Literature for peptidase M41.001: FtsH peptidase

Summary Alignment Tree Sequences Sequence features Distribution Structure Literature Substrates

(Topics flags: S Structure, P Specificity, V Review. To select only the references relevant to a single topic, click the link above. See explanation.)

    2025
  1. Fremlen,H. and Burmann,B.M.
    Maintaining the Integral Membrane Proteome: Revisiting the Functional Repertoire of Integral Membrane Proteases
    Chembiocheme202500048-e202500048. PubMed  Europe PubMed DOI  V
  2. Li,Y., Zhu,J., Zhang,Z., Wei,J., Wang,F., Meisl,G., Knowles,T.P.J., Egelman,E.H. and Tezcan,F.A.
    Transforming an ATP-dependent enzyme into a dissipative, self-assembling system
    Nat Chem Biol PubMed  Europe PubMed DOI
  3. 2024
  4. Akkulak,H., Ince,H.K., Goc,G., Lebrilla,C.B., Kabasakal,B.V. and Ozcan,S.
    Structural proteomics of a bacterial mega membrane protein complex: FtsH-HflK-HflC
    Int J Biol Macromol269, 131923-131923. PubMed  Europe PubMed DOI
  5. Brangulis,K., Drunka,L., Akopjana,I. and Tars,K.
    Structure of the Borrelia burgdorferi ATP-dependent metalloprotease FtsH in its functionally relevant hexameric form
    Biochim Biophys Acta Proteins Proteom1872, 140969-140969. PubMed  Europe PubMed DOI
  6. Ghanbarpour,A., Telusma,B., Powell,B.M., Zhang,J.J., Bolstad,I., Vargas,C., Keller,S., Baker,T., Sauer,R.T. and Davis,J.H.
    An asymmetric nautilus-like HflK/C assembly controls FtsH proteolysis of membrane proteins
    bioRxiv PubMed  Europe PubMed DOI
  7. Mawla,G.D., Kamal,S.M., Cao,L.Y., Purhonen,P., Hebert,H., Sauer,R.T., Baker,T.A. and Romling,U.
    The membrane-cytoplasmic linker defines activity of FtsH proteases in Pseudomonas aeruginosa clone C
    J Biol Chem300, 105622-105622. PubMed  Europe PubMed DOI
  8. 2023
  9. Hari,S.B., Morehouse,J.P., Baker,T.A. and Sauer,R.T.
    FtsH degrades kinetically stable dimers of cyclopropane fatty acid synthase via an internal degron
    Mol Microbiol119, 101-111. PubMed  Europe PubMed DOI
  10. Osman,I.O., Caputo,A., Pinault,L., Mege,J.L., Levasseur,A. and Devaux,C.A.
    Identification and Characterization of an HtrA Sheddase Produced by Coxiella burnetii
    Int J Mol Sci24, PubMed  Europe PubMed DOI
  11. Song,H., Choi,E. and Lee,E.J.
    Membrane-Bound Protease FtsH Protects PhoP from the Proteolysis by Cytoplasmic ClpAP Protease in Salmonella Typhimurium
    J Microbiol Biotechnol33, 1130-1140. PubMed  Europe PubMed DOI
  12. 2022
  13. Ma,C., Wang,C., Luo,D., Yan,L., Yang,W., Li,N. and Gao,N.
    Structural insights into the membrane microdomain organization by SPFH family proteins
    Cell Res32, 176-189. PubMed  Europe PubMed DOI
  14. Qiao,Z., Yokoyama,T., Yan,X.F., Beh,I.T., Shi,J., Basak,S., Akiyama,Y. and Gao,Y.G.
    Cryo-EM structure of the entire FtsH-HflKC AAA protease complex
    Cell Rep39, 110890-110890. PubMed  Europe PubMed DOI
  15. Shu,S. and Mi,W.
    Regulatory mechanisms of lipopolysaccharide synthesis in Escherichia coli
    Nat Commun13, 4576-4576. PubMed  Europe PubMed DOI
  16. 2021
  17. Prabudiansyah,I., van der Valk,R. and Aubin-Tam,M.E.
    Reconstitution and functional characterization of the FtsH protease in lipid nanodiscs
    Biochim Biophys Acta Biomembr1863, 183526-183526. PubMed  Europe PubMed DOI
  18. 2020
  19. Carvalho,V., Prabudiansyah,I., Kovacik,L., Chami,M., Kieffer,R., van der Valk,R., de Lange,N., Engel,A. and Aubin-Tam,M.E.
    The cytoplasmic domain of the AAA+ protease FtsH is tilted with respect to the membrane to facilitate substrate entry
    J Biol Chem PubMed  Europe PubMed DOI
  20. Nguyen,D., Kelly,K., Qiu,N. and Misra,R.
    YejM controls LpxC levels by regulating Protease Activity of the FtsH/YciM Complex of Escherichia coli
    J Bacteriol PubMed  Europe PubMed DOI
  21. Yeo,W.S., Anokwute,C., Marcadis,P., Levitan,M., Ahmed,M., Bae,Y., Kim,K., Kostrominova,T., Liu,Q. and Bae,T.
    A membrane-bound transcription factor is proteolytically regulated by the AAA+ protease FtsH in Staphylococcus aureus
    J Bacteriol202, e00019-20-e00019-20. PubMed  Europe PubMed DOI
  22. Yeom,J., Shao,Y. and Groisman,E.A.
    Small proteins regulate Salmonella survival inside macrophages by controlling degradation of a magnesium transporter
    Proc Natl Acad Sci U S A117, 20235-20243. PubMed  Europe PubMed DOI
  23. 2019
  24. Kamal,S.M., Rybtke,M.L., Nimtz,M., Sperlein,S., Giske,C., Trcek,J., Deschamps,J., Briandet,R., Dini,L., Jansch,L., Tolker-Nielsen,T., Lee,C. and Romling,U.
    Two FtsH proteases contribute to fitness and adaptation of Pseudomonas aeruginosa Clone C strains
    Front Microbiol10, 1372-1372. PubMed  Europe PubMed DOI
  25. Yang,Y., Gunasekara,M., Muhammednazaar,S., Li,Z. and Hong,H.
    Proteolysis mediated by the membrane-integrated ATP-dependent protease FtsH has a unique nonlinear dependence on ATP hydrolysis rates
    Protein Sci28, 1262-1275. PubMed  Europe PubMed DOI
  26. 2018
  27. Baek,J., Choi,E. and Lee,E.J.
    A rule governing the FtsH-mediated proteolysis of the MgtC virulence protein from Salmonella enterica serovarTyphimurium
    J Microbiol56, 565-570. PubMed  Europe PubMed DOI  P
  28. Lindemann,C., Thomanek,N., Kuhlmann,K., Meyer,H.E., Marcus,K. and Narberhaus,F.
    Next-generation trapping of protease substrates by label-free proteomics
    Methods Mol Biol1841, 189-206. PubMed  Europe PubMed DOI  P
  29. Ruer,M., Krainer,G., Groger,P. and Schlierf,M.
    ATPase and protease domain movements in the bacterial AAA+ protease FtsH are driven by thermal fluctuations
    J Mol Biol430, 4592-4602. PubMed  Europe PubMed DOI
  30. Uthoff,M. and Baumann,U.
    Conformational flexibility of pore loop-1 gives insights into substrate translocation by the AAA(+) protease FtsH
    J Struct Biol204, 199-206. PubMed  Europe PubMed DOI  S
  31. Yang,Y., Guo,R., Gaffney,K., Kim,M., Muhammednazaar,S., Tian,W., Wang,B., Liang,J. and Hong,H.
    Folding-degradation relationship of a membrane protein mediated by the universally conserved ATP-dependent protease FtsH
    J Am Chem Soc140, 4656-4665. PubMed  Europe PubMed DOI
  32. 2017
  33. Bittner,L.M., Arends,J. and Narberhaus,F.
    When, how and why? Regulated proteolysis by the essential FtsH protease in Escherichia coli
    Biol Chem398, 625-635. PubMed  Europe PubMed DOI
  34. 2016
  35. Arends,J., Thomanek,N., Kuhlmann,K., Marcus,K. and Narberhaus,F.
    In vivo trapping of FtsH substrates by label-free quantitative proteomics
    Proteomics16, 3161-3172. PubMed  Europe PubMed DOI  P
  36. Hari,S.B. and Sauer,R.T.
    The AAA+ FtsH protease degrades an ssrA-tagged model protein in the inner membrane of Escherichia coli
    Biochemistry55, 5649-5652. PubMed  Europe PubMed DOI
  37. 2015
  38. Bittner,L.M., Westphal,K. and Narberhaus,F.
    Conditional proteolysis of the membrane protein YfgM by the FtsH protease depends on a novel N-terminal degron
    J Biol Chem290, 19367-19378. PubMed  Europe PubMed DOI
  39. 2013
  40. Emiola,A., Falcarin,P., Tocher,J. and George,J.
    A model for the proteolytic regulation of LpxC in the lipopolysaccharide pathway of Escherichia coli
    Comput Biol Chem47, 1-7. PubMed  Europe PubMed DOI
  41. Li,W., Rao,D.K. and Kaur,P.
    Dual role of the metalloprotease FtsH in biogenesis of the DrrAB drug transporter
    J Biol Chem288, 11854-11864. PubMed  Europe PubMed DOI
  42. Okuno,T. and Ogura,T.
    FtsH protease-mediated regulation of various cellular functions
    Subcell Biochem66, 53-69. PubMed  Europe PubMed DOI
  43. Schakermann,M., Langklotz,S. and Narberhaus,F.
    FtsH-mediated coordination of lipopolysaccharide biosynthesis in Escherichia coli correlates with the growth rate and the alarmone (p)ppGpp
    J Bacteriol195, 1912-1919. PubMed  Europe PubMed DOI
  44. 2012
  45. Langklotz,S., Baumann,U. and Narberhaus,F.
    Structure and function of the bacterial AAA protease FtsH
    Biochim Biophys Acta1823, 40-48. PubMed  Europe PubMed DOI  V
  46. Ogura,T., Okuno,T., Suno,R. and Akiyama,Y.
    FtsH protease
    [ISSN:978-0-12-407744-7]3, 685-692. DOI
  47. Suno,R., Shimoyama,M., Abe,A., Shimamura,T., Shimodate,N., Watanabe,Y., Akiyama,Y. and Yoshida,M.
    Conformational transition of the lid helix covering the protease active site is essential for the ATP-dependent protease activity of FtsH
    FEBS Lett586, 3117-3121. PubMed  Europe PubMed DOI
  48. Westphal,K., Langklotz,S., Thomanek,N. and Narberhaus,F.
    A trapping approach reveals novel substrates and physiological functions of the essential protease FtsH in Escherichia coli
    J Biol Chem287, 42962-42971. PubMed  Europe PubMed DOI
  49. 2011
  50. Bandyopadhyay,K., Parua,P.K., Datta,A.B. and Parrack,P.
    Studies on Escherichia coli HflKC suggest the presence of an unidentified lambda factor that influences the lysis-lysogeny switch
    BMC Microbiol11, 34-34. PubMed  Europe PubMed DOI
  51. Chauleau,M., Mora,L., Serba,J. and de Zamaroczy,M.
    FtsH-dependent processing of RNase colicins D and E3 means that only the cytotoxic domains are imported into the cytoplasm
    J Biol Chem286, 29397-29407. PubMed  Europe PubMed DOI
  52. Sauer,R.T. and Baker,T.A.
    AAA+ Proteases: ATP-fueled machines of protein destruction
    Annu Rev Biochem80, 587-612. PubMed  Europe PubMed DOI
  53. Singh,S. and Darwin,A.J.
    FtsH-dependent degradation of phage shock protein C in Yersinia enterocolitica and Escherichia coli
    J Bacteriol193, 6436-6442. PubMed  Europe PubMed DOI
  54. 2010
  55. Ayuso-Tejedor,S., Nishikori,S., Okuno,T., Ogura,T. and Sancho,J.
    FtsH cleavage of non-native conformations of proteins
    J Struct Biol171, 117-124. PubMed  Europe PubMed DOI
  56. 2009
  57. Akiyama,Y.
    Quality control of cytoplasmic membrane proteins in Escherichia coli
    J Biochem146, 449-454. PubMed  Europe PubMed DOI
  58. Ingmer,H. and Brondsted,L.
    Proteases in bacterial pathogenesis
    Res Microbiol160, 704-710. PubMed  Europe PubMed DOI  V
  59. Inwood,W.B., Hall,J.A., Kim,K.S., Demirkhanyan,L., Wemmer,D., Zgurskaya,H. and Kustu,S.
    Epistatic effects of the protease/chaperone HflB on some damaged forms of the Escherichia coli ammonium channel AmtB
    Genetics183, 1327-1340. PubMed  Europe PubMed DOI
  60. Koodathingal,P., Jaffe,N.E., Kraut,D.A., Prakash,S., Fishbain,S., Herman,C. and Matouschek,A.
    ATP-dependent proteases differ substantially in their ability to unfold globular proteins
    J Biol Chem284, 18674-18684. PubMed  Europe PubMed DOI
  61. Narberhaus,F., Obrist,M., Fuhrer,F. and Langklotz,S.
    Degradation of cytoplasmic substrates by FtsH, a membrane-anchored protease with many talents
    Res Microbiol160, 652-659. PubMed  Europe PubMed DOI  V
  62. 2008
  63. Inobe,T. and Matouschek,A.
    Protein targeting to ATP-dependent proteases
    Curr Opin Struct Biol18, 43-51. PubMed  Europe PubMed DOI  V
  64. Katz,C. and Ron,E.Z.
    Dual role of FtsH in regulating lipopolysaccharide biosynthesis in Escherichia coli
    J Bacteriol190, 7117-7122. PubMed  Europe PubMed DOI
  65. Licht,S. and Lee,I.
    Resolving individual steps in the operation of ATP-dependent proteolytic molecular machines: from conformational changes to substrate translocation and processivity
    Biochemistry47, 3595-3605. PubMed  Europe PubMed DOI
  66. Srinivasan,R., Rajeswari,H. and Ajitkumar,P.
    Analysis of degradation of bacterial cell division protein FtsZ by the ATP-dependent zinc-metalloprotease FtsH in vitro
    Microbiol Res163, 21-30. PubMed  Europe PubMed DOI
  67. van Bloois,E., Dekker,H.L., Froderberg,L., Houben,E.N., Urbanus,M.L., de Koster,C.G., de Gier,J.W. and Luirink,J.
    Detection of cross-links between FtsH, YidC, HflK/C suggests a linked role for these proteins in quality control upon insertion of bacterial inner membrane proteins
    FEBS Lett582, 1419-1424. PubMed  Europe PubMed DOI
  68. 2007
  69. Fuhrer,F., Muller,A., Baumann,H., Langklotz,S., Kutscher,B. and Narberhaus,F.
    Sequence and length recognition of the C-terminal turnover element of LpxC, a soluble substrate of the membrane-bound FtsH protease
    J Mol Biol372, 485-496. PubMed  Europe PubMed DOI
  70. Halder,S., Datta,A.B. and Parrack,P.
    Probing the antiprotease activity of lambdaCIII, an inhibitor of the Escherichia coli metalloprotease HflB (FtsH)
    J Bacteriol189, 8130-8138. PubMed  Europe PubMed DOI
  71. Kobiler,O., Rokney,A. and Oppenheim,A.B.
    Phage lambda CIII: a protease inhibitor regulating the lysis-lysogeny decision
    PLoS ONE2, e363-e363. PubMed  Europe PubMed DOI
  72. 2006
  73. Chiba,S., Ito,K. and Akiyama,Y.
    The Escherichia coli plasma membrane contains two PHB (prohibitin homology) domain protein complexes of opposite orientations
    Mol Microbiol60, 448-457. PubMed  Europe PubMed DOI
  74. Fuhrer,F., Langklotz,S. and Narberhaus,F.
    The C-terminal end of LpxC is required for degradation by the FtsH protease
    Mol Microbiol59, 1025-1036. PubMed  Europe PubMed DOI
  75. Okuno,T., Yamanaka,K. and Ogura,T.
    An AAA protease FtsH can initiate proteolysis from internal sites of a model substrate, apo-flavodoxin
    Genes Cells11, 261-268. PubMed  Europe PubMed DOI
  76. [YEAR:3-3-2006]Okuno,T., Yamanaka,K. and Ogura,T.
    Flavodoxin, a new fluorescent substrate for monitoring proteolytic activity of FtsH lacking a robust unfolding activity
    J Struct Biol156, 115-119. PubMed  Europe PubMed DOI
  77. [YEAR:6-3-2006]Okuno,T., Yamanaka,K. and Ogura,T.
    Characterization of mutants of the Escherichia coli AAA protease, FtsH, carrying a mutation in the central pore region
    J Struct Biol156, 109-114. PubMed  Europe PubMed DOI
  78. 2005
  79. [YEAR:16-3-2005]Ito,K. and Akiyama,Y.
    Cellular functions, mechanism of action, and regulation of FtsH protease
    Annu Rev Microbiol59, 211-231. PubMed  Europe PubMed DOI  V
  80. 2004
  81. Akiyama,Y., Ito,K. and Ogura,T.
    FtsH protease
    [ISSN:0-12-079610-4]2, 794-798.  V
  82. Lithgow,J.K., Ingham,E. and Foster,S.J.
    Role of the hprT-ftsH locus in Staphylococcus aureus
    Microbiology (Reading, Engl )150, 373-381. PubMed  Europe PubMed
  83. Okuno,T., Yamada-Inagawa,T., Karata,K., Yamanaka,K. and Ogura,T.
    Spectrometric analysis of degradation of a physiological substrate sigma32 by Escherichia coli AAA protease FtsH
    J Struct Biol146, 148-154. PubMed  Europe PubMed DOI
  84. Saikawa,N., Akiyama,Y. and Ito,K.
    FtsH exists as an exceptionally large complex containing HflKC in the plasma membrane of Escherichia coli
    J Struct Biol146, 123-129. PubMed  Europe PubMed DOI
  85. 2003
  86. [YEAR:16-5-2003]Akiyama,Y. and Ito,K.
    Reconstitution of membrane proteolysis by FtsH
    J Biol Chem278, 18146-18153. PubMed  Europe PubMed DOI
  87. [YEAR:16-9-2003]Bruckner,R.C., Gunyuzlu,P.L. and Stein,R.L.
    Coupled kinetics of ATP and peptide hydrolysis by Escherichia coli FtsH protease
    Biochemistry42, 10843-10852. PubMed  Europe PubMed DOI
  88. Herman,C., Prakash,S., Lu,C.Z., Matouschek,A. and Gross,C.A.
    Lack of a robust unfoldase activity confers a unique level of substrate specificity to the universal AAA protease FtsH
    Mol Cell11, 659-669. PubMed  Europe PubMed DOI
  89. [YEAR:12-12-2003]Yamada-Inagawa,T., Okuno,T., Karata,K., Yamanaka,K. and Ogura,T.
    Conserved pore residues in the AAA protease FtsH are important for proteolysis and its coupling to ATP hydrolysis
    J Biol Chem278, 50182-50187. PubMed  Europe PubMed DOI
  90. 2002
  91. [YEAR:11-6-2002]Akiyama,Y.
    Proton-motive force stimulates the proteolytic activity of FtsH, a membrane-bound ATP- dependent protease in Escherichiacoli
    Proc Natl Acad Sci U S A99, 8066-8071. PubMed  Europe PubMed DOI
  92. Chiba,S., Akiyama,Y. and Ito,K.
    Membrane protein degradation by FtsH can be initiated from either end
    J Bacteriol184, 4775-4782. PubMed  Europe PubMed DOI
  93. Fischer,B., Rummel,G., Aldridge,P. and Jenal,U.
    The FtsH protease is involved in development, stress response and heat shock control in Caulobacter crescentus
    Mol Microbiol44, 461-478. PubMed  Europe PubMed DOI
  94. Krzywda,S., Brzozowski,A.M., Verma,C., Karata,K., Ogura,T. and Wilkinson,A.J.
    The crystal structure of the AAA domain of the ATP-dependent protease FtsH of Escherichia coli at 1.5 A resolution
    Structure10, 1073-1083. PubMed  Europe PubMed DOI  S
  95. [YEAR:12-2-2002]Saikawa,N., Ito,K. and Akiyama,Y.
    Identification of glutamic acid 479 as the gluzincin coordinator of zinc in FtsH (HflB)
    Biochemistry41, 1861-1868. PubMed  Europe PubMed DOI
  96. 2001
  97. [YEAR:26-6-2001]Akiyama,Y. and Ito,K.
    Roles of homooligomerization and membrane association in ATPase and proteolytic activities of FtsH in vitro
    Biochemistry40, 7687-7693. PubMed  Europe PubMed
  98. Anilkumar,G., Srinivasan,R., Anand,S.P. and Ajitkumar,P.
    Bacterial cell division protein FtsZ is a specific substrate for the AAA family protease FtsH
    Microbiology (Reading, Engl )147, 516-517. PubMed  Europe PubMed
  99. [YEAR:23-3-2001]Bertani,D., Oppenheim,A.B. and Narberhaus,F.
    An internal region of the RpoH heat shock transcription factor is critical for rapid degradation by the FtsH protease
    FEBS Lett493, 17-20. PubMed  Europe PubMed DOI
  100. Cooper,K.W. and Baneyx,F.
    Escherichia coli FtsH (HflB) degrades a membrane-associated TolAI-II-beta-lactamase fusion protein under highly denaturing conditions
    Protein Expr Purif21, 323-332. PubMed  Europe PubMed DOI
  101. Inagawa,T., Kato,J., Niki,H., Karata,K. and Ogura,T.
    Defective plasmid partition in ftsH mutants of Escherichia coli
    Mol Gen Genet265, 755-762. DOI
  102. Karata,K., Verma,C.S., Wilkinson,A.J. and Ogura,T.
    Probing the mechanism of ATP hydrolysis and substrate translocation in the AAA protease FtsH by modelling and mutagenesis
    Mol Microbiol39, 890-903. PubMed  Europe PubMed DOI
  103. Tomoyasu,T., Arsene,F., Ogura,T. and Bukau,B.
    The C terminus of sigma(32) is not essential for degradation by FtsH
    J Bacteriol183, 5911-5917. PubMed  Europe PubMed DOI
  104. 2000
  105. [YEAR:1-8-2000]Akiyama,Y. and Ito,K.
    Roles of multimerization and membrane association in the proteolytic functions of FtsH (HflB)
    EMBO J19, 3888-3895. PubMed  Europe PubMed DOI
  106. Chiba,S., Akiyama,Y., Mori,H., Matsuo,E. and Ito,K.
    Length recognition at the N-terminal tail for the initiation of FtsH-mediated proteolysis
    EMBO Rep1, 47-52. PubMed  Europe PubMed DOI
  107. [YEAR:1-8-2000]Jayasekera,M.M.K., Foltin,S.K., Olson,E.R. and Holler,T.P.
    Escherichia coli requires the protease activity of FtsH for growth
    Arch Biochem Biophys380, 103-107. PubMed  Europe PubMed DOI
  108. Shotland,Y., Shifrin,A., Ziv,T., Teff,D., Koby,S., Kobiler,O. and Oppenheim,A.B.
    Proteolysis of bacteriophage lambda CII by Escherichia coli FtsH (HflB)
    J Bacteriol182, 3111-3116. PubMed  Europe PubMed DOI
  109. [YEAR:16-6-2000]Shotland,Y., Teff,D., Koby,S., Kobiler,O. and Oppenheim,A.B.
    Characterization of a conserved alpha-helical, coiled-coil motif at the C-terminal domain of the ATP-dependent FtsH (HflB) protease of Escherichia coli
    J Mol Biol299, 953-964. PubMed  Europe PubMed DOI
  110. [YEAR:1-2-2000]Teff,D., Koby,S., Shotland,Y., Ogura,T. and Oppenheim,A.B.
    A colicin-tolerant Escherichia coli mutant that confers Hfl phenotype carries two mutations in the region coding for the C-terminal domain of FtsH (HflB)
    FEMS Microbiol Lett183, 115-117. PubMed  Europe PubMed DOI
  111. Urech,C., Koby,S., Oppenheim,A.B., Munchbach,M., Hennecke,H. and Narberhaus,F.
    Differential degradation of Escherichia coli sigma32 and Bradyrhizobium japonicum RpoH factors by the FtsH protease
    Eur J Biochem267, 4831-4839. PubMed  Europe PubMed DOI
  112. 1999
  113. [YEAR:7-9-1999]Akiyama,Y.
    Self-processing of FtsH and its implication for the cleavage specificity of this protease
    Biochemistry38, 11693-11699. PubMed  Europe PubMed DOI
  114. Blaszczak,A., Georgopoulos,C. and Liberek,K.
    On the mechanism of FtsH-dependent degradation of the sigma32 transcriptional regulator of Escherichia coli and the role of the DnaK chaperone machine
    Mol Microbiol31, 157-166. PubMed  Europe PubMed DOI
  115. Carmona,M. and de Lorenzo,V.
    Involvement of the FtsH (HflB) protease in the activity of sigma54 promoters
    Mol Microbiol31, 261-270. PubMed  Europe PubMed DOI
  116. [YEAR:10-9-1999]Karata,K., Inagawa,T., Wilkinson,A.J., Tatsuta,T. and Ogura,T.
    Dissecting the role of a conserved motif (the second region of homology) in the AAA family of ATPases. Site-directed mutagenesis of the ATP-dependent protease FtsH
    J Biol Chem274, 26225-26232. PubMed  Europe PubMed DOI
  117. [YEAR:1-6-1999]Kihara,A., Akiyama,Y. and Ito,K.
    Dislocation of membrane proteins in FtsH-mediated proteolysis
    EMBO J18, 2970-2981. PubMed  Europe PubMed DOI
  118. [YEAR:5-11-1999]Makino,S., Makino,T., Abe,K., Hashimoto,J., Tatsuta,T., Kitagawa,M., Mori,H., Ogura,T., Fujii,T., Fushinobu,S., Wakagi,T., Matsuzawa,H. and Makinoa,T.
    Second transmembrane segment of FtsH plays a role in its proteolytic activity and homo-oligomerization
    FEBS Lett460, 554-558. PubMed  Europe PubMed DOI
  119. Narberhaus,F., Urech,C. and Hennecke,H.
    Characterization of the Bradyrhizobium japonicum ftsH gene and its product
    J Bacteriol181, 7394-7397. PubMed  Europe PubMed
  120. Ogura,T., Inoue,K., Tatsuta,T., Suzaki,T., Karata,K., Young,K., Su,L.H., Fierke,C.A., Jackman,J.E., Raetz,C.R., Coleman,J., Tomoyasu,T. and Matsuzawa,H.
    Balanced biosynthesis of major membrane components through regulated degradation of the committed enzyme of lipid A biosynthesis by the AAA protease FtsH (HflB) in Escherichia coli
    Mol Microbiol31, 833-844. PubMed  Europe PubMed DOI
  121. Schumann,W.
    FtsH - a single-chain charonin?
    FEMS Microbiol Rev23, 1-11. PubMed  Europe PubMed DOI  V
  122. 1998
  123. Akiyama,Y., Ehrmann,M., Kihara,A. and Ito,K.
    Polypeptide binding of Escherichia coli FtsH (HflB)
    Mol Microbiol28, 803-812. PubMed  Europe PubMed DOI
  124. [YEAR:28-8-1998]Akiyama,Y., Kihara,A., Mori,H., Ogura,T. and Ito,K.
    Roles of the periplasmic domain of Escherichia coli FtsH (HflB) in protein interactions and activity modulation
    J Biol Chem273, 22326-22333. PubMed  Europe PubMed DOI
  125. [YEAR:1-5-1998]Herman,C., Thevenet,D., Bouloc,P., Walker,G.C. and D'Ari,R.
    Degradation of carboxy-terminal-tagged cytoplasmic proteins by the Escherichia coli protease HflB (FtsH)
    Genes Dev12, 1348-1355. PubMed  Europe PubMed
  126. [YEAR:29-5-1998]Kihara,A., Akiyama,Y. and Ito,K.
    Different pathways for protein degradation by the FtsH/HflKC membrane-embedded protease complex: An implication from the interference by a mutant form of a new substrate protein, YccA
    J Mol Biol279, 175-188. PubMed  Europe PubMed DOI
  127. Melchers,K., Wiegert,T., Buhmann,A., Postius,S., Schafer,K.P. and Schumann,W.
    The Helicobacter felis ftsH gene encoding an ATP-dependent metalloprotease can replace the Escherichia coli homologue for growth and phage lambda lysogenization
    Arch Microbiol169, 393-396. PubMed  Europe PubMed DOI
  128. Wang,R.F., O'Hara,E.B., Aldea,M., Bargmann,C.I., Gromley,H. and Kushner,S.R.
    Escherichia coli mrsC is an allele of hflB, encoding a membrane-associated ATPase and protease that is required for mRNA decay
    J Bacteriol180, 1929-1938. PubMed  Europe PubMed
  129. 1997
  130. Herman,C., Thevenet,D., D'Ari,R. and Bouloc,P.
    The HflB protease of Escherichia coli degrades its inhibitor lambda CIII
    J Bacteriol179, 358-363. PubMed  Europe PubMed
  131. Kihara,A., Akiyama,Y. and Ito,K.
    Host regulation of lysogenic decision in bacteriophage lambda: transmembrane modulation of FtsH (HflB), the cII degrading protease, by HflKC (HflA)
    Proc Natl Acad Sci U S A94, 5544-5549. PubMed  Europe PubMed DOI
  132. Lupas,A., Flanagan,J.M., Tamura,T. and Baumeister,W.
    Self-compartmentalizing proteases
    Trends Biochem Sci22, 399-404. PubMed  Europe PubMed DOI
  133. Makino,S., Qu,J.N., Uemori,K., Ichikawa,H., Ogura,T. and Matsuzawa,H.
    A silent mutation in the ftsh gene of Escherichia coli that affects ftsH protein production and colicin tolerance
    Mol Gen Genet254, 578-583. PubMed  Europe PubMed DOI
  134. Shotland,Y., Koby,S., Teff,D., Mansur,N., Oren,D.A., Tatematsu,K., Tomoyasu,T., Kessel,M., Bukau,B., Ogura,T. and Oppenheim,A.B.
    Proteolysis of the phage lambda CII regulatory protein by FtsH (HflB) of Escherichia coli
    Mol Microbiol24, 1303-1310. PubMed  Europe PubMed
  135. Suzuki,C.K., Rep,M., van Dijl,J.M., Suda,K., Grivell,L.A. and Schatz,G.
    ATP-dependent proteases that also chaperone protein biogenesis
    Trends Biochem Sci22, 118-123. PubMed  Europe PubMed DOI  V
  136. 1996
  137. Akiyama,Y., Kihara,A. and Ito,K.
    Subunit a of proton ATPase F0 sector is a substrate of the FtsH protease in Escherichia coli
    FEBS Lett399, 26-28. PubMed  Europe PubMed DOI
  138. Akiyama,Y., Kihara,A., Tokuda,H. and Ito,K.
    FtsH (HflB) is an ATP-dependent protease selectively acting on SecY and some other membrane proteins
    J Biol Chem271, 31196-31201. PubMed  Europe PubMed DOI
  139. Gottesman,S.
    Proteases and their targets in Escherichia coli
    Annu Rev Genet30, 465-506. PubMed  Europe PubMed DOI  V
  140. Kihara,A., Akiyama,Y. and Ito,K.
    A protease complex in the Escherichia coli plasma membrane: HflKC (HflA) forms a complex with FtsH (HflB), regulating its proteolytic activity against SecY
    EMBO J15, 6122-6131. PubMed  Europe PubMed
  141. Qu,J.N., Makino,S.I., Adachi,H., Koyama,Y., Akiyama,Y., Ito,K., Tomoyasu,T., Ogura,T. and Matsuzawa,H.
    The tolZ gene of Escherichia coli is identified as the ftsH gene
    J Bacteriol178, 3457-3461. PubMed  Europe PubMed
  142. Tsui,H.C., Feng,G. and Winkler,M.E.
    Transcription of the mutL repair, miaA tRNA modification, hfq pleiotropic regulator, and hflA region protease genes of Escherichia coli K-12 from clustered Esigma32-specific promoters during heat shock
    J Bacteriol178, 5719-5731. PubMed  Europe PubMed
  143. 1995
  144. Akiyama,Y., Yoshihisa,T. and Ito,K.
    FtsH, a membrane-bound ATPase, forms a complex in the cytoplasmic membrane of Escherichia coli
    J Biol Chem270, 23485-23490. PubMed  Europe PubMed DOI
  145. Havarstein,L.S., Diep,D.B. and Nes,I.F.
    A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export
    Mol Microbiol16, 229-240. PubMed  Europe PubMed DOI
  146. Herman,C., Thevenet,D., D'Ari,R. and Bouloc,P.
    Degradation of sigma 32, the heat shock regulator in Escherichia coli, is governed by HflB
    Proc Natl Acad Sci U S A92, 3516-3520. PubMed  Europe PubMed
  147. Kihara,A., Akiyama,Y. and Ito,K.
    FtsH is required for proteolytic elimination of uncomplexed forms of SecY, an essential protein translocase subunit
    Proc Natl Acad Sci U S A92, 4532-4536. PubMed  Europe PubMed
  148. Tomoyasu,T., Gamer,J., Bukau,B., Kanemori,M., Mori,H., Rutman,A.J., Oppenheim,A.B., Yura,T., Yamanaka,K., Niki,H., Hiraga,S. and Ogura,T.
    Escherichia coli FtsH is a membrane-bound, ATP-dependent protease which degrades the heat-shock transcription factor sigma32
    EMBO J14, 2551-2560. PubMed  Europe PubMed
  149. 1994
  150. Akiyama,Y., Ogura,T. and Ito,K.
    Involvement of FtsH in protein assembly into and through the membrane. I. Mutations that reduce retention efficiency of a cytoplasmic reporter
    J Biol Chem269, 5218-5224. PubMed  Europe PubMed
  151. Akiyama,Y., Shirai,Y. and Ito,K.
    Involvement of FtsH in protein assembly into and through the membrane. II. Dominant mutations affecting FtsH functions
    J Biol Chem269, 5225-5229. PubMed  Europe PubMed
  152. 1993
  153. Herman,C., Ogura,T., Tomoyasu,T., Hiraga,S., Akiyama,Y., Ito,K., Thomas,R., D'Ari,R. and Bouloc,P.
    Cell growth and lambda phage development controlled by the same essential Escherichia coli gene, ftsH/hflB
    Proc Natl Acad Sci U S A90, 10861-10865. PubMed  Europe PubMed DOI
  154. Noble,J.A., Innis,M.A., Koonin,E.V., Rudd,K.E., Banuett,F. and Herskowitz,I.
    The Escherichia coli hflA locus encodes a putative GTP-binding protein and two membrane proteins, one of which contains a protease-like domain
    Proc Natl Acad Sci U S A90, 10866-10870. PubMed  Europe PubMed DOI
  155. Tomoyasu,T., Yamanaka,K., Murata,K., Suzaki,T., Bouloc,P., Kato,A., Niki,H., Hiraga,S. and Ogura,T.
    Topology and subcellular localization of FtsH protein in Escherichia coli
    J Bacteriol175, 1352-1357. PubMed  Europe PubMed
  156. Tomoyasu,T., Yuki,T., Morimura,S., Mori,H., Yamanaka,K., Niki,H., Hiraga,S. and Ogura,T.
    The Escherichia coli FtsH protein is a prokaryotic member of a protein family of putative ATPases involved in membrane functions, cell cycle control, and gene expression
    J Bacteriol175, 1344-1351. PubMed  Europe PubMed
  157. 1992
  158. Begg,K.J., Tomoyasu,T., Donachie,W.D., Khattar,M., Niki,H., Yamanaka,K., Hiraga,S. and Ogura,T.
    Escherichia coli mutant Y16 is a double mutant carrying thermosensitive ftsH and ftsI mutations
    J Bacteriol174, 2416-2417. PubMed  Europe PubMed
  159. 1988
  160. Cheng,H.H., Muhlrad,P.J., Hoyt,M.A. and Echols,H.
    Cleavage of the cII protein of phage lambda by purified HflA protease: control of the switch between lysis and lysogeny
    Proc Natl Acad Sci U S A85, 7882-7886. PubMed  Europe PubMed