Literature for peptidase S14.008: ClpP1 peptidase (Streptomyces-type)

Summary Alignment Tree Sequences Sequence features Distribution Structure Literature

(Topics flags: S Structure, T Target, P Specificity, I Inhibitor, E Expression. To select only the references relevant to a single topic, click the link above. See explanation.)

    2023
  1. Yang,Y., Zhao,N., Xu,X., Zhou,Y., Luo,B., Zhang,J., Sui,J., Huang,J., Qiu,Z., Zhang,X., Zeng,J., Bai,L., Bao,R. and Luo,Y.
    Discovery and Mechanistic Study of Novel Mycobacterium tuberculosis ClpP1P2 Inhibitors
    J Med Chem66, 16597-16614. PubMed  Europe PubMed DOI  I
  2. 2022
  3. d'Andrea,F.B., Poulton,N.C., Froom,R., Tam,K., Campbell,E.A. and Rock,J.M.
    The essential M. tuberculosis Clp protease is functionally asymmetric in vivo
    Sci Adv8, eabn7943-eabn7943. PubMed  Europe PubMed DOI
  4. Ogbonna,E.C., Anderson,H.R. and Schmitz,K.R.
    Identification of Arginine Phosphorylation in Mycolicibacterium smegmatis
    Microbiol Spectr10, e0204222-e0204222. PubMed  Europe PubMed DOI
  5. Taylor,G., Frommherz,Y., Katikaridis,P., Layer,D., Sinning,I., Carroni,M., Weber-Ban,E. and Mogk,A.
    Antibacterial peptide CyclomarinA creates toxicity by deregulating the Mycobacterium tuberculosis ClpC1-ClpP1P2 protease
    J Biol Chem298, 102202-102202. PubMed  Europe PubMed DOI
  6. 2021
  7. Bendre,A.D., Peters,P.J. and Kumar,J.
    Recent Insights into the Structure and Function of Mycobacterial Membrane Proteins Facilitated by Cryo-EM
    J Membr Biol PubMed  Europe PubMed DOI
  8. Texier,P., Bordes,P., Nagpal,J., Sala,A.J., Mansour,M., Cirinesi,A.M., Xu,X., Dougan,D.A. and Genevaux,P.
    ClpXP-mediated Degradation of the TAC Antitoxin is Neutralized by the SecB-like Chaperone in Mycobacterium tuberculosis
    J Mol Biol433, 166815-166815. PubMed  Europe PubMed DOI
  9. Ziemski,M., Leodolter,J., Taylor,G., Kerschenmeyer,A. and Weber-Ban,E.
    Genome-wide interaction screen for Mycobacterium tuberculosis ClpCP protease reveals toxin-antitoxin systems as a major substrate class
    FEBS J288, 111-126. DOI
  10. 2020
  11. Bilyk,B., Kim,S., Fazal,A., Baker,T.A. and Seipke,R.F.
    Regulation of antimycin biosynthesis is controlled by the ClpXP protease
    mSphere5, PubMed  Europe PubMed DOI
  12. Vahidi,S., Ripstein,Z.A., Juravsky,J.B., Rennella,E., Goldberg,A.L., Mittermaier,A.K., Rubinstein,J.L. and Kay,L.E.
    An allosteric switch regulates Mycobacterium tuberculosis ClpP1P2 protease function as established by cryo-EM and methyl-TROSY NMR
    Proc Natl Acad Sci U S A117, 5895-5906. PubMed  Europe PubMed DOI  S
  13. 2019
  14. Choules,M.P., Wolf,N.M., Lee,H., Anderson,J.R., Grzelak,E.M., Wang,Y., Ma,R., Gao,W., McAlpine,J.B., Jin,Y.Y., Cheng,J., Lee,H., Suh,J.W., Duc,N.M., Paik,S., Choe,J.H., Jo,E.K., Chang,C.L., Lee,J.S., Jaki,B.U., Pauli,G.F., Franzblau,S.G. and Cho,S.
    Rufomycin targets ClpC1 proteolysis in Mycobacterium tuberculosis and M. abscessus
    Antimicrob Agents Chemother63, e02204-18-e02204-18. PubMed  Europe PubMed DOI
  15. Nagpal,J., Paxman,J.J., Zammit,J.E., Alhuwaider,A., Truscott,K.N., Heras,B. and Dougan,D.A.
    Molecular and structural insights into an asymmetric proteolytic complex (ClpP1P2) from Mycobacterium smegmatis
    Sci Rep9, 18019-18019. PubMed  Europe PubMed DOI
  16. 2018
  17. Liu,P., Yang,Y., Ju,Y., Tang,Y., Sang,Z., Chen,L., Yang,T., An,Q., Zhang,T. and Luo,Y.
    Design, synthesis and biological evaluation of novel pyrrole derivatives as potential ClpP1P2 inhibitor against Mycobacterium tuberculosis
    Bioorg Chem80, 422-432. PubMed  Europe PubMed DOI  I
  18. 2017
  19. Moreira,W., Santhanakrishnan,S., Dymock,B.W. and Dick,T.
    Bortezomib warhead-switch confers dual activity against mycobacterial caseinolytic protease and proteasome and selectivity against human proteasome
    Front Microbiol8, 746-746. PubMed  Europe PubMed DOI  I
  20. Moreira,W., Santhanakrishnan,S., Ngan,G.J., Low,C.B., Sangthongpitag,K., Poulsen,A., Dymock,B.W. and Dick,T.
    Towards selective mycobacterial ClpP1P2 inhibitors with reduced activity against the human proteasome
    Antimicrob Agents Chemother61, e02307-16-e02307-16. PubMed  Europe PubMed DOI  I
  21. Yamada,Y. and Dick,T.
    Mycobacterial caseinolytic protease gene regulator ClgR is a substrate of caseinolytic protease
    mSphere2, PubMed  Europe PubMed DOI
  22. 2016
  23. Famulla,K., Sass,P., Malik,I., Akopian,T., Kandror,O., Alber,M., Hinzen,B., Ruebsamen-Schaeff,H., Kalscheuer,R., Goldberg,A.L. and Brotz-Oesterhelt,H.
    Acyldepsipeptide antibiotics kill mycobacteria by preventing the physiological functions of the ClpP1P2 protease
    Mol Microbiol101, 194-209. PubMed  Europe PubMed DOI
  24. Li,M., Kandror,O., Akopian,T., Dharkar,P., Wlodawer,A., Maurizi,M.R. and Goldberg,A.L.
    Structure and functional properties of the active form of the proteolytic complex, ClpP1P2, from Mycobacterium tuberculosis
    J Biol Chem291, 7465-7476. PubMed  Europe PubMed DOI  S
  25. 2015
  26. Akopian,T., Kandror,O., Tsu,C., Lai,J.H., Wu,W., Liu,Y., Zhao,P., Park,A., Wolf,L., Dick,L.R., Rubin,E.J., Bachovchin,W. and Goldberg,A.L.
    Cleavage specificity of Mycobacterium tuberculosis ClpP1P2 protease and identification of novel peptide substrates and boronate inhibitors with anti-bacterial activity
    J Biol Chem290, 11008-11020. PubMed  Europe PubMed DOI  P  I
  27. Leodolter,J., Warweg,J. and Weber-Ban,E.
    The Mycobacterium tuberculosis ClpP1P2 protease interacts asymmetrically with its ATPase partners ClpX and ClpC1
    PLoS ONE10, e0125345- PubMed  Europe PubMed DOI
  28. Moreira,W., Ngan,G.J., Low,J.L., Poulsen,A., Chia,B.C., Ang,M.J., Yap,A., Fulwood,J., Lakshmanan,U., Lim,J., Khoo,A.Y., Flotow,H., Hill,J., Raju,R.M., Rubin,E.J. and Dick,T.
    Target mechanism-based whole-cell screening identifies bortezomib as an inhibitor of caseinolytic protease in mycobacteria
    MBio6, e00253-e00215. PubMed  Europe PubMed DOI  I
  29. 2014
  30. Gavrish,E., Sit,C.S., Cao,S., Kandror,O., Spoering,A., Peoples,A., Ling,L., Fetterman,A., Hughes,D., Bissell,A., Torrey,H., Akopian,T., Mueller,A., Epstein,S., Goldberg,A., Clardy,J. and Lewis,K.
    Lassomycin, a ribosomally synthesized cyclic peptide, kills Mycobacterium tuberculosis by targeting the ATP-dependent protease ClpC1P1P2
    Chem Biol21, 509-518. PubMed  Europe PubMed DOI
  31. Liu,J. and Chien,P.
    Structure and activation of a heteromeric protease complex
    Proc Natl Acad Sci U S A111, 15289-15290. PubMed  Europe PubMed DOI
  32. Schmitz,K.R., Carney,D.W., Sello,J.K. and Sauer,R.T.
    Crystal structure of Mycobacterium tuberculosis ClpP1P2 suggests a model for peptidase activation by AAA+ partner binding and substrate delivery
    Proc Natl Acad Sci U S A111, E4587-E4595. PubMed  Europe PubMed DOI  S
  33. Schmitz,K.R. and Sauer,R.T.
    Substrate delivery by the AAA+ ClpX and ClpC1 unfoldases activates the mycobacterial ClpP1P2 peptidase
    Mol Microbiol93, 617-628. PubMed  Europe PubMed DOI
  34. 2013
  35. Compton,C.L., Schmitz,K.R., Sauer,R.T. and Sello,J.K.
    Antibacterial activity of and resistance to small molecule inhibitors of the ClpP peptidase
    ACS Chem Biol8, 2669-2677. PubMed  Europe PubMed DOI  I
  36. Personne,Y., Brown,A.C., Schuessler,D.L. and Parish,T.
    Mycobacterium tuberculosis ClpP proteases are co-transcribed but exhibit different substrate specificities
    PLoS ONE8, e60228-e60228. PubMed  Europe PubMed DOI
  37. Zhang,C.Y., Yang,C., Li,D.R., Mu,L.Q., Yang,J. and Feng,X.
    Prokaryotic expression of ATP-dependent caseinolytic protease proteolytic subunit 1 gene of Mycobacterium tuberculosis
    Chin J Biol26, 792-794+803.  E
  38. 2012
  39. Akopian,T., Kandror,O., Raju,R.M., Unnikrishnan,M., Rubin,E.J. and Goldberg,A.L.
    The active ClpP protease from M. tuberculosis is a complex composed of a heptameric ClpP1 and a ClpP2 ring
    EMBO J31, 1529-1541. PubMed  Europe PubMed DOI
  40. Ollinger,J., O'Malley,T., Kesicki,E.A., Odingo,J. and Parish,T.
    Validation of the essential ClpP protease in Mycobacterium tuberculosis as a novel drug target
    J Bacteriol194, 663-668. PubMed  Europe PubMed DOI  T
  41. Raju,R.M., Unnikrishnan,M., Rubin,D.H., Krishnamoorthy,V., Kandror,O., Akopian,T.N., Goldberg,A.L. and Rubin,E.J.
    Mycobacterium tuberculosis ClpP1 and ClpP2 function together in protein degradation and are required for viability in vitro and during infection
    PLoS Pathog8, e1002511-e1002511. PubMed  Europe PubMed DOI
  42. 2011
  43. Benaroudj,N., Raynal,B., Miot,M. and Ortiz-Lombardia,M.
    Assembly and proteolytic processing of mycobacterial ClpP1 and ClpP2
    BMC Biochem12, 61-61. PubMed  Europe PubMed DOI
  44. Schmitt,E.K., Riwanto,M., Sambandamurthy,V., Roggo,S., Miault,C., Zwingelstein,C., Krastel,P., Noble,C., Beer,D., Rao,S.P., Au,M., Niyomrattanakit,P., Lim,V., Zheng,J., Jeffery,D., Pethe,K. and Camacho,L.R.
    The natural product cyclomarin kills Mycobacterium tuberculosis by targeting the ClpC1 subunit of the caseinolytic protease
    Angew Chem Int Ed Engl50, 5889-5891. PubMed  Europe PubMed DOI
  45. 2007
  46. Ingvarsson,H., Mate,M.J., Hogbom,M., Portnoi,D., Benaroudj,N., Alzari,P.M., Ortiz-Lombardia,M. and Unge,T.
    Insights into the inter-ring plasticity of caseinolytic proteases from the X-ray structure of Mycobacterium tuberculosis ClpP1
    Acta Crystallogr D Biol Crystallogr63, 249-259. PubMed  Europe PubMed DOI  S
  47. 2004
  48. Bellier,A. and Mazodier,P.
    ClgR, a novel regulator of clp and lon expression in Streptomyces
    J Bacteriol186, 3238-3248. PubMed  Europe PubMed DOI
  49. 2002
  50. Viala,J. and Mazodier,P.
    ClpP-dependent degradation of PopR allows tightly regulated expression of the clpP3 clpP4 operon in Streptomyces lividans
    Mol Microbiol44, 633-643. PubMed  Europe PubMed DOI
  51. 1999
  52. de Crecy-Lagard,V., Servant-Moisson,P., Viala,J., Grandvalet,C. and Mazodier,P.
    Alteration of the synthesis of the Clp ATP-dependent protease affects morphological and physiological differentiation in Streptomyces
    Mol Microbiol32, 505-517. PubMed  Europe PubMed DOI