
  52. Tsuchiya,K. and Numata,K.
    Papain-catalyzed chemoenzymatic synthesis of telechelic polypeptides using bis(leucine ethyl ester) initiator
    Macromol Biosci16, 1001-1008. PubMed  Europe PubMed DOI
  53. Yu,J., Lin,F., Lin,S., Pei,X., Miao,J., Chen,X., Wu,S.G. and Wang,A.
    A comparative study of papain and bromelain in enzymatic oligomerization of l-Phe methyl ester in aqueous environment
    J Mol Catal B Enzym133, S95-S99. DOI
  54. 2015
  55. Benucci,I., Esti,M. and Liburdi,K.
    Effect of wine inhibitors on the proteolytic activity of papain from Carica papaya L. latex
    Biotechnol Prog31, 48-54. PubMed  Europe PubMed DOI  I
  56. Homaei,A.
    Enhanced activity and stability of papain immobilized on CNBr-activated sepharose
    Int J Biol Macromol75, 373-377. PubMed  Europe PubMed DOI
  57. Jiang,Z.G., Zhang,H.D. and Wang,W.T.
    Purification of papain by metal affinity partitioning in aqueous two-phase polyethylene glycol/sodium sulfate systems
    J Sep Sci38, 1426-1432. PubMed  Europe PubMed DOI
  58. Junior,Z.S., Botta,S.B., Ana,P.A., Franca,C.M., Fernandes,K.P., Mesquita-Ferrari,R.A., Deana,A. and Bussadori,S.K.
    Effect of papain-based gel on type I collagen - spectroscopy applied for microstructural analysis
    Sci Rep5, 11448-11448. PubMed  Europe PubMed DOI  U
  59. Mera,T. and Faustman,D.L.
    Removal of donor human leukocyte antigen class I proteins with papain: translation for possible whole organ practices
    Transplantation99, 724-730. PubMed  Europe PubMed DOI
  60. Mitsuhashi,J., Nakayama,T. and Narai-Kanayama,A.
    Mechanism of papain-catalyzed synthesis of oligo-tyrosine peptides
    Enzyme Microb Technol75-76, 10-17. PubMed  Europe PubMed DOI
  61. Nishikado,H., Fujimura,T., Taka,H., Mineki,R., Ogawa,H., Okumura,K. and Takai,T.
    Cysteine protease antigens cleave CD123, the alpha subunit of murine IL-3 receptor, on basophils and suppress IL-3-mediated basophil expansion
    Biochem Biophys Res Commun460, 261-266. PubMed  Europe PubMed DOI
  62. Raskovic,B., Popovic,M., Ostojic,S., Andelkovic,B., Tesevic,V. and Polovic,N.
    Fourier transform infrared spectroscopy provides an evidence of papain denaturation and aggregation during cold storage
    Spectrochim Acta A Mol Biomol Spectrosc150, 238-246. PubMed  Europe PubMed DOI
  63. Ribeiro,A.P., Oliveira,B.G., Soares,M.F., Barreto,B.M., Futuro,D.O. and Castilho,S.R.
    [Effectiveness of 2% and 4% papain gels in the healing of venous ulcers]
    Rev Esc Enferm USP49, 394-402. PubMed  Europe PubMed DOI  U
  64. Rodrigues,A.L., Oliveira,B.G., Futuro,D.O. and Secoli,S.R.
    Effectiveness of papain gel in venous ulcer treatment: randomized clinical trial
    Rev Lat Am Enfermagem23, 458-465. PubMed  Europe PubMed DOI  U
  65. Wang,W., Jiang,Z., Zhang,H., Peng,J., Xu,Y., Dong,A., Yang,X. and Jiang,X.
    Partitioning behavior and structural characterization of papain in ionic liquid aqueous two-phase system
    Huagong Xuebao66, 179-185. DOI
  66. 2014
  67. Dong,A.-H., Peng,J., Xu,Y.-H., Wang,W.-T., Jiang,X.-X. and Zhang,H.-D.
    Correlation of PEG/(NH4)2SO4 aqueous two-phase equilibrium data and modeling of partition of papain
    Mod Food Sci Technol30, 194-199. DOI
  68. Doolittle,R.F.
    Clotting of mammalian fibrinogens by papain: a re-examination
    Biochemistry53, 6687-6694. PubMed  Europe PubMed DOI
  69. Kathman,S.G., Xu,Z. and Statsyuk,A.V.
    A fragment-based method to discover irreversible covalent inhibitors of cysteine proteases
    J Med Chem57, 4969-4974. PubMed  Europe PubMed DOI  I
  70. Le,Z.G., Ni,K., Guo,L.T. and Xie,Z.B.
    The condensation reaction of 4-nitrobenzaldehyde and rhodanine catalyzed by papain
    Adv Mater Res830, 111-114. DOI
  71. Miyazawa,T., Horimoto,T. and Tanaka,K.
    Kinetically controlled peptide synthesis mediated by papain using the carbamoylmethyl ester as an acyl donor
    Int J Pept Res Ther20, 371-376. DOI
  72. Muller,C., Perera,G., Konig,V. and Bernkop-Schnurch,A.
    Development and in vivo evaluation of papain-functionalized nanoparticles
    Eur J Pharm Biopharm87, 125-131. PubMed  Europe PubMed DOI  U
  73. Rosenstein,R.K., Bezbradica,J.S., Yu,S. and Medzhitov,R.
    Signaling pathways activated by a protease allergen in basophils
    Proc Natl Acad Sci U S A111, E4963-E4971. PubMed  Europe PubMed DOI
  74. Wammes,A.E., Hendriks,T.G., Amatdjais-Groenen,H.I., Wijdeven,M.A., van Hest,J.C., van Delft,F.L., Ritschel,T. and Rutjes,F.P.
    Influence of azide incorporation on binding affinity by small papain inhibitors
    Bioorg Med Chem22, 5593-5603. PubMed  Europe PubMed DOI  I
  75. Wang,W.-T., Zhang,H.-D., Jiang,Z.-G., Xu,Y.-H., Dong,A.-H., Peng,J. and Yang,X.-F.
    Extraction of papain by ionic liquid/aqueous two-phase system and optimization of process conditions
    Mod Food Sci Technol30, 210-216. DOI
  76. 2013
  77. Braia,M., Ferrero,M., Rocha,M.V., Loureiro,D., Tubio,G. and Romanini,D.
    Bioseparation of papain from Carica papaya latex by precipitation of papain-poly (vinyl sulfonate) complexes
    Protein Expr Purif91, 91-95. PubMed  Europe PubMed DOI
  78. Esti,M., Benucci,I., Lombardelli,C., Liburdi,K. and Garzillo,A.M.V.
    Papain from papaya (Carica papaya L.) fruit and latex: preliminary characterization in alcoholic-acidic buffer for wine application
    Food Bioprod Process91, 595-598. DOI
  79. Kamijo,S., Takeda,H., Tokura,T., Suzuki,M., Inui,K., Hara,M., Matsuda,H., Matsuda,A., Oboki,K., Ohno,T., Saito,H., Nakae,S., Sudo,K., Suto,H., Ichikawa,S., Ogawa,H., Okumura,K. and Takai,T.
    IL-33-Mediated innate response and adaptive immune cells contribute to maximum responses of protease allergen-induced allergic airway inflammation
    J Immunol190, 4489-4499. PubMed  Europe PubMed DOI
  80. Rathnasamy,S. and Kumaresan,R.
    Design and development of single stage purification of papain using ionic liquid based aqueous two phase extraction system and its partition coefficient studies
    Intern J Eng Technol5, 1934-1941.
  81. Rocha,M.V. and Nerli,B.B.
    Molecular features determining different partitioning patterns of papain and bromelain in aqueous two-phase systems
    Int J Biol Macromol61, 204-211. PubMed  Europe PubMed DOI
  82. Wei,D., Huang,X., Liu,J., Tang,M. and Zhan,C.G.
    Reaction pathway and free energy profile for papain-catalyzed hydrolysis of N-acetyl-Phe-Gly 4-nitroanilide
    Biochemistry52, 5145-5154. PubMed  Europe PubMed DOI
  83. 2012
  84. Bhardwaj,A. and Bhardwaj,S.V.
    Papacarie(R) containing papain: a natural chemomechanical caries removal agent
    Res J Pharm Biol Chem Sci3, 660-666.  U
  85. Campbell,R.L. and Davies,P.L.
    Structure-function relationships in calpains
    Biochem J447, 335-351. PubMed  Europe PubMed DOI  V
  86. Chen,J.S., Tian,J.C., Deng,Z.Y., Zhang,Y.X., Feng,S.L., Yan,Z.C., Zhang,X.Y. and Yuan,H.Q.
    Effects of papain hydrolysis on the pasting properties of wheat flour
    J Integr Agric11, 1948-1957. DOI
  87. Hu,W., Guan,Z., Deng,X. and He,Y.H.
    Enzyme catalytic promiscuity: the papain-catalyzed Knoevenagel reaction
    Biochimie94, 656-661. PubMed  Europe PubMed DOI
  88. Kim,C.J., Lee,D.I., Lee,C.H. and Ahn,I.S.
    A dityrosine-based substrate for a protease assay: application for the selective assessment of papain and chymopapain activity
    Anal Chim Acta723, 101-107. PubMed  Europe PubMed DOI  A
  89. Leite,A.P., de Oliveira,B.G., Soares,M.F. and Barrocas,D.L.
    [Use and effectiveness of papain in the wound healing process: a systematic review]
    Rev Gaucha Enferm33, 198-207. PubMed  Europe PubMed  U
  90. Llerena-Suster,C.R., Jose,C., Collins,S.E., Briand,L.E. and Morcelle,S.R.
    Investigation of the structure and proteolytic activity of papain in aqueous miscible organic media
    Process Biochem47, 47-56. DOI
  91. Nishiyama,K.
    Local fluctuation control of papain by changing a highly fluctuating residue
    Chem Phys Lett555, 226-229. DOI
  92. Pithon,M.M., de Souza Ferraz,C., do Couto de Oliveira,G., Pereira,T.B., Oliveira,D.D., de Souza,R.A., de Freitas,L.M. and Dos Santos,R.L.
    Effect of 10% papain gel on enamel deproteinization before bonding procedure
    Angle Orthod82, 541-545. PubMed  Europe PubMed DOI  U
  93. Roy,S., Choudhury,D., Aich,P., Dattagupta,J.K. and Biswas,S.
    The structure of a thermostable mutant of pro-papain reveals its activation mechanism
    Acta Crystallogr D Biol Crystallogr68, 1591-1603. PubMed  Europe PubMed DOI
  94. Storer,A.C. and Menard,R.
    Papain
    [ISSN:978-0-12-407743-0]3, 1858-1861. DOI
  95. 2011
  96. de Beer,R.J., Zarzycka,B., Amatdjais-Groenen,H.I., Jans,S.C., Nuijens,T., Quaedflieg,P.J., van Delft,F.L., Nabuurs,S.B. and Rutjes,F.P.
    Papain-catalyzed peptide bond formation: enzyme-specific activation with guanidinophenyl esters
    Chembiochem12, 2201-2207. PubMed  Europe PubMed DOI
  97. Fosado-Quiroz,R.E. and Rojo-Dominguez,A.
    Metastability of papain and the molecular mechanism for its sequential acid-denaturation
    Protein J30, 184-193. PubMed  Europe PubMed DOI
  98. Hussain,S., Khan,A., Gul,S., Resmini,M., Verma,C.S., Thomas,E.W. and Brocklehurst,K.
    Identification of interactions involved in the generation of nucleophilic reactivity and of catalytic competence in the catalytic site Cys/His ion pair of papain
    Biochemistry50, 10732-10742. PubMed  Europe PubMed DOI
  99. Llerena-Suster,C.R., Priolo,N.S. and Morcelle,S.R.
    Sodium tetrathionate effect on papain purification from different Carica papaya latex crude extracts
    Prep Biochem Biotechnol41, 107-121. PubMed  Europe PubMed DOI
  100. Nishiyama,K.
    Substrate specificity of papain dynamic structures for peptides consisting of 8-10 Gly residues
    Chem Phys Lett501, 513-516. DOI  I
  101. Shokhen,M., Khazanov,N. and Albeck,A.
    The mechanism of papain inhibition by peptidyl aldehydes
    Proteins79, 975-985. PubMed  Europe PubMed DOI  I
  102. Wang,G., Xi,H., Tian,F., Han,M. and Lu,Y.
    Mechanism of molecular interaction between ethionamide and papain: spectroscopic and molecular simulation investigations
    Acta Chim Sin69, 95-100.
  103. Wang,M., Qi,W., Yu,Q., Su,R. and He,Z.
    Kinetically controlled enzymatic synthesis of dipeptide precursor of l-alanyl-l-glutamine
    Biotechnol Appl Biochem58, 449-455. PubMed  Europe PubMed DOI
  104. 2010
  105. Ajlia,S.A.S.H., Majid,F.A.A., Suvik,A., Effendy,M.A.W. and Serati Nouri,H.
    Efficacy of papain-based wound cleanser in promoting wound regeneration
    Pak J Biol Sci13, 596-603. PubMed  Europe PubMed  U
  106. Choudhury,D., Biswas,S., Roy,S. and Dattagupta,J.K.
    Improving thermostability of papain through structure-based protein engineering
    Protein Eng Des Sel23, 457-467. PubMed  Europe PubMed DOI  E
  107. da Silva,C.R., Oliveira,M.B., Motta,E.S., de Almeida,G.S., Varanda,L.L., de Padula,M., Leitao,A.C. and Caldeira-de-Araujo,A.
    Genotoxic and cytotoxic safety evaluation of papain (Carica papaya L.) using in vitro assays
    J Biomed Biotechnol2010, 197898-197898. PubMed  Europe PubMed DOI  U
  108. Jeong,J. and Hur,W.
    Even-numbered peptides from a papain hydrolysate of silk fibroin
    J Chromatogr B Analyt Technol Biomed Life Sci878, 836-840. PubMed  Europe PubMed DOI  P
  109. Li,M., Su,E., You,P., Gong,X., Sun,M., Xu,D. and Wei,D.
    Purification and in situ immobilization of papain with aqueous two-phase system
    PLoS ONE5, e15168-e15168. PubMed  Europe PubMed DOI
  110. Narai-Kanayama,A., Shikata,Y., Hosono,M. and Aso,K.
    High level production of bioactive di- and tri-tyrosine peptides by protease-catalyzed reactions
    J Biotechnol150, 343-347. PubMed  Europe PubMed DOI
  111. Reddy,V.B. and Lerner,E.A.
    Plant cysteine proteases that evoke itch activate protease-activated receptors
    Br J Dermatol163, 532-535. PubMed  Europe PubMed DOI
  112. Singh,J.P., Tamang,S., Rajamohanan,P.R., Jima,N.C., Chakraborty,G., Kundu,G.C., Gaikwad,S.M. and Khan,M.I.
    Isolation, structure, and functional elucidation of a modified pentapeptide, cysteine protease inhibitor (CPI-2081) from Streptomyces species 2081 that exhibit inhibitory effect on cancer cell migration
    J Med Chem53, 5121-5128. PubMed  Europe PubMed DOI  I
  113. 2009
  114. Bertassoni,L.E. and Marshall,G.W.
    Papain-gel degrades intact nonmineralized type I collagen fibrils
    Scanning31, 253-258. PubMed  Europe PubMed DOI  U
  115. Chen,T.X., Nie,H.L., Li,S.B., Branford-White,C., Su,S.N. and Zhu,L.M.
    Comparison: adsorption of papain using immobilized dye ligands on affinity membranes
    Colloids Surf B Biointerfaces72, 25-31. PubMed  Europe PubMed DOI
  116. Choudhury,D., Roy,S., Chakrabarti,C., Biswas,S. and Dattagupta,J.K.
    Production and recovery of recombinant propapain with high yield
    Phytochemistry70, 465-472. PubMed  Europe PubMed DOI  E
  117. Sathish,H.A., Kumar,P.R. and Prakash,V.
    The differential stability of the left and right domains of papain
    Process Biochem44, 710-716. DOI
  118. Shokhen,M., Khazanov,N. and Albeck,A.
    Challenging a paradigm: theoretical calculations of the protonation state of the Cys25-His159 catalytic diad in free papain
    Proteins77, 916-926. PubMed  Europe PubMed DOI
  119. 2008
  120. Beavers,M.P., Myers,M.C., Shah,P.P., Purvis,J.E., Diamond,S.L., Cooperman,B.S., Huryn,D.M. and Smith,A.B., III
    Molecular docking of cathepsin L inhibitors in the binding site of papain
    J Chem Inf Model48, 1464-1472. PubMed  Europe PubMed DOI  S  I
  121. Gul,S., Hussain,S., Thomas,M.P., Resmini,M., Verma,C.S., Thomas,E.W. and Brocklehurst,K.
    Generation of nucleophilic character in the Cys25/His159 ion pair of papain involves Trp177 but not Asp158
    Biochemistry47, 2025-2035. PubMed  Europe PubMed DOI
  122. Narai-Kanayama,A., Koshino,H. and Aso,K.
    Mass spectrometric and kinetic studies on slow progression of papain-catalyzed polymerization of l-glutamic acid diethyl ester
    Biochim Biophys Acta1780, 881-891. PubMed  Europe PubMed DOI
  123. 2007
  124. Brouwer,A.J., Bunschoten,A. and Liskamp,R.M.
    Synthesis and evaluation of chloromethyl sulfoxides as a new class of selective irreversible cysteine protease inhibitors
    Bioorg Med Chem15, 6985-6993. PubMed  Europe PubMed DOI  I
  125. Fatima,S. and Khan,R.H.
    Effect of polyethylene glycols on the function and structure of thiol proteases
    J Biochem142, 65-72. PubMed  Europe PubMed DOI
  126. Sathish,H.A., Kumar,P.R. and Prakash,V.
    Mechanism of solvent induced thermal stabilization of papain
    Int J Biol Macromol41, 383-390. PubMed  Europe PubMed DOI
  127. Theodorou,L.G., Bieth,J.G. and Papamichael,E.M.
    The catalytic mode of cysteine proteinases of papain (C1) family
    Bioresour Technol98, 1931-1939. PubMed  Europe PubMed DOI
  128. Yamamoto,N., Nakayama,A., Oshima,M., Kawasaki,N. and Aiba,S.
    Enzymatic hydrolysis of lysine diisocyanate based polyurethanes and segmented polyurethane ureas by various proteases
    React Funct Polym67, 1338-1345. DOI
  129. 2006
  130. [YEAR:1-6-2006]Alphey,M.S. and Hunter,W.N.
    High-resolution complex of papain with remnants of a cysteine protease inhibitor derived from Trypanosoma brucei
    Acta Crystallograph Sect F Struct Biol Cryst Commun62, 504-508. PubMed  Europe PubMed DOI  S
  131. [YEAR:6-3-2006]Choe,Y., Leonetti,F., Greenbaum,D.C., Lecaille,F., Bogyo,M., Bromme,D., Ellman,J.A. and Craik,C.S.
    Substrate profiling of cysteine proteases using a combinatorial peptide library identifies functionally unique specificities
    J Biol Chem281, 12824-12832. PubMed  Europe PubMed DOI  P
  132. Geng,L., Vaidya,A., Viswanathan,K., Junru,C., Wenchun,X., Wei,G. and Gross,R.A.
    Rapid regioselective oligomerization of L-glutamic acid diethyl ester catalyzed by papain
    Macromolecules39, 7915-7921. DOI
  133. Lou,W.Y., Zong,M.H., Smith,T.J., Wu,H. and Wang,J.F.
    Impact of ionic liquids on papain: an investigation of structure-function relationships
    Green Chem8, 509-512. DOI
  134. Naeem,A., Fatima,S. and Khan,R.H.
    Characterization of partially folded intermediates of papain in presence of cationic, anionic, and nonionic detergents at low pH
    Biopolymers83, 1-10. PubMed  Europe PubMed DOI
  135. Nitsawang,S., Hatti-Kaul,R. and Kanasawud,P.
    Purification of papain from Carica papaya latex: aqueous two-phase extraction versus two-step salt precipitation
    Enzyme Microb Technol39, 1103-1107. DOI
  136. 2005
  137. Afshar,R.K., Patra,A.K. and Mascharak,P.K.
    Light-induced inhibition of papain by a {Mn-NO}6 nitrosyl: identification of papain-SNO adduct by mass spectrometry
    J Inorg Biochem99, 1458-1464. PubMed  Europe PubMed DOI
  138. [YEAR:2-5-2005]Lepp,Z. and Chuman,H.
    Connecting traditional QSAR and molecular simulations of papain hydrolysis - importance of charge transfer
    Bioorg Med Chem13, 3093-3105. PubMed  Europe PubMed DOI
  139. Roy,J.J., Sumi,S., Sangeetha,K. and Abraham,T.E.
    Chemical modification and immobilization of papain
    J Chem Technol Biotechnol80, 184-188.
  140. 2004
  141. Janowski,R., Kozak,M., Jankowska,E., Grzonka,Z. and Jaskolski,M.
    Two polymorphs of a covalent complex between papain and a diazomethylketone inhibitor
    J Pept Res64, 141-150. PubMed  Europe PubMed DOI  S  I
  142. Konno,K., Hirayama,C., Nakamura,M., Tateishi,K., Tamura,Y., Hattori,M. and Kohno,K.
    Papain protects papaya trees from herbivorous insects: role of cysteine proteases in latex
    Plant J37, 370-378. PubMed  Europe PubMed DOI
  143. Menard,R. and Storer,A.C.
    Papain
    [ISSN:0-12-079610-4]2, 1125-1128.  V
  144. 2003
  145. [YEAR:25-6-2003]Azarkan,M., El Moussaoui,A., van Wuytswinkel,D., Dehon,G. and Looze,Y.
    Fractionation and purification of the enzymes stored in the latex of Carica papaya
    J Chromatogr B Analyt Technol Biomed Life Sci790, 229-238. PubMed  Europe PubMed DOI
  146. [YEAR:1-8-2003]Dardenne,L.E., Werneck,A.S., de Oliveira Neto,M. and Bisch,P.M.
    Electrostatic properties in the catalytic site of papain: a possible regulatory mechanism for the reactivity of the ion pair
    Proteins52, 236-253. PubMed  Europe PubMed DOI
  147. 2002
  148. [YEAR:6-11-2002]Reddy,S.Y., Kahn,K., Zheng,Y.J. and Bruice,T.C.
    Protein engineering of nitrile hydratase activity of papain: molecular dynamics study of a mutant and wild-type enzyme
    J Am Chem Soc124, 12979-12990. PubMed  Europe PubMed DOI
  149. Versari,A., Menard,R. and Lortie,R.
    Enzymatic hydrolysis of nitriles by an engineered nitrile hydratase (papain Gln19Glu) in aqueous-organic media
    Biotechnol Bioeng79, 9-14. PubMed  Europe PubMed DOI
  150. 2001
  151. [YEAR:1-6-2001]Melo,R.L., Alves,L.C., Del Nery,E., Juliano,L. and Juliano,M.A.
    Synthesis and hydrolysis by cysteine and serine proteases of short internally quenched fluorogenic peptides
    Anal Biochem293, 71-77. PubMed  Europe PubMed DOI
  152. [YEAR:3-4-2001]Theodorou,L.G., Lymperopoulos,K., Bieth,J.G. and Papamichael,E.M.
    Insight into the catalysis of hydrolysis of four newly synthesized substrates by papain: A proton inventory study
    Biochemistry40, 3996-4004. PubMed  Europe PubMed DOI
  153. 2000
  154. Achilles,K., Schneider,M., Schirmeister,T. and Otto,H.H.
    beta-Lactam derivatives as enzyme inhibitors: N-substituted derivatives of (S)-4-oxoazetidine-2-carboxylate as inhibitors of elastase and papain
    Pharmazie55, 798-802. PubMed  Europe PubMed  I
  155. [YEAR:1-4-2000]Portaro,F.C., Santos,A.B., Cezari,M.H., Juliano,M.A., Juliano,L. and Carmona,E.
    Probing the specificity of cysteine proteinases at subsites remote from the active site: analysis of P4, P3, P2' and P3' variations in extended substrates
    Biochem J347, 123-129. PubMed  Europe PubMed DOI
  156. Schirmeister,T. and Peric,M.
    Aziridinyl peptides as inhibitors of cysteine proteases: effect of a free carboxylic acid function on inhibition
    Bioorg Med Chem8, 1281-1291. PubMed  Europe PubMed DOI  I
  157. [YEAR:1-8-2000]Tseng,C.C., Tseng,C.P., Levine,M.J. and Bobek,L.A.
    Differential effect toward inhibition of papain and cathepsin C by recombinant human salivary cystatin SN and its variants produced by a baculovirus system
    Arch Biochem Biophys380, 133-140. PubMed  Europe PubMed DOI
  158. [YEAR:7-7-2000]Xian,M., Chen,X., Liu,Z., Wang,K. and Wang,P.G.
    Inhibition of papain by S-nitrosothiols. Formation of mixed disulfides
    J Biol Chem275, 20467-20473. PubMed  Europe PubMed DOI  I
  159. 1999
  160. Ando,R., Sakaki,T., Morinaka,Y., Takahashi,C., Tamao,Y., Yoshii,N., Katayama,S., Saito,K.I., Tokuyama,H., Isaka,M. and Nakamura,E.
    Cyclopropenone-containing cysteine proteinase inhibitors. Synthesis and enzyme inhibitory activities
    Bioorg Med Chem7, 571-579. PubMed  Europe PubMed  I
  161. [YEAR:18-5-1999]Czaplewski,C., Grzonka,Z., Jaskolski,M., Kasprzykowski,F., Kozak,M., Politowska,E. and Ciarkowski,J.
    Binding modes of a new epoxysuccinyl-peptide inhibitor of cysteine proteases. Where and how do cysteine proteases express their selectivity?
    Biochim Biophys Acta1431, 290-305. PubMed  Europe PubMed DOI  I
  162. Han,W.G., Tajkhorshid,E. and Suhai,S.
    QM/MM study of the active site of free papain and of the NMA-papain complex
    J Biomol Struct Dyn16, 1019-1032. PubMed  Europe PubMed DOI
  163. [YEAR:26-2-1999]Lecaille,F., Serveau,C., Gauthier,F. and Lalmanach,G.
    Revisiting the S2 specificity of papain by structural analogs of Phe
    FEBS Lett445, 311-314. PubMed  Europe PubMed DOI  P
  164. Matsumoto,K., Mizoue,K., Kitamura,K., Tse,W.C., Huber,C.P. and Ishida,T.
    Structural basis of inhibition of cysteine proteases by E-64 and its derivatives
    Biopolymers51, 99-107. PubMed  Europe PubMed DOI  I
  165. [YEAR:13-4-1999]Nagler,D.K., Tam,W., Storer,A.C., Krupa,J.C., Mort,J.S. and Menard,R.
    Interdependency of sequence and positional specificities for cysteine proteases of the papain family
    Biochemistry38, 4868-4874. PubMed  Europe PubMed DOI
  166. St Hilaire,P.M., Willert,M., Juliano,M.A., Juliano,L. and Meldal,M.
    Fluorescence-quenched solid phase combinatorial libraries in the characterization of cysteine protease substrate specificity
    J Comb Chem1, 509-523. PubMed  Europe PubMed
  167. [YEAR:20-12-1999]Tsuge,H., Nishimura,T., Tada,Y., Asao,T., Turk,D., Turk,V. and Katunuma,N.
    Inhibition mechanism of cathepsin L-specific inhibitors based on the crystal structure of papain-CLIK148 complex
    Biochem Biophys Res Commun266, 411-416. PubMed  Europe PubMed DOI  S  I
  168. 1998
  169. [YEAR:1-11-1998]Bjork,I., Nordling,K., Raub-Segall,E., Hellman,U. and Olson,S.T.
    Inactivation of papain by antithrombin due to autolytic digestion: a model of serpin inactivation of cysteine proteinases
    Biochem J335, 701-709. PubMed  Europe PubMed
  170. [YEAR:5-11-1998]LaLonde,J.M., Zhao,B., Smith,W.W., Janson,C.A., DesJarlais,R.L., Tomaszek,T.A., Carr,T.J., Thompson,S.K., Oh,H.J., Yamashita,D.S., Veber,D.F. and Abdel-Meguid,S.S.
    Use of papain as a model for the structure-based design of cathepsin K inhibitors: crystal structures of two papain-inhibitor complexes demonstrate binding to S'-subsites
    J Med Chem41, 4567-4576. PubMed  Europe PubMed DOI  S  I
  171. [YEAR:3-3-1998]Matsumoto,K., Murata,M., Sumiya,S., Mizoue,K., Kitamura,K. and Ishida,T.
    X-ray crystal structure of papain complexed with cathepsin B-specific covalent-type inhibitor: substrate specificity and inhibitory activity
    Biochim Biophys Acta1383, 93-100. PubMed  Europe PubMed DOI  S  I
  172. 1997
  173. Watts,A., Hafeez,A., Gul,S., Verma,C., Thomas,E.W. and Brocklehurst,K.
    Effects of site-specific mutations on the kinetically influential ionizations of papain
    Biochem Soc Trans25, 84S-84S. PubMed  Europe PubMed
  174. Zheng,Y.J. and Bruice,T.C.
    Is strong hydrogen bonding in the transition state enough to account for the observed rate acceleration in a mutant of papain?
    Proc Natl Acad Sci U S A94, 4285-4288. PubMed  Europe PubMed DOI  I
  175. 1996
  176. Kandadai,N.S. and Reddy,M.R.
    Solution structure of papain as studied by molecular mechanics and molecular dynamics techniques
    J Comput Chem17, 1328-1338. PubMed  Europe PubMed DOI  S
  177. [YEAR:16-8-1996]Meara,J.P. and Rich,D.H.
    Mechanistic studies on the inactivation of papain by epoxysuccinyl inhibitors
    J Med Chem39, 3357-3366. PubMed  Europe PubMed DOI  I
  178. Ramjee,M.K., Petithory,J.R., McElver,J., Weber,S.C. and Kirsch,J.F.
    A novel yeast expression/secretion system for the recombinant plant thiol endoprotease propapain
    Protein Eng9, 1055-1061. PubMed  Europe PubMed  E
  179. 1995
  180. Dufour,E., Storer,A.C. and Menard,R.
    Peptide aldehydes and nitriles as transition state analog inhibitors of cysteine proteases
    Biochemistry34, 9136-9143. PubMed  Europe PubMed DOI  I
  181. Garcia-Echeverria,C. and Rich,D.H.
    Kinetic studies of papain: effect of P3' substituents and donor/acceptor pairs of intramolecularly quenched fluorogenic substrates
    Lett Pept Sci2, 77-82. DOI
  182. Hansler,M., Ullmann,G. and Jakubke,H.D.
    The application of papain, ficin and clostripain in kinetically controlled peptide synthesis in frozen aqueous solutions
    J Pept Sci1, 283-287. PubMed  Europe PubMed DOI
  183. [YEAR:4-8-1995]Martichonok,V., Plouffe,C., Storer,A.C., Menard,R. and Jones,J.B.
    Aziridine analogs of [[trans-(epoxysuccinyl)-L-leucyl]amino]-4-guanidinobutane (E-64) as inhibitors of cysteine proteases
    J Med Chem38, 3078-3085. PubMed  Europe PubMed  I
  184. Menard,R., Plouffe,C., Laflamme,P., Vernet,T., Tessier,D.C., Thomas,D.Y. and Storer,A.C.
    Modification of the electrostatic environment is tolerated in the oxyanion hole of the cysteine protease papain
    Biochemistry34, 464-471. PubMed  Europe PubMed
  185. Taylor,M.A., Baker,K.C., Briggs,G.S., Connerton,I.F., Cummings,N.J., Pratt,K.A., Revell,D.F., Freedman,R.B. and Goodenough,P.W.
    Recombinant pro-regions from papain and papaya proteinase IV are selective high affinity inhibitors of the mature papaya enzymes
    Protein Eng8, 59-62. PubMed  Europe PubMed
  186. Vernet,T., Tessier,D.C., Chatellier,J., Plouffe,C., Lee,T.S., Thomas,D.Y., Storer,A.C. and Menard,R.
    Structural and functional roles of asparagine 175 in the cysteine protease papain
    J Biol Chem270, 16645-16652. PubMed  Europe PubMed DOI
  187. Vernet,T., Berti,P.J., de Montigny,C., Musil,R., Tessier,D.C., Menard,R., Magny,M.C., Storer,A.C. and Thomas,D.Y.
    Processing of the papain precursor. The ionization state of a conserved amino acid motif within the pro region participates in the regulation of intramolecular processing
    J Biol Chem270, 10838-10846. PubMed  Europe PubMed DOI  E
  188. 1994
  189. Matsumoto,K., Murata,M., Sumiya,S., Kitamura,K. and Ishida,T.
    Clarification of substrate specificity of papain by crystal analyses of complexes with covalent-type inhibitors
    Biochim Biophys Acta1208, 268-276. PubMed  Europe PubMed DOI  I
  190. Storer,A.C. and Menard,R.
    Catalytic mechanism in papain family of cysteine peptidases
    Methods Enzymol244, 486-500. PubMed  Europe PubMed DOI  V
  191. 1993
  192. Ando,R., Morinaka,Y., Tokuyama,H., Isaka,M. and Nakamura,E.
    A new class of proteinase inhibitor. Cyclopropenone-containing inhibitor of papain
    J Am Chem Soc115, 1174-1175.  I
  193. Bihovsky,R., Powers,J.C., Kam,C.M., Walton,R. and Loewi,R.C.
    Further evidence for the importance of free carboxylate in epoxysuccinate inhibitors of thiol proteases
    J Enzyme Inhib7, 15-25. PubMed  Europe PubMed  I
  194. Menard,R., Carmona,E., Plouffe,C., Bromme,D., Konishi,Y., Lefebvre,J. and Storer,A.C.
    The specificity of the S1' subsite of cysteine proteases
    FEBS Lett328, 107-110. PubMed  Europe PubMed DOI
  195. Schroder,E., Phillips,C., Garman,E., Harlos,K. and Crawford,C.
    X-ray crystallographic structure of a papain-leupeptin complex
    FEBS Lett315, 38-42. PubMed  Europe PubMed DOI  S  I
  196. Vernet,T., Tessier,D.C., Thomas,D.Y., Chatelier,J., Plouffe,C., Storer,A.C. and Menard,R.
    Dual role of Asn175 in the catalytic activity and the stability of the cysteine protease papain
    Protein Eng Des Sel6, 52- DOI
  197. 1992
  198. Kim,M.J., Yamamoto,D., Matsumoto,K., Inoue,M., Ishida,T., Mizuno,H., Sumiya,S. and Kitamura,K.
    Crystal structure of papain-E64-c complex. Binding diversity of E64-c to papain S2 and S3 subsites
    Biochem J287, 797-803. PubMed  Europe PubMed  S  I
  199. [YEAR:20-3-1992]Liu,S. and Hanzlik,R.P.
    Structure-activity relationships for inhibition of papain by peptide Michael acceptors
    J Med Chem35, 1067-1075. PubMed  Europe PubMed  I
  200. Patel,M., Kayani,I.S., Mellor,G.W., Sreedharan,S., Templeton,W., Thomas,E.W., Thomas,M. and Brocklehurst,K.
    Variation in the P2-S2 stereochemical selectivity towards the enantiomeric N-acetylphenylalanylglycine 4-nitroanilides among the cysteine proteinases papain, ficin and actinidin
    Biochem J281, 553-559. PubMed  Europe PubMed
  201. Pickersgill,R.W., Harris,G.W. and Garman,E.
    Structure of monoclinic papain at 1.60-A resolution
    Acta Crystallogr B48, 59-67. DOI  S
  202. Yamamoto,A., Tomoo,K., Doi,M., Ohishi,H., Inoue,M., Ishida,T., Yamamoto,D., Tsuboi,S., Okamoto,H. and Okada,Y.
    Crystal structure of papain-succinyl-Gln-Val-Val-Ala-Ala-p-nitroanilide complex at 1.7-A resolution: noncovalent binding mode of a common sequence of endogenous thiol protease inhibitors
    Biochemistry31, 11305-11309. PubMed  Europe PubMed DOI  S
  203. 1991
  204. Gour-Salin,B.J., Storer,A.C., Castelhano,A., Krantz,A. and Robinson,V.
    Inhibition of papain by peptide nitriles: reactions of external nucleophiles with the thioimidate ester adduct
    Enzyme Microb Technol13, 408-411.  I
  205. [YEAR:17-9-1991]Menard,R., Carriere,J., Laflamme,P., Plouffe,C., Khouri,H.E., Vernet,T., Tessier,D.C., Thomas,D.Y. and Storer,A.C.
    Contribution of the glutamine 19 side chain to transition-state stabilization in the oxyanion hole of papain
    Biochemistry30, 8924-8928. PubMed  Europe PubMed
  206. [YEAR:4-6-1991]Menard,R., Khouri,H.E., Plouffe,C., Laflamme,P., Dupras,R., Vernet,T., Tessier,D.C., Thomas,D.Y. and Storer,A.C.
    Importance of hydrogen-bonding interactions involving the side chain of Asp158 in the catalytic mechanism of papain
    Biochemistry30, 5531-5538. PubMed  Europe PubMed
  207. Yamamoto,D., Matsumoto,K., Ohishi,H., Ishida,T., Inoue,M., Kitamura,K. and Mizuno,H.
    Refined X-ray structure of papain.E-64-c complex at 2.1-A resolution
    J Biol Chem266, 14771-14777. PubMed  Europe PubMed  S  I
  208. 1990
  209. Hanzlik,R.P., Zygmunt,J. and Moon,J.B.
    Reversible covalent binding of peptide nitriles to papain
    Biochim Biophys Acta1035, 62-70. PubMed  Europe PubMed DOI  I
  210. Hu,L.Y. and Abeles,R.H.
    Inhibition of cathepsin B and papain by peptidyl alpha-keto esters, alpha-keto amides, alpha-diketones, and alpha-keto acids
    Arch Biochem Biophys281, 271-274. PubMed  Europe PubMed DOI  I
  211. Menard,R., Khouri,H.E., Plouffe,C., Dupras,R., Ripoll,D., Vernet,T., Tessier,D.C., Lalberte,F., Thomas,D.Y. and Storer,A.C.
    A protein engineering study of the role of aspartate 158 in the catalytic mechanism of papain
    Biochemistry29, 6706-6713. PubMed  Europe PubMed DOI
  212. Thiele,U., Assfalg-Machleidt,I., Machleidt,W. and Auerswald,E.A.
    N-Terminal variants of recombinant stefin B: effect on affinity for papain and cathepsin B
    Biol Chem Hoppe Seyler371 Suppl, 125-136. PubMed  Europe PubMed
  213. Yamamoto,D., Matsumoto,K., Ohishi,H., Ishida,T., Inoue,M., Kitamura,K. and Hanada,K.
    The importance of Val-157 hydrophobic interaction for papain inhibitory activity of an epoxysuccinyl amino acid derivative. A structure-activity relationship based on the crystal structure of the papain-E-64-c complex
    FEBS Lett263, 134-136. PubMed  Europe PubMed DOI  S  I
  214. Yamamoto,D., Ishida,T. and Inoue,M.
    A comparison between the binding modes of a substrate and inhibitor to papain as observed in complex crystal structures
    Biochem Biophys Res Commun171, 711-716. PubMed  Europe PubMed DOI  S  I
  215. 1989
  216. [YEAR:1-1-1989]Brocklehurst,K., O'Driscoll,M., Kowlessur,D., Phillips,I.R., Templeton,W., Thomas,E.W., Topham,C.M. and Wharton,C.W.
    The interplay of electrostatic and binding interactions determining active centre chemistry and catalytic activity in actinidin and papain
    Biochem J257, 309-310. PubMed  Europe PubMed
  217. Buttle,D.J., Kembhavi,A.A., Sharp,S.L., Shute,R.E., Rich,D.H. and Barrett,A.J.
    Affinity purification of the novel cysteine proteinase papaya proteinase IV, and papain from papaya latex
    Biochem J261, 469-476. PubMed  Europe PubMed  I
  218. Machleidt,W., Thiele,U., Laber,B., Assfalg-Machleidt,I., Esterl,A., Wiegand,G., Kos,J., Turk,V. and Bode,W.
    Mechanism of inhibition of papain by chicken egg white cystatin. Inhibition constants of N-terminally truncated forms and cyanogen bromide fragments of the inhibitor
    FEBS Lett243, 234-238. PubMed  Europe PubMed DOI
  219. [YEAR:13-3-1989]Matsumoto,K., Yamamoto,D., Ohishi,H., Tomoo,K., Ishida,T., Inoue,M., Sadatome,T., Kitamura,K. and Mizuno,H.
    Mode of binding of E-64-c, a potent thiol protease inhibitor, to papain as determined by X-ray crystal analysis of the complex
    FEBS Lett245, 177-180. PubMed  Europe PubMed DOI  S  I
  220. [YEAR:25-1-1989]Schultz,R.M., Varma-Nelson,P., Ortiz,R., Kozlowski,K.A., Orawski,A.T., Pagast,P. and Frankfater,A.
    Active and inactive forms of the transition-state analog protease inhibitor leupeptin: explanation of the observed slow binding of leupeptin to cathepsin B and papain
    J Biol Chem264, 1497-1507. PubMed  Europe PubMed  I
  221. Varughese,K.I., Ahmed,F.R., Carey,P.R., Hasnain,S., Huber,C.P. and Storer,A.C.
    Crystal structure of a papain-E-64 complex
    Biochemistry28, 1330-1332. PubMed  Europe PubMed  S  I
  222. 1988
  223. [YEAR:1-12-1988]Brocklehurst,K., Brocklehurst,S.M., Kowlessur,D., O'Driscoll,M., Patel,G., Salih,E., Templeton,W., Thomas,E., Topham,C.M. and Willenbrock,F.
    Supracrystallographic resolution of interactions contributing to enzyme catalysis by use of natural structural variants and reactivity-probe kinetics
    Biochem J256, 543-558. PubMed  Europe PubMed
  224. Chen,S.-T., Li,K.-F. and Wang,K.-T.
    Papain catalyzed synthesis of aspartyl dipeptides
    J Chin Chem Soc35, 207-211. DOI
  225. Lindahl,P., Alriksson,E., Jornvall,H. and Bjork,I.
    Interaction of the cysteine proteinase inhibitor chicken cystatin with papain
    Biochemistry27, 5074-5082. PubMed  Europe PubMed
  226. [YEAR:15-8-1988]Pickersgill,R.W., Goodenough,P.W., Sumner,I.G. and Collins,M.E.
    The electrostatic fields in the active-site clefts of actinidin and papain
    Biochem J254, 235-238. PubMed  Europe PubMed
  227. 1987
  228. Brocklehurst,K., Willenbrock,F. and Salih,E.
    Cysteine proteinases
    39-158.
  229. [YEAR:1-10-1987]Salih,E., Malthouse,J.P., Kowlessur,D., Jarvis,M., O'Driscoll,M. and Brocklehurst,K.
    Differences in the chemical and catalytic characteristics of two crystallographically 'identical' enzyme catalytic sites. Characterization of actinidin and papain by a combination of pH-dependent substrate catalysis kinetics and reactivity probe studies targeted on the catalytic-site thiol group and its immediate microenvironment
    Biochem J247, 181-193. PubMed  Europe PubMed
  230. 1986
  231. Cohen,L.W., Coghlan,V.M. and Dihel,L.C.
    Cloning and sequencing of papain-encoding cDNA
    Gene48, 219-227. PubMed  Europe PubMed
  232. Goodenough,P.W. and Owen,J.
    Chromatographic and electrophoretic analyses of papaya proteinases
    Phytochemistry26, 75-79.
  233. McKee,R.A., Adams,S., Matthews,J.A., Smith,C.J. and Smith,H.
    Molecular cloning of two cysteine proteinases from paw-paw (Carica papaya)
    Biochem J237, 105-110. PubMed  Europe PubMed
  234. [YEAR:1-4-1986]Migliorini,M. and Creighton,D.J.
    Active-site ionizations of papain. An evaluation of the potentiometric difference titration method
    Eur J Biochem156, 189-192. PubMed  Europe PubMed
  235. Moon,J.B., Coleman,R.S. and Hanzlik,R.P.
    Reversible covalent inhibition of papain by a peptide nitrile. 13C NMR evidence for a thioimidate ester adduct
    J Am Chem Soc108, 1350-1351.  I
  236. Oka,T. and Morihara,K.
    Inactivation of papain with chloroacetyl amino acid derivatives
    Agric Biol Chem50, 519-520. DOI  I
  237. Thompson,S.A., Andrews,P.R. and Hanzlik,R.P.
    Carboxyl-modified amino acids and peptides as protease inhibitors
    J Med Chem29, 104-111. PubMed  Europe PubMed  I
  238. 1985
  239. [YEAR:29-1-1985]Asboth,B., Stokum,E., Khan,I.U. and Polgar,L.
    Mechanism of action of cysteine proteinases: oxyanion binding site is not essential in the hydrolysis of specific substrates
    Biochemistry24, 606-609. PubMed  Europe PubMed
  240. Kamphuis,I.G., Drenth,J. and Baker,E.N.
    Thiol proteases. Comparative studies based on the high-resolution structures of papain and actinidin, and on amino acid sequence information for cathepsins B and H, and stem bromelain
    J Mol Biol182, 317-329. PubMed  Europe PubMed  S
  241. 1984
  242. [YEAR:1-11-1984]Brocklehurst,K., Carey,P.R., Lee,H.H., Salih,E. and Storer,A.C.
    Comparative resonance Raman spectroscopic and kinetic studies of acyl-enzymes involving papain, actinidin and papaya peptidase II
    Biochem J223, 649-657. PubMed  Europe PubMed
  243. [YEAR:1-6-1984]Brocklehurst,K., Salih,E. and Lodwig,T.S.
    Differences between the electric fields of the catalytic sites of papain and actinidin detected by using the thiol-located nitrobenzofurazan label as a spectroscopic reporter group
    Biochem J220, 609-612. PubMed  Europe PubMed
  244. Hanzlik,R.P. and Thompson,S.A.
    Vinylogous amino acid esters: a new class of inactivators for thiol proteases
    J Med Chem27, 711-712. PubMed  Europe PubMed  I
  245. Kamphuis,I.G., Kalk,K.H., Swarte,M.B. and Drenth,J.
    Structure of papain refined at 1.65 A resolution
    J Mol Biol179, 233-256. PubMed  Europe PubMed  S
  246. Sasmito,T., Demeester,J. and Lauwers,A.
    The inhibition of papain
    Arch Physiol Biochem92, BP24-BP25. DOI  I
  247. [YEAR:1-5-1984]Schack,P. and Kaarsholm,N.C.
    Subsite differences between the active centres of papaya peptidase A and papain as revealed by affinity chromatography. Purification of papaya peptidase A by ionic-strength-dependent affinity adsorption on an immobilized peptide inhibitor of papain
    Biochem J219, 727-733. PubMed  Europe PubMed
  248. 1983
  249. [YEAR:1-6-1983]Brocklehurst,K., Willenbrock,S.J. and Salih,E.
    Effects of conformational selectivity and of overlapping kinetically influential ionizations on the characteristics of pH-dependent enzyme kinetics. Implications of free-enzyme pKa variability in reactions of papain for its catalytic mechanism
    Biochem J211, 701-708. PubMed  Europe PubMed
  250. Carey,P.R., Ozaki,Y. and Storer,A.C.
    Comparison of the substrate conformations in the active sites of papain, chymopapain, ficin and bromelain by resonance Raman spectroscopy
    Biochem Biophys Res Commun117, 725-731. PubMed  Europe PubMed
  251. Gamcsik,M.P., Malthouse,J.P.G., Primrose,W.U., Mackenzie,N.E., Boyd,A.S.F., Russell,R.A. and Scott,A.I.
    Structure and stereochemistry of tetrahedral inhibitor complexes of papain by direct NMR observation
    J Am Chem Soc105, 6324-6325.
  252. Lynn,K.R.
    Definition of the site of reactivity of the ancestral protease of the papain type
    Phytochemistry22, 2485-2487. DOI  P
  253. Takio,K., Towatari,T., Katunuma,N., Teller,D.C. and Titani,K.
    Homology of amino acid sequences of rat liver cathepsins B and H with that of papain
    Proc Natl Acad Sci U S A80, 3666-3670. PubMed  Europe PubMed
  254. 1982
  255. Baines,B.S. and Brocklehurst,K.
    Isolation and characterization of the four major cysteine-proteinase components of the latex of Carica papaya L. Reactivity characteristics towards 2,2-dipyridyldisulfide of the thiol groups of papain, chymopapains A and B, and papaya peptidase A
    J Protein Chem1, 119-139. DOI
  256. Brocklehurst,K., Mushiri,S.M., Patel,G. and Willenbrock,F.
    Evidence for a close similarity in the catalytic sites of papain and ficin in near-neutral media despite differences in acidic and alkaline media. Kinetics of the reactions of papain and ficin with chloroacetate
    Biochem J201, 101-104. PubMed  Europe PubMed
  257. 1981
  258. Brocklehurst,K., Baines,B.S. and Malthouse,J.P.
    Differences in the interaction of the catalytic groups of the active centres of actinidin and papain. Rapid purification of fully active actinidin by covalent chromatography and characterization of its active centre by use of two- protonic- state reactivity probes
    Biochem J197, 739-746. PubMed  Europe PubMed
  259. Frankfater,A. and Kuppy,T.
    Mechanism of association of N-acetyl-L-phenylalanylglycinal to papain
    Biochemistry20, 5517-5524. PubMed  Europe PubMed  I
  260. Tamai,M., Adachi,T., Oguma,K., Morimoto,S., Hanada,K., Ohmura,S. and Ohzeki,M.
    Relationship between structure and papain inhibitory activity of epoxysuccinyl amino acid derivatives
    Agric Biol Chem45, 675-679. DOI  I
  261. 1980
  262. Valeri,A.M., Wilson,S.M. and Feinman,R.D.
    Reaction of antithrombin with proteases. Evidence for a specific reaction with papain
    Biochim Biophys Acta614, 526-533. PubMed  Europe PubMed
  263. 1979
  264. [YEAR:1-2-1979]Baines,B.S. and Brocklehurst,K.
    A necessary modification to the preparation of papain from any high-quality latex of Carica papaya and evidence for the structural integrity of the enzyme produced by traditional methods
    Biochem J177, 541-548. PubMed  Europe PubMed
  265. Caygill,J.C.
    Sulphydryl plant proteases
    Enzyme Microb Technol1, 233-242.  V
  266. Funk,M.O., Nakagawa,Y., Skochdopole,J. and Kaiser,E.T.
    Affinity chromatographic purification of papain. A reinvestigation
    Int J Pept Protein Res13, 296-303. PubMed  Europe PubMed  I
  267. Henes,J.B., Mattis,J.A. and Fruton,J.S.
    Interaction of papain with derivatives of phenylalanylglycinal: fluorescence studies
    Proc Natl Acad Sci U S A76, 1131-1134. PubMed  Europe PubMed  I
  268. [YEAR:1-8-1979]Polgar,L.
    Deuterium isotope effects on papain acylation. Evidence for lack of general base catalysis and for enzyme-leaving-group interaction
    Eur J Biochem98, 369-374. PubMed  Europe PubMed
  269. 1978
  270. [YEAR:3-7-1978]Allen,K.G., Stewart,J.A., Johnson,P.E. and Wettlaufer,D.G.
    Identification of the functional ionic groups of papain by pH/rate profile analysis
    Eur J Biochem87, 575-582. PubMed  Europe PubMed
  271. Butler,J.E. and Kennedy,N.
    The differential enzyme susceptibility of bovine immunoglobulin G1 and immunglobulin G2 to pepsin and papain
    Biochim Biophys Acta535, 125-137. PubMed  Europe PubMed  P
  272. 1977
  273. Bendall,M.R., Cartwright,I.L., Clark,P.I., Lowe,G. and Nurse,D.
    Inhibition of papain by N-acyl-aminoacetaldehydes and N-acyl-aminopropanones. Evidence for hemithioacetal formation by a cross-saturation technique in nuclear-magnetic-resonance spectroscopy
    Eur J Biochem79, 201-209. PubMed  Europe PubMed  I
  274. Clark,P.I. and Lowe,G.
    Chemical mutations of papain. The preparation of ser 25- and gly 25-papain
    J Chem Soc Chem Commun1977, 923-924. DOI
  275. [YEAR:3-10-1977]Halasz,P. and Polgar,L.
    Negatively charged reactants as probes in the study of the essential mercaptide-imidazolium ion-pair of thiolenzymes
    Eur J Biochem79, 491-494. PubMed  Europe PubMed  I
  276. [YEAR:27-12-1977]Leary,R., Larsen,D., Watanabe,H. and Shaw,E.
    Diazomethyl ketone substrate derivatives as active-site-directed inhibitors of thiol proteases. Papain
    Biochemistry16, 5857-5861. PubMed  Europe PubMed  I
  277. [YEAR:10-10-1977]Mattis,J.A., Henes,J.B. and Fruton,J.S.
    Interaction of papain with derivatives of phenylalanylglycinal
    J Biol Chem252, 6776-6782. PubMed  Europe PubMed  I
  278. Wang,A.C. and Wang,I.Y.
    Cleavage sites of human IgGI immunolglobulin by papain
    Immunochemistry14, 197-200. PubMed  Europe PubMed  P
  279. 1976
  280. Drenth,J., Kalk,K.H. and Swen,H.M.
    Binding of chloromethyl ketone substrate analogues to crystalline papain
    Biochemistry15, 3731-3738. PubMed  Europe PubMed  I
  281. [YEAR:11-12-1976]Halasz,P. and Polgar,L.
    Effect of the immediate environment on the reactivity of the essential -SH group of papain
    Eur J Biochem71, 571-575. PubMed  Europe PubMed  I
  282. Lowe,G.
    The cysteine proteinases
    Tetrahedron32, 291-302.  V
  283. [YEAR:11-12-1976]Sluyterman,L.A. and Wijdenes,J.
    Proton equilibria in the binding of Zn2+ and of methylmercuric iodide to papain
    Eur J Biochem71, 383-391. PubMed  Europe PubMed
  284. 1975
  285. Shipton,M., Kierstan,M.P.J., Malthouse,J.P.G., Stuchbury,T. and Brocklehurst,K.
    The case for assigning a value of approximately 4 to pKa(I) of the essential histidine cysteine interactive systems of papain, bromelain and ficin
    FEBS Lett50, 365-368. PubMed  Europe PubMed DOI
  286. 1974
  287. Burke,D.E., Lewis,S.D. and Shafer,J.A.
    A two-step procedure for purification of papain from extract of papaya latex
    Arch Biochem Biophys164, 30-36. PubMed  Europe PubMed
  288. Keilova,H. and Tomasek,V.
    Effect of papain inhibitor from chicken egg white on cathepsin B1
    Biochim Biophys Acta334, 179-186.
  289. [YEAR:10-11-1974]Lowbridge,J. and Fruton,J.S.
    Studies on the extended active site of papain
    J Biol Chem249, 6754-6761. PubMed  Europe PubMed
  290. Polgar,L.
    Mercaptide-imidazolium ion-pair: the reactive nucleophile in papain catalysis
    FEBS Lett47, 15-18. PubMed  Europe PubMed
  291. 1973
  292. Brocklehurst,K. and Little,G.
    Reactions of papain and of low-molecular-weight thiols with some aromatic disulphides. 2,2'-Dipyridyl disulphide as a convenient active-site titrant for papain even in the presence of other thiols
    Biochem J133, 67-80. PubMed  Europe PubMed
  293. Brocklehurst,K., Carlsson,J., Kierstan,M.P. and Crook,E.M.
    Covalent chromatography. Preparation of fully active papain from dried papaya latex
    Biochem J133, 573-584. PubMed  Europe PubMed
  294. [YEAR:30-5-1973]Campbell,P. and Kaiser,E.T.
    Reaction of a six-membered cyclic sulfonate ester, -(2-hydroxy-3,5-dinitrophenyl)ethanesulfonic acid sultone, with the active site of papain
    J Am Chem Soc95, 3735-3741. PubMed  Europe PubMed
  295. [YEAR:15-2-1973]Polgar,L.
    On the mode of activation of the catalytically essential sulfhydryl group of papain
    Eur J Biochem33, 104-109. PubMed  Europe PubMed
  296. 1972
  297. Brocklehurst,K. and Little,G.
    Reactivities of the various protonic states in the reactions of papain and of L-cysteine with 2,2'- and with 4,4'- dipyridyl disulphide: evidence for nucleophilic reactivity in the un-ionized thiol group of the cysteine-25 residue of papain occasioned by its interaction with the histidine-159-asparagine-175 hydrogen-bonded system
    Biochem J128, 471-474. PubMed  Europe PubMed
  298. [YEAR:18-1-1972]Jolley,C.J. and Yankeelov,J.A., Jr.
    Reaction of papain with alpha-bromo-beta-(5-imidazolyl)propionic acid
    Biochemistry11, 164-169. PubMed  Europe PubMed  I
  299. Williams,A., Lucas,E.C., Rimmer,A.R. and Hawkins,H.C.
    Proteolytic enzymes. Nature of binding forces between papain and its substrates and inhibitors
    J Chem Soc [Perkin 2]2, 627-633.  I
  300. Williams,A., Lucas,E.C. and Douglas,K.T.
    Proteolytic enzymes. Models for hydrolyses catalysed by papain
    J Chem Soc [Perkin 2]2, 1493-1499.
  301. 1971
  302. Drenth,J., Jansonius,J.N., Koekoek,R. and Wolthers,B.G.
    The structure of papain
    Adv Protein Chem25, 79-115. PubMed  Europe PubMed DOI  S
  303. Lowe,G. and Yuthavong,Y.
    pH-Dependence and structure-activity relationships in the papain-catalysed hydrolysis of anilides
    Biochem J124, 117-122. PubMed  Europe PubMed
  304. Lowe,G. and Yuthavong,Y.
    Kinetic specificity in papain-catalysed hydrolyses
    Biochem J124, 107-115. PubMed  Europe PubMed
  305. 1970
  306. Anderson,B.M. and Vasini,E.C.
    Nonpolar effects in reactions of the sulfhydryl group of papain
    Biochemistry9, 3348-3352. PubMed  Europe PubMed  I
  307. Arnon,R.
    [14] Papain
    Methods Enzymol19, 226-244. DOI
  308. Berger,A. and Schechter,I.
    Mapping the active site of papain with the aid of peptide substrates and inhibitors
    Philos Trans R Soc Lond B Biol Sci257, 249-264. PubMed  Europe PubMed
  309. Mitchel,R.E., Chaiken,I.M. and Smith,E.L.
    The complete amino acid sequence of papain. Additions and corrections
    J Biol Chem245, 3485-3492. PubMed  Europe PubMed
  310. Sluyterman,L.A. and Wijdenes,J.
    An agarose mercurial column for the separation of mercaptopapain and nonmercaptopapain
    Biochim Biophys Acta200, 593-595. PubMed  Europe PubMed
  311. [YEAR:31-3-1970]Sluyterman,L.A. and de Graaf,M.J.
    The fluorescence of papain
    Biochim Biophys Acta200, 595-597. PubMed  Europe PubMed
  312. 1969
  313. Husain,S.S. and Lowe,G.
    Completion of the amino acid sequence of papain
    Biochem J114, 279-288. PubMed  Europe PubMed
  314. 1968
  315. Arnon,R. and Shapira,E.
    Comparison between the antigenic structure of mutually related enzymes. A study with papain and chymopapain
    Biochemistry7, 4196-4202. PubMed  Europe PubMed
  316. Drenth,J., Jansonius,J.N., Koekoek,R., Swen,H.M. and Wolthers,B.G.
    Structure of papain
    Nature218, 929-932. PubMed  Europe PubMed DOI  S
  317. Husain,S.S. and Lowe,G.
    Evidence for histidine in the active site of papain
    Biochem J108, 855-859. PubMed  Europe PubMed
  318. Johansen,J.T. and Ottesen,M.
    The proteolytic degradation of the B-chain of oxidized insulin by papain, chymopapain and papaya peptidase
    C R Trav Lab Carlsberg36, 265-283. PubMed  Europe PubMed
  319. [YEAR:6-9-1968]Schechter,I. and Berger,A.
    On the active site of proteases. 3. Mapping the active site of papain; specific peptide inhibitors of papain
    Biochem Biophys Res Commun32, 898-902. PubMed  Europe PubMed
  320. [YEAR:20-3-1968]Whitaker,J.R. and Perez-Villase nor,J.
    Chemical modification of papain. I. Reaction with the chloromethyl ketones of phenylalanine and lysine and with phenylmethyl-sulfonyl fluoride
    Arch Biochem Biophys124, 70-78. PubMed  Europe PubMed  I
  321. 1967
  322. Arnon,R. and Shapira,E.
    Antibodies to papain. A selective fractionation according to inhibitory capacity
    Biochemistry6, 3942-3950. PubMed  Europe PubMed
  323. Drenth,J., Jansonius,J.N. and Wolthers,B.G.
    The crystal structure of papain. II. A three-dimensional fourier synthesis at 4.5 A resolution
    J Mol Biol24, 449-456.
  324. Sluyterman,L.A.
    The activation reaction of papain
    Biochim Biophys Acta139, 430-438. PubMed  Europe PubMed
  325. 1966
  326. Bender,M.L. and Brubacher,L.J.
    The kinetics and mechanism of papain-catalyzed hydrolyses
    J Am Chem Soc88, 5880-5889.
  327. Bender,M.L., Begue-Canton,M.L., Blakeley,R.L., Brubacher,L.J., Feder,J., Gunter,C.R., Kezdy,F.J., Killheffer,J.V., Jr., Marshall,T.H., Miller,C.G., Roeske,R.W. and Stoops,J.K.
    The determination of the concentration of hydrolytic enzyme solutions: alpha-chymotrypsin, trypsin, papain, elastase, subtilisin, and acetylcholinesterase
    J Am Chem Soc88, 5890-5913. PubMed  Europe PubMed
  328. Brubacher,L.J. and Bender,M.L.
    The preparation and properties of trans-cinnamoyl-papain
    J Am Chem Soc88, 5871-5880. PubMed  Europe PubMed
  329. 1965
  330. Arnon,R.
    The reactoin of papain with antipapain
    Immunochemistry2, 107-114. PubMed  Europe PubMed DOI
  331. Frater,R., Light,A. and Smith,E.L.
    Chemical and enzymic studies on the amino-terminal sequence of papain. A reinvestigation
    J Biol Chem240, 253-257. PubMed  Europe PubMed
  332. Husain,S.S. and Lowe,G.
    The location of the active centre cysteine residue in the primary sequence of papain
    Chem Commun (London)15, 345-346. DOI
  333. Kirsch,J.F. and Katchalski,E.
    Reaction of papain with ethyl [carbonyl-18O]hippurate
    Biochemistry4, 884-890. PubMed  Europe PubMed
  334. Lowe,G. and Williams,A.
    Direct evidence for an acylated thiol as an intermediate in papain- and ficin-catalysed hydrolyses
    Biochem J96, 189-193. PubMed  Europe PubMed
  335. Whitaker,J.R. and Bender,M.L.
    Kinetics of papain-catalyzed hydrolysis of alpha-N-benzoyl-L-arginine ethyl ester and alpha-N-benzoyl-L-argininamide
    J Am Chem Soc87, 2728-2737. PubMed  Europe PubMed DOI
  336. 1964
  337. Light,A., Frater,R., Kimmel,J.R. and Smith,E.L.
    Current status of the structure of papain: the linear sequence, active sulfhydryl group, and the disulfide bridges
    Proc Natl Acad Sci U S A52, 1276-1283. PubMed  Europe PubMed
  338. Light,A.
    The reaction of iodoacetate and bromoacetate with papain
    Biochem Biophys Res Commun17, 781-785.  I
  339. Lowe,G. and Williams,A.
    Direct evidence for an acylated thiol as an intermediate in papain- and ficin-catalysed hydrolyses of esters
    Proc Chem Soc1964, 140-141.
  340. 1963
  341. Sanner,T. and Pihl,A.
    Studies on the active -SH group of papain and on the mechanism of papain activation by thiols
    J Biol Chem238, 165-171. PubMed  Europe PubMed
  342. Skelton,G.S.
    Papain and chymopapain: comparative activation studies. I
    Enzymologia25, 201-206. PubMed  Europe PubMed
  343. Sun,Y.K. and Tsou,C.L.
    Studies on papain. III. Essential histidine and tryptophan groups
    Sci Sin12, 879-884. PubMed  Europe PubMed
  344. Sun,Y.K. and Tsou,C.L.
    Studies on papain. I. Hydrolytic and acyl transfer reactions
    Sci Sin12, 201-212. PubMed  Europe PubMed
  345. 1962
  346. Ozawa,K., Ohnishi,T. and Tanaka,S.
    Activation and inhibition of papain
    J Biochem51, 372-374. PubMed  Europe PubMed
  347. 1958
  348. Smith,E.L.
    Active site of papain and covalent high-energy bonds of proteins
    J Biol Chem233, 1392-1397. PubMed  Europe PubMed
  349. 1957
  350. Kimmel,J.R. and Smith,E.L.
    The properties of papain
    Adv Enzymol Relat Subj Biochem19, 267-334. PubMed  Europe PubMed
  351. 1956
  352. Davis,N.C.
    Action of proteolytic enzymes on some peptides and derivatives containing histidine
    J Biol Chem223, 935-947. PubMed  Europe PubMed  P
  353. 1955
  354. Kimmel,J.R., Thompson,E.O. and Smith,E.L.
    Crystalline papain. V. Cysteic acid and cysteic acid peptides from oxidized papain
    J Biol Chem217, 151-159. PubMed  Europe PubMed
  355. Smith,E.L., Finkle,B.J. and Stockell,A.
    Some chemical and kinetic studies of crystalline papain
    Discuss Faraday Soc20, 96-104. DOI
  356. 1954
  357. Kimmel,J.R. and Smith,E.L.
    Crystalline papain. I. Preparation, specificity, and activation
    J Biol Chem207, 515-531. PubMed  Europe PubMed
  358. Smith,E.L., Stockell,A. and Kimmel,J.R.
    Crystalline papain. III. Amino acid composition
    J Biol Chem207, 551-561. PubMed  Europe PubMed
  359. Thompson,E.O.
    Crystalline papain. IV. Free amino groups and N-terminal sequence
    J Biol Chem207, 563-574. PubMed  Europe PubMed
  360. 1953
  361. Abelin,I. and Pfister,H.
    [Determination and activation of papain]
    Hoppe Seylers Z Physiol Chem295, 323-332. PubMed  Europe PubMed
  362. Gladner,J.A. and Neurath,H.
    Carboxyl terminal groups of proteolytic enzymes. I. The activation of chymotrypsinogen to alpha-chymotrypsin
    J Biol Chem205, 345-360. PubMed  Europe PubMed
  363. 1950
  364. Fox,S.W. and Pettinga,C.W.
    Enzymic synthesis of peptide bonds; some factors which influence the synthesis of peptide bonds as catalyzed by papain
    Arch Biochem25, 13-20. PubMed  Europe PubMed
  365. Fox,S.W. and Pettinga,C.W.
    Enzymic synthesis of peptide bonds; preferences of papain within the monoaminomonocarboxylic acid series
    Arch Biochem25, 21-29. PubMed  Europe PubMed
  366. 1949
  367. Hanson,H.T. and Smith,E.L.
    Papain resolution of DL-tryptophan; optical specificity of carboxypeptidase
    J Biol Chem179, 815-818. PubMed  Europe PubMed
  368. 1946
  369. Petermann,M.L.
    The splitting of human gamma globulin antibodies by papain and bromelin
    J Am Chem Soc68, 106-113. PubMed  Europe PubMed
  370. 1940
  371. Berger,J. and Asenjo,C.F.
    Anthelmintic activity of crystalline papain
    Science91, 387-388. PubMed  Europe PubMed DOI
  372. 1939
  373. [YEAR:20-9-1938]Anson,M.L.
    The estimation of pepsin, trypsin, papain and cathepsin with hemoglobin
    J Gen Physiol22, 79-89. PubMed  Europe PubMed DOI  A
  374. 1937
  375. Anson,M.L.
    The estimation of papain with hemoglobin
    J Gen Physiol20, 561-563. PubMed  Europe PubMed DOI  A
  376. Bergmann,M. and Fruton,J.S.
    The nature of papain activation
    Science86, 496-497. PubMed  Europe PubMed DOI
  377. 1936
  378. Bergmann,M. and Ross,W.F.
    On proteolytic enzymes. X. The enzymes of papain and their activation
    J Biol Chem114, 717-726.
  379. 1935
  380. Bergmann,M., Zervas,L. and Fruton,J.S.
    On proteolytic enzymes. VI. On the specificity of papain
    J Biol Chem111, 225-244.
  381. 1933
  382. Calvery,H.O.
    Crystalline egg albumin. The hydrolysis of crystalline egg albumin by pepsin, papain-hydrocyanic acid, and pancreatic proteinase and the subsequent action of some other enzymes on the hydrolysis products produced by these enzymes
    J Biol Chem102, 73-88.
  383. 1885
  384. Martin,S.H.C.
    Papain-digestion
    J Physiol5, 213-230. PubMed  Europe PubMed DOI
  385. Martin,S.H.C.
    The nature of papain and its action on vegetable proteids
    J Physiol6, 336-360. PubMed  Europe PubMed DOI
  386. 1884
  387. Martin,S.H.C.
    Papain digestion
    J Physiol5, 213-230.
  388. 1879
  389. Wurtz,A. and Bouchut,E.
    Sur le ferment digestif du Carica papaya
    C R Acad Sci Hebd Seances Acad Sci D89, 425-430.
  390. 1878
  391. Wittmack,H.
    The fermentative action of the juice of the fruit of Carica papaya
    Pharm J Trans9, 449-