Literature for peptidase M04.001: thermolysin

Summary Alignment Tree Sequences Sequence features Distribution Structure Literature Substrates Pharma

(Topics flags: A Assay, S Structure, P Specificity, I Inhibitor, E Expression, V Review. To select only the references relevant to a single topic, click the link above. See explanation.)

    2024
  1. Canizares-Carmenate,Y., Perera-Sardina,Y., Marrero-Ponce,Y., Diaz-Amador,R., Torrens,F. and Castillo-Garit,J.A.
    Ligand and structure-based discovery of phosphorus-containing compounds as potential metalloproteinase inhibitors
    SAR QSAR Environ Res35, 219-240. PubMed  Europe PubMed DOI  I
  2. Jiang,X., Yeung,D., Liu,Y., Spicer,V., Afshari,H., Lao,Y., Lin,F., Krokhin,O. and Zahedi,R.P.
    Accelerating Proteomics Using Broad Specificity Proteases
    J Proteome Res23, 1360-1369. PubMed  Europe PubMed DOI
  3. 2023
  4. Berdyshev,I.M., Svetlova,A.O., Chukhontseva,K.N., Karaseva,M.A., Varizhuk,A.M., Filatov,V.V., Kleymenov,S.Y., Kostrov,S.V. and Demidyuk,I.V.
    Production and Characterization of Photorin, a Novel Proteinaceous Protease Inhibitor from the Entomopathogenic Bacteria Photorhabdus laumondii
    Biochemistry (Mosc)88, 1356-1367. PubMed  Europe PubMed DOI
  5. Peng,S., Li,H., Zhang,S., Zhang,R., Cheng,X. and Li,K.
    Isolation of a novel feather-degrading Ectobacillus sp. JY-23 strain and characterization of a new keratinase in the M4 metalloprotease family
    Microbiol Res274, 127439-127439. PubMed  Europe PubMed DOI
  6. 2021
  7. Dong,M.
    A Minireview on Temperature Dependent Protein Conformational Sampling
    Protein J PubMed  Europe PubMed DOI  V
  8. 2020
  9. Dong,M., Lauro,M.L., Koblish,T.J. and Bahnson,B.J.
    Conformational sampling and kinetics changes across a non-Arrhenius break point in the enzyme thermolysin
    Struct Dyn7, 014101-014101. PubMed  Europe PubMed DOI
  10. Fiebig,D., Anderl,A., Al Djaizani,S., Kolmar,H. and Fuchsbauer,H.L.
    Dissecting capture and twisting of aureolysin and pseudolysin: functional amino acids of the Dispase autolysis-inducing protein
    Biochem J477, 2595-2606. PubMed  Europe PubMed DOI
  11. Hernandez-Corroto,E., Sanchez-Milla,M., Sanchez-Nieves,J., de la Mata,F.J., Marina,M.L. and Garcia,M.C.
    Immobilization of thermolysin enzyme on dendronized silica supports. Evaluation of its feasibility on multiple protein hydrolysis cycles
    Int J Biol Macromol165, 2338-2348. PubMed  Europe PubMed DOI
  12. Nam,K.H.
    Structural analysis of metal chelation of the metalloproteinase thermolysin by 1,10-phenanthroline
    J Inorg Biochem215, 111319-111319. PubMed  Europe PubMed DOI  I
  13. 2019
  14. Eisenhardt,M., Schlupp,P., Hofer,F., Schmidts,T., Hoffmann,D., Czermak,P., Poppel,A.K., Vilcinskas,A. and Runkel,F.
    The therapeutic potential of the insect metalloproteinase inhibitor against infections caused by Pseudomonas aeruginosa
    J Pharm Pharmacol71, 316-328. PubMed  Europe PubMed DOI
  15. Kovalchuk,M.V., Boikova,A.S., Dyakova,Y.A., Ilina,K.B., Konarev,P.V., Kryukova,A.E., Marchenkova,M.A., Pisarevsky,Y.V. and Timofeev,V.I.
    Pre-crystallization phase formation of thermolysin hexamers in solution close to crystallization conditions
    J Biomol Struct Dyn37, 3058-3064. PubMed  Europe PubMed DOI
  16. Leite,J.P. and Gales,L.
    Alzheimer's Abeta1-40 peptide degradation by thermolysin: evidence of inhibition by a C-terminal Abeta product
    FEBS Lett593, 128-137. PubMed  Europe PubMed DOI
  17. 2018
  18. Contesini,F.J., Melo,R.R. and Sato,H.H.
    An overview of Bacillus proteases: from production to application
    Crit Rev Biotechnol38, 321-334. PubMed  Europe PubMed DOI
  19. 2017
  20. Cramer,J., Krimmer,S.G., Fridh,V., Wulsdorf,T., Karlsson,R., Heine,A. and Klebe,G.
    Elucidating the origin of long residence time binding for inhibitors of the metalloprotease thermolysin
    ACS Chem Biol12, 225-233. PubMed  Europe PubMed DOI  I
  21. Cramer,J., Krimmer,S.G., Heine,A. and Klebe,G.
    Paying the price of desolvation in solvent-exposed protein pockets: impact of distal solubilizing groups on affinity and binding thermodynamics in a series of thermolysin inhibitors
    J Med Chem60, 5791-5799. PubMed  Europe PubMed DOI  I
  22. Hang,F., Wang,Q., Hong,Q., Gao,C., Zhang,H. and Chen,W.
    Structural insight into a novel neutral metalloproteinase from Paenibacillus spp. BD3526: implications for mechanisms of rapid inactivation and calcium-dependent stability
    Int J Biol Macromol95, 1082-1090. PubMed  Europe PubMed DOI
  23. Krimmer,S.G., Cramer,J., Schiebel,J., Heine,A. and Klebe,G.
    How nothing boosts affinity: hydrophobic ligand binding to the virtually vacated S1' pocket of thermolysin
    J Am Chem Soc139, 10419-10431. PubMed  Europe PubMed DOI
  24. Naitow,H., Matsuura,Y., Tono,K., Joti,Y., Kameshima,T., Hatsui,T., Yabashi,M., Tanaka,R., Tanaka,T., Sugahara,M., Kobayashi,J., Nango,E., Iwata,S. and Kunishima,N.
    Protein-ligand complex structure from serial femtosecond crystallography using soaked thermolysin microcrystals and comparison with structures from synchrotron radiation
    Acta Crystallogr D Struct Biol73, 702-709. PubMed  Europe PubMed DOI  S
  25. 2016
  26. Betz,M., Wulsdorf,T., Krimmer,S.G. and Klebe,G.
    Impact of surface water layers on protein-ligand binding: how well are experimental data reproduced by molecular dynamics simulations in a thermolysin test case?
    J Chem Inf Model56, 223-233. PubMed  Europe PubMed DOI  I
  27. Hang,F., Wang,Q., Hong,Q., Liu,P., Wu,Z., Liu,Z., Zhang,H. and Chen,W.
    Purification and characterization of a novel milk-clotting metalloproteinase from Paenibacillus spp. BD3526
    Int J Biol Macromol85, 547-554. PubMed  Europe PubMed DOI
  28. Krimmer,S.G., Cramer,J., Betz,M., Fridh,V., Karlsson,R., Heine,A. and Klebe,G.
    Rational design of thermodynamic and kinetic binding profiles by optimizing surface water networks coating protein-bound ligands
    J Med Chem59, 10530-10548. PubMed  Europe PubMed DOI  I
  29. Sjoli,S., Nuti,E., Camodeca,C., Bilto,I., Rossello,A., Winberg,J.O., Sylte,I. and Adekoya,O.A.
    Synthesis, experimental evaluation and molecular modelling of hydroxamate derivatives as zinc metalloproteinase inhibitors
    Eur J Med Chem108, 141-153. PubMed  Europe PubMed DOI  I
  30. Zhu,F., Zhuang,Y., Wu,B., Li,J. and He,B.
    Rational substitution of surface acidic residues for enhancing the thermostability of thermolysin
    Appl Biochem Biotechnol178, 725-738. PubMed  Europe PubMed DOI
  31. 2015
  32. Adekoya,O.A., Sjoli,S., Wuxiuer,Y., Bilto,I., Marques,S.M., Santos,M.A., Nuti,E., Cercignani,G., Rossello,A., Winberg,J.-O. and Sylte,I.
    Inhibition of pseudolysin and thermolysin by hydroxamate-based MMP inhibitors
    Eur J Med Chem89, 340-348. PubMed  Europe PubMed DOI  I
  33. Kong,L., Lu,A., Guan,J., Yang,B., Li,M., Hillyer,J.F., Ramarao,N., Soderhall,K., Liu,C. and Ling,E.
    Thermolysin damages animal life through degradation of plasma proteins enhanced by rapid cleavage of serpins and activation of proteases
    Arch Insect Biochem Physiol88, 64-84. PubMed  Europe PubMed DOI
  34. Nasief,N.N. and Hangauer,D.
    Additivity or cooperativity: which model can predict the influence of simultaneous incorporation of two or more functionalities in a ligand molecule?
    Eur J Med Chem90, 897-915. PubMed  Europe PubMed DOI  I
  35. 2014
  36. Birrane,G., Bhyravbhatla,B. and Navia,M.A.
    Synthesis of aspartame by thermolysin: an X-ray structural study
    ACS Med Chem Lett5, 706-710. PubMed  Europe PubMed DOI
  37. Kasper,J.R., Andrews,E.C. and Park,C.
    Product inhibition in native-state proteolysis
    PLoS ONE9, e111416-e111416. PubMed  Europe PubMed DOI
  38. Kim,C.-J., Lee,D.-I., Lee,C.-H. and Ahn,I.-S.
    Dityrosine-based substrates for the selective and sensitive assay of thermolysin
    J Ind Eng Chem21, 248-253. DOI  A
  39. Kojima,K., Nakata,H. and Inouye,K.
    Involvement of Val 315 located in the C-terminal region of thermolysin in its expression in Escherichia coli and its thermal stability
    Biochim Biophys Acta1844, 330-338. PubMed  Europe PubMed DOI  E
  40. Krimmer,S.G., Betz,M., Heine,A. and Klebe,G.
    Methyl, ethyl, propyl, butyl: futile but not for water, as the correlation of structure and thermodynamic signature shows in a congeneric series of thermolysin inhibitors
    ChemMedChem9, 833-846. PubMed  Europe PubMed DOI  I
  41. Samukange,V., Kamo,M., Yasukawa,K. and Inouye,K.
    Effects of salts on the interaction of 8-anilinonaphthalene 1-sulphonate and thermolysin
    Biosci Biotechnol Biochem78, 1522-1528. PubMed  Europe PubMed DOI
  42. 2013
  43. Furukawa,S., Hasegawa,K., Fuke,I., Kittaka,K., Nakakoba,T., Goto,M. and Kamiya,N.
    Enzymatic synthesis of Z-aspartame in liquefied amino acid substrates
    Biochem Eng J70, 84-87. DOI
  44. Kawasaki,Y., Yasukawa,K. and Inouye,K.
    Effects of site-directed mutagenesis in the N-terminal domain of thermolysin on its stabilization
    J Biochem153, 85-92. PubMed  Europe PubMed DOI
  45. Ke,Q., Chen,A., Minoda,M. and Yoshida,H.
    Safety evaluation of a thermolysin enzyme produced from Geobacillus stearothermophilus
    Food Chem Toxicol59, 541-548. PubMed  Europe PubMed DOI
  46. Menach,E., Hashida,Y., Yasukawa,K. and Inouye,K.
    Effects of conversion of the zinc-binding motif sequence of thermolysin, HEXXH, to that of dipeptidyl peptidase III, HEXXXH, on the activity and stability of thermolysin
    Biosci Biotechnol Biochem77, 1901-1906. PubMed  Europe PubMed DOI
  47. Menach,E., Yasukawa,K. and Inouye,K.
    Effects of mutations of thermolysin, Asn116 to Asp and Asp150 to Glu, on salt-induced activation and stabilization
    Biosci Biotechnol Biochem77, 741-746. PubMed  Europe PubMed DOI
  48. Ruf,A., Stihle,M., Benz,J., Schmidt,M. and Sobek,H.
    Structure of gentlyase, the neutral metalloprotease of Paenibacillus polymyxa
    Acta Crystallogr D Biol Crystallogr69, 24-31. PubMed  Europe PubMed DOI  S
  49. 2012
  50. Balamurugan,A.N., Loganathan,G., Bellin,M.D., Wilhelm,J.J., Harmon,J., Anazawa,T., Soltani,S.M., Radosevich,D.M., Yuasa,T., Tiwari,M., Papas,K.K., McCarthy,R., Sutherland,D.E. and Hering,B.J.
    A new enzyme mixture to increase the yield and transplant rate of autologous and allogeneic human islet products
    Transplantation93, 693-702. PubMed  Europe PubMed DOI
  51. Biela,A., Betz,M., Heine,A. and Klebe,G.
    Water makes the difference: rearrangement of water solvation layer triggers non-additivity of functional group contributions in protein-ligand binding
    ChemMedChem7, 1423-1434. PubMed  Europe PubMed DOI  I
  52. Ceruso,M., Howe,N. and Malthouse,J.P.
    Mechanism of the binding of Z-L-tryptophan and Z-L-phenylalanine to thermolysin and stromelysin-1 in aqueous solutions
    Biochim Biophys Acta1824, 303-310. PubMed  Europe PubMed DOI
  53. Chen,F., Zhang,F., Du,F., Wang,A., Gao,W., Wang,Q., Yin,X. and Xie,T.
    A novel and efficient method for the immobilization of thermolysin using sodium chloride salting-in and consecutive microwave irradiation
    Bioresour Technol115, 158-163. PubMed  Europe PubMed DOI
  54. David,A.E., Gong,J., Chertok,B., Domszy,R.C., Moon,C., Park,Y.S., Wang,N.S., Yang,A.J. and Yang,V.C.
    Immobilized thermolysin for highly efficient production of low-molecular-weight protamine - an attractive cell-penetrating peptide for macromolecular drug delivery applications
    J Biomed Mater Res A100, 211-219. PubMed  Europe PubMed DOI
  55. Hirakawa,T., Fujita,S., Ohyama,T., Dedachi,K., Khan,M.T., Sylte,I. and Kurita,N.
    Specific interactions and binding energies between thermolysin and potent inhibitors: molecular simulations based on ab initio molecular orbital method
    J Mol Graph Model33, 1-11. PubMed  Europe PubMed DOI  I
  56. Khan,M.T.H., Wuxiuer,Y. and Sylte,I.
    Binding modes and pharmacophore modelling of thermolysin inhibitors
    Mini Rev Med Chem12, 515-533. PubMed  Europe PubMed  I
  57. Lousa,D., Baptista,A.M. and Soares,C.M.
    Analyzing the molecular basis of enzyme stability in ethanol/water mixtures using molecular dynamics simulations
    J Chem Inf Model52, 465-473. PubMed  Europe PubMed DOI
  58. Menach,E., Yasukawa,K. and Inouye,K.
    Effects of site-directed mutagenesis of Asn116 in the beta-hairpin of the N-terminal domain of thermolysin on its activity and stability
    J Biochem152, 231-239. PubMed  Europe PubMed DOI
  59. Nasief,N.N., Tan,H., Kong,J. and Hangauer,D.
    Water mediated ligand functional group cooperativity: the contribution of a methyl group to binding affinity is enhanced by a COO(-) group through changes in the structure and thermodynamics of the hydration waters of ligand-thermolysin complexes
    J Med Chem55, 8283-8302. PubMed  Europe PubMed DOI  I
  60. Van Den Burg,B. and Eijsink,V.
    Thermolysin and related Bacillus metallopeptidases
    [ISSN:978-0-12-407744-7]3, 540-553. DOI
  61. 2011
  62. Antunez,K., Arredondo,D., Anido,M. and Zunino,P.
    Metalloprotease production by Paenibacillus larvae during the infection of honeybee larvae
    Microbiology (Reading)157, 1474-1480. PubMed  Europe PubMed DOI
  63. Arolas,J.L., Botelho,T.O., Vilcinskas,A. and Gomis-Ruth,F.X.
    Structural evidence for standard-mechanism inhibition in metallopeptidases from a complex poised to resynthesize a peptide bond
    Angew Chem Int Ed Engl50, 10357-10360. PubMed  Europe PubMed DOI  S
  64. Dedachi,K., Hirakawa,T., Fujita,S., Khan,M.T., Sylte,I. and Kurita,N.
    Specific interactions and binding free energies between thermolysin and dipeptides: Molecular simulations combined with Ab initio molecular orbital and classical vibrational analysis
    J Comput Chem32, 3047-3057. PubMed  Europe PubMed DOI
  65. Ghale,G., Ramalingam,V., Urbach,A.R. and Nau,W.M.
    Determining protease substrate selectivity and inhibition by label-free supramolecular tandem enzyme assays
    J Am Chem Soc133, 7528-7535. PubMed  Europe PubMed DOI  A
  66. Tian,G.R., Wang,S.H., Wang,S.F., Meng,L.Q., Li,H., Zeng,Z.H. and Jin,J.Y.
    Nitro-based inhibitors against thermolysin
    MedChemComm2, 698-700. DOI  I
  67. 2010
  68. Englert,L., Biela,A., Zayed,M., Heine,A., Hangauer,D. and Klebe,G.
    Displacement of disordered water molecules from hydrophobic pocket creates enthalpic signature: binding of phosphonamidate to the S1'-pocket of thermolysin
    Biochim Biophys Acta1800, 1192-1202. PubMed  Europe PubMed DOI  S  I
  69. Guilbaud,J.B., Vey,E., Boothroyd,S., Smith,A.M., Ulijn,R.V., Saiani,A. and Miller,A.F.
    Enzymatic catalyzed synthesis and triggered gelation of ionic peptides
    Langmuir26, 11297-11303. PubMed  Europe PubMed DOI
  70. Khan,M.T., Khan,R., Wuxiuer,Y., Arfan,M., Ahmed,M. and Sylte,I.
    Identification of novel quinazolin-4(3H)-ones as inhibitors of thermolysin, the prototype of the M4 family of proteinases
    Bioorg Med Chem18, 4317-4327. PubMed  Europe PubMed DOI  I
  71. Kusano,M., Yasukawa,K. and Inouye,K.
    Effects of the mutational combinations on the activity and stability of thermolysin
    J Biotechnol147, 7-16. PubMed  Europe PubMed DOI  E
  72. Menach,E., Yasukawa,K. and Inouye,K.
    Effects of site-directed mutagenesis of the loop residue of the N-terminal domain Gly117 of thermolysin on its catalytic activity
    Biosci Biotechnol Biochem74, 2457-2462. PubMed  Europe PubMed DOI
  73. 2009
  74. Khan,M.T., Fuskevag,O.M. and Sylte,I.
    Discovery of potent thermolysin inhibitors using structure based virtual screening and binding assays
    J Med Chem52, 48-61. PubMed  Europe PubMed DOI  I
  75. Kusano,M., Yasukawa,K. and Inouye,K.
    Insights into the catalytic roles of the polypeptide regions in the active site of thermolysin and generation of the thermolysin variants with high activity and stability
    J Biochem145, 103-113. PubMed  Europe PubMed DOI
  76. Marguerre,A.K. and Kramer,R.
    Lanthanide-based fluorogenic peptide substrate for the highly sensitive detection of thermolysin
    Bioorg Med Chem Lett19, 5757-5759. PubMed  Europe PubMed DOI  A
  77. Wu,R., Hu,P., Wang,S., Cao,Z. and Zhang,Y.
    Flexibility of catalytic zinc coordination in thermolysin and HDAC8: a Born-Oppenheimer ab initio QM/MM molecular dynamics study
    J Chem Theory Comput6, 337-337. PubMed  Europe PubMed DOI  S
  78. 2008
  79. Dong,M. and Liu,H.
    Origins of the different metal preferences of Escherichia coli peptide deformylase and Bacillus thermoproteolyticus thermolysin: a comparative quantum mechanical/molecular mechanical study
    J Phys Chem B112, 10280-10290. PubMed  Europe PubMed DOI
  80. Liu,Y.H. and Konermann,L.
    Conformational dynamics of free and catalytically active thermolysin are indistinguishable by hydrogen/deuterium exchange mass spectrometry
    Biochemistry47, 6342-6351. PubMed  Europe PubMed DOI
  81. Takita,T., Aono,T., Sakurama,H., Itoh,T., Wada,T., Minoda,M., Yasukawa,K. and Inouye,K.
    Effects of introducing negative charges into the molecular surface of thermolysin by site-directed mutagenesis on its activity and stability
    Biochim Biophys Acta1784, 481-488. PubMed  Europe PubMed DOI
  82. 2007
  83. Mitchell,J.K., Pitcher,D., McArdle,B.M., Alnefelt,T., Duffy,S., Avery,V. and Quinn,R.J.
    Identifying common metalloprotease inhibitors by protein fold types using Fourier transform mass spectrometry
    Bioorg Med Chem Lett17, 6521-6524. PubMed  Europe PubMed DOI  I
  84. Owen,J.P., Maddison,B.C., Whitelam,G.C. and Gough,K.C.
    Use of thermolysin in the diagnosis of prion diseases
    Mol Biotechnol35, 161-170. PubMed  Europe PubMed DOI
  85. [YEAR:18-9-2007]Yasukawa,K. and Inouye,K.
    Improving the activity and stability of thermolysin by site-directed mutagenesis
    Biochim Biophys Acta1774, 1281-1288.
  86. Yasukawa,K., Kusano,M. and Inouye,K.
    A new method for the extracellular production of recombinant thermolysin by co-expressing the mature sequence and pro-sequence in Escherichia coli
    Protein Eng Des Sel20, 375-383. PubMed  Europe PubMed DOI  E
  87. 2006
  88. [YEAR:1-5-2006]Weimer,S., Oertel,K. and Fuchsbauer,H.L.
    A quenched fluorescent dipeptide for assaying dispase- and thermolysin-like proteases
    Anal Biochem352, 110-119. PubMed  Europe PubMed DOI  A
  89. 2005
  90. Oda,K., Takahashi,T., Takada,K., Tsunemi,M., Ng,K.K., Hiraga,K. and Harada,S.
    Exploring the subsite-structure of vimelysin and thermolysin using FRETS-libraries
    FEBS Lett579, 5013-5018. PubMed  Europe PubMed DOI  P
  91. 2004
  92. [YEAR:30-4-2004]Kim,J. and Sieburth,S.M.
    A silanediol inhibitor of the metalloprotease thermolysin: synthesis and comparison with a phosphinic acid inhibitor
    J Org Chem69, 3008-3014. PubMed  Europe PubMed DOI  I
  93. Matsumiya,Y., Nishikawa,K., Aoshima,H., Inouye,K. and Kubo,M.
    Analysis of autodegradation sites of thermolysin and enhancement of its thermostability by modifying Leu155 at an autodegradation site
    J Biochem135, 547-553. PubMed  Europe PubMed DOI
  94. Van Den Burg,B. and Eijsink,V.
    Thermolysin and related Bacillus metallopeptidases
    [ISSN:0-12-079610-4]2, 374-387.  V
  95. 2003
  96. Selkti,M., Tomas,A., Gaucher,J.F., Prange,T., Fournie-Zaluski,M.C., Chen,H. and Roques,B.P.
    Interactions of a new alpha-aminophosphinic derivative inside the active site of TLN (thermolysin): a model for zinc-metalloendopeptidase inhibition
    Acta Crystallogr D Biol Crystallogr59, 1200-1205. PubMed  Europe PubMed DOI  I
  97. Younus,H., Schops,R., Lerchner,A., Rucknagel,K.P., Schierhorn,A., Saleemuddin,M. and Ulbrich-Hofmann,R.
    Proteolytic sensitivity of a recombinant phospholipase D from cabbage: identification of loop regions and conformational changes
    J Protein Chem22, 499-508. PubMed  Europe PubMed DOI  P
  98. 2002
  99. Gaucher,J.F., Selkti,M., Prange,T. and Tomas,A.
    The 2.2 A resolution structure of thermolysin (TLN) crystallized in the presence of potassium thiocyanate
    Acta Crystallogr D Biol Crystallogr58, 2198-2200. PubMed  Europe PubMed DOI  S
  100. Hausrath,A.C. and Matthews,B.W.
    Thermolysin in the absence of substrate has an open conformation
    Acta Crystallogr D Biol Crystallogr58, 1002-1007. PubMed  Europe PubMed DOI  S
  101. Kim,J., Glekas,A. and Sieburth,S.
    Silanediol-based inhibitor of thermolysin
    Bioorg Med Chem Lett12, 3625-3627. PubMed  Europe PubMed DOI  I
  102. Muta,Y. and Inouye,K.
    Inhibitory effects of alcohols on thermolysin activity as examined using a fluorescent substrate
    J Biochem132, 945-951. PubMed  Europe PubMed
  103. 2001
  104. de Kreij,A., Van Den Burg,B., Veltman,O.R., Vriend,G., Venema,G. and Eijsink,V.G.H.
    The effect of changing the hydrophobic S1' subsite of thermolysin-like proteases on substrate specificity
    Eur J Biochem268, 4985-4991. PubMed  Europe PubMed DOI
  105. [YEAR:7-5-2001]De Martin,L., Ebert,C., Gardossi,L. and Linda,P.
    High isolated yields in thermolysin-catalysed synthesis of Z-L-aspartyl-L-phenylalanine methyl ester in toluene at controlled water activity
    Tetrahedron Lett42, 3395-3397.
  106. Eijsink,V.G.H., Vriend,G. and Van Den Burg,B.
    Engineering a hyperstable enzyme by manipulation of early steps in the unfolding process
    Biocatal Biotransformation19, 443-458.
  107. Kuzuya,K. and Inouye,K.
    Effects of cobalt-substitution of the active zinc ion in thermolysin on its activity and active-site microenvironment
    J Biochem130, 783-788. PubMed  Europe PubMed  I
  108. [YEAR:5-9-2001]Murakami,Y., Chiba,K., Oda,T. and Hirata,A.
    Novel kinetic analysis of enzymatic dipeptide synthesis: effect of pH and substrates on thermolysin catalysis
    Biotechnol Bioeng74, 406-415. PubMed  Europe PubMed DOI
  109. 2000
  110. [YEAR:6-10-2000]de Kreij,A., Venema,G. and Van Den Burg,B.
    Substrate specificity in the highly heterogeneous M4 peptidase family is determined by a small subset of amino acids
    J Biol Chem275, 31115-31120. PubMed  Europe PubMed DOI
  111. 1999
  112. Baltora-Rosset,S., Aboubeker,A., Dupradeau,F.Y., Pauthe,E., Gacel,G.A., Larreta-Garde,V. and Monti,J.P.
    Structural studies by 1H NMR and molecular modeling of peptide substrates of thermolysin in relation with its proteasic activity in water and glycerol
    J Biomol Struct Dyn16, 1061-1074. PubMed  Europe PubMed DOI
  113. [YEAR:1-12-1999]English,A.C., Done,S.H., Caves,L.S., Groom,C.R. and Hubbard,R.E.
    Locating interaction sites on proteins: The crystal structure of thermolysin soaked in 2% to 100% isopropanol
    Proteins37, 628-640. PubMed  Europe PubMed DOI  S
  114. Makarova,K.S. and Grishin,N.V.
    Thermolysin and mitochondrial processing peptidase: how far structure-functional convergence goes
    Protein Sci8, 2537-2540. PubMed  Europe PubMed DOI
  115. [YEAR:5-2-1999]Marie-Claire,C., Ruffet,E., Beaumont,A. and Roques,B.P.
    The prosequence of thermolysin acts as an intramolecular chaperone when expressed in trans with the mature sequence in Escherichia coli
    J Mol Biol285, 1911-1915. PubMed  Europe PubMed DOI  E
  116. Pauthe,E., Dauchez,M., Mejri,M., Berjot,M., Mathlouthi,M., Larreta-Garde,V. and Alix,A.J.P.
    Structural studies of a small (linear, cyclic) peptide as a synthetic substrate for thermolysin
    J Mol Struct480-481, 423-426. DOI
  117. 1998
  118. [YEAR:14-10-1998]Inouye,K., Kuzuya,K. and Tonomura,B.
    Sodium chloride enhances markedly the thermal stability of thermolysin as well as its catalytic activity
    Biochim Biophys Acta1388, 209-214. PubMed  Europe PubMed DOI
  119. Inouye,K., Lee,S.B. and Tonomura,B.
    Effects of nitration and amination of tyrosyl residues in thermolysin on its hydrolytic activity and its remarkable activation by salts
    J Biochem124, 72-78. PubMed  Europe PubMed
  120. Inouye,K., Kuzuya,K. and Tonomura,B.
    Effect of salts on the solubility of thermolysin: A remarkable increase in the solubility as well as the activity by the addition of salts without aggregation or dispersion of thermolysin
    J Biochem123, 847-852. PubMed  Europe PubMed
  121. Inouye,K., Mazda,N. and Kubo,M.
    Need for aromatic residue at position 115 for proteolytic activity found by site-directed mutagenesis of tryptophan 115 in thermolysin
    Biosci Biotechnol Biochem62, 798-800. PubMed  Europe PubMed
  122. Lee,K.J. and Kim,D.H.
    Inhibition of thermolysin with nitrone-bearing substrate analogs: a new type of thermolysin inhibitors
    Bioorg Med Chem Lett8, 323-326. PubMed  Europe PubMed DOI  I
  123. [YEAR:6-11-1998]Marie-Claire,C., Ruffet,E., Tiraboschi,G. and Fournie-Zaluski,M.C.
    Differences in transition state stabilization between thermolysin (EC 3.4.24.27) and neprilysin (EC 3.4.24.11)
    FEBS Lett438, 215-219. PubMed  Europe PubMed DOI
  124. [YEAR:6-3-1998]Marie-Claire,C., Roques,B.P. and Beaumont,A.
    Intramolecular processing of prothermolysin
    J Biol Chem273, 5697-5701. PubMed  Europe PubMed DOI
  125. Mejri,M., Pauthe,E., Larreta-Garde,V. and Mathlouthi,M.
    Effect of polyhydroxylic additives on the catalytic activity of thermolysin
    Enzyme Microb Technol23, 392-396. DOI
  126. [YEAR:18-9-1998]Tate,S., Ohno,A., Seeram,S.S., Hiraga,K., Oda,K. and Kainosho,M.
    Elucidation of the mode of interaction of thermolysin with a proteinaceous metalloproteinase inhibitor, SMPI, based on a model complex structure and a structural dynamics analysis
    J Mol Biol282, 435-446. PubMed  Europe PubMed DOI
  127. [YEAR:3-3-1998]Van Den Burg,B., Vriend,G., Veltman,O.R., Venema,G. and Eijsink,V.G.
    Engineering an enzyme to resist boiling
    Proc Natl Acad Sci U S A95, 2056-2060. PubMed  Europe PubMed DOI
  128. 1997
  129. Donovan,W.P., Tan,Y. and Slaney,A.C.
    Cloning of the nprA gene for neutral protease a of Bacillus thuringiensis and effect of in vivo deletion of nprA on insecticidal crystal protein
    Appl Environ Microbiol63, 2311-2317. PubMed  Europe PubMed
  130. Gresh,N. and Roques,B.P.
    Thermolysin-inhibitor binding: effect of the His231-- >Ala mutation on the relative affinities of thiolate versus phosphoramidate inhibitors - a model theoretical investigation incorporating a Continuum reaction field hydration model
    Biopolymers41, 145-164.  I
  131. Inouye,K., Lee,S.B., Nambu,K. and Tonomura,B.
    Effects of pH, temperature, and alcohols on the remarkable activation of thermolysin by salts
    J Biochem122, 358-364. PubMed  Europe PubMed
  132. 1996
  133. Daniel,R.M., Toogood,H.S. and Bergquist,P.L.
    Thermostable proteases
    Biotechnol Genet Eng Rev13, 51-100. PubMed  Europe PubMed  V
  134. Kim,D.H. and Jin,Y.
    Inhibitory stereochemistry of N-chloroacetyl-N-hydroxyleucine methyl ester for thermolysin
    Bioorg Med Chem Lett6, 153-156. DOI  I
  135. Lister,S.A., Wetmore,D.R., Roche,R.S. and Codding,P.W.
    E144S Active-site mutant of the Bacillus cereus thermolysin-like neutral protease at 2.8 A resolution
    Acta Crystallogr D Biol Crystallogr52, 543-550. PubMed  Europe PubMed DOI  S
  136. Mock,W.L. and Stanford,D.J.
    Arazoformyl dipeptide substrates for thermolysin. Confirmation of a reverse protonation catalytic mechanism
    Biochemistry35, 7369-7377. PubMed  Europe PubMed DOI
  137. Murakami,Y., Hirata,M. and Hirata,A.
    Mathematical approach to thermolysin catalyzed synthesis of aspartame precursor
    J Ferment Bioeng82, 246-252.
  138. O'Donohue,M.J. and Beaumont,A.
    The roles of the prosequence of thermolysin in enzyme inhibition and folding in vitro
    J Biol Chem271, 26477-26481. PubMed  Europe PubMed DOI
  139. Spungin-Bialik,A., Ben-Meir,D., Fudim,E., Carmeli,S. and Blumberg,S.
    Sensitive substrates for neprilysin (neutral endopeptidase) and thermolysin that are highly resistant to serine proteases
    FEBS Lett380, 79-82. PubMed  Europe PubMed DOI  A
  140. 1995
  141. Beaumont,A., O'Donohue,M.J., Paredes,N., Rousselet,N., Assicot,M., Bohuon,C., Fournie-Zaluski,M.C. and Roques,B.P.
    The role of histidine 231 in thermolysin-like enzymes. A site-directed mutagenesis study
    J Biol Chem270, 16803-16808. PubMed  Europe PubMed DOI
  142. Persichetti,R.A., Clair,N.L., Griffith,J.P., Navia,M.A. and Margolin,A.L.
    Cross-linked enzyme crystals (CLECs) of thermolysin in the synthesis of peptides
    J Am Chem Soc117, 2732-2737.
  143. van Aalten,D.M., Amadei,A., Linssen,A.B., Eijsink,V.G., Vriend,G. and Berendsen,H.J.
    The essential dynamics of thermolysin: confirmation of the hinge-bending motion and comparison of simulations in vacuum and water
    Proteins22, 45-54. PubMed  Europe PubMed DOI
  144. Vecerek,B. and Kyslik,P.
    Cloning and sequencing of the neutral protease-encoding gene from a thermophilic strain of Bacillus sp
    Gene158, 147-148. PubMed  Europe PubMed DOI
  145. 1994
  146. Holland,D.R., Barclay,P.L., Danilewicz,J.C., Matthews,B.W. and James,K.
    Inhibition of thermolysin and neutral endopeptidase 24.11 by a novel glutaramide derivative: X-ray structure determination of the thermolysin-inhibitor complex
    Biochemistry33, 51-56. PubMed  Europe PubMed DOI  S  I
  147. Inagaki,T., Tadasa,K. and Kayahara,H.
    Modification effects of organic solvents on microenvironment of the enzyme in thermolysin-catalyzed peptide synthesis of N-(benzyloxycarbonyl)-L-phenylalanyl-L-phenylalanine methyl ester
    Biosci Biotechnol Biochem58, 1439-1442. DOI
  148. O'Donohue,M.J., Roques,B.P. and Beaumont,A.
    Cloning and expression in Bacillus subtilis of the npr gene from Bacillus thermoproteolyticus Rokko coding for the thermostable metalloprotease thermolysin
    Biochem J300, 599-603. PubMed  Europe PubMed
  149. 1993
  150. Kuhn,S. and Fortnagel,P.
    Molecular cloning and nucleotide sequence of the gene encoding a calcium-dependent exoproteinase from Bacillus megaterium ATCC 14581
    J Gen Microbiol139, 39-47. PubMed  Europe PubMed
  151. Vriend,G. and Eijsink,V.
    Prediction and analysis of structure, stability and unfolding of thermolysin-like proteases
    J Comput Aided Mol Des7, 367-396. PubMed  Europe PubMed  V
  152. 1992
  153. Eijsink,V.G., Vriend,G., van der Vinne,B., Hazes,B., Van Den Burg,B. and Venema,G.
    Effects of changing the interaction between subdomains on the thermostability of Bacillus neutral proteases
    Proteins14, 224-236. PubMed  Europe PubMed DOI
  154. [YEAR:24-11-1992]Holland,D.R., Tronrud,D.E., Pley,H.W., Flaherty,K.M., Stark,W., Jansonius,J.N., McKay,D.B. and Matthews,B.W.
    Structural comparison suggests that thermolysin and related neutral proteases undergo hinge-bending motion during catalysis
    Biochemistry31, 11310-11316. PubMed  Europe PubMed  S
  155. Inouye,K.
    Effects of salts on thermolysin: activation of hydrolysis and synthesis of N-carbobenzoxy-L-aspartyl-L-phenylalanine methyl ester, and a unique change in the absorption spectrum of thermolysin
    J Biochem112, 335-340. PubMed  Europe PubMed
  156. Stark,W., Pauptit,R.A., Wilson,K.S. and Jansonius,J.N.
    The structure of neutral protease from Bacillus cereus at 0.2-nm resolution
    Eur J Biochem207, 781-791. PubMed  Europe PubMed DOI  S
  157. 1991
  158. Eijsink,V.G., Van Den Burg,B. and Venema,G.
    High performance affinity chromatography of Bacillus neutral proteases
    Biotechnol Appl Biochem14, 275-283. PubMed  Europe PubMed
  159. Morgan,B.P., Scholtz,J.M., Ballinger,M.D., Zipkin,I.D. and Bartlett,P.A.
    Differential binding energy: a detailed evaluation of the influence of hydrogen-bonding and hydrophobic groups on the inhibition of thermolysin by phosphorus-containing inhibitors
    J Am Chem Soc113, 297-307.  I
  160. Van Den Burg,B., Enequist,H.G., van der Haar,M.E., Eijsink,V.G., Stulp,B.K. and Venema,G.
    A highly thermostable neutral protease from Bacillus caldolyticus: cloning and expression of the gene in Bacillus subtilis and characterization of the gene product
    J Bacteriol173, 4107-4115. PubMed  Europe PubMed
  161. 1990
  162. Eijsink,V.G., Vriend,G., Van Den Burg,B., Venema,G. and Stulp,B.K.
    Contribution of the C-terminal amino acid to the stability of Bacillus subtilis neutral protease
    Protein Eng4, 99-104. PubMed  Europe PubMed
  163. Stoeva,S., Kleinschmidt,T., Mesrob,B. and Braunitzer,G.
    Primary structure of a zinc protease from Bacillus mesentericus strain 76
    Biochemistry29, 527-534. PubMed  Europe PubMed DOI
  164. 1989
  165. [YEAR:13-6-1989]Grobelny,D., Goli,U.B. and Galardy,R.E.
    Binding energetics of phosphorus-containing inhibitors of thermolysin
    Biochemistry28, 4948-4951. PubMed  Europe PubMed  I
  166. Merz,K. and Kollman,P.
    Free energy perturbation simulations of the inhibition of thermolysin: prediction of the free energy of binding of a new inhibitor
    J Am Chem Soc111, 5649-5658.  I
  167. [YEAR:21-2-1989]Roderick,S.L., Fournie-Zaluski,M.C., Roques,B.P. and Matthews,B.W.
    Thiorphan and retro-thiorphan display equivalent interactions when bound to crystalline thermolysin
    Biochemistry28, 1493-1497. PubMed  Europe PubMed DOI  S  I
  168. Toma,S., Campagnoli,S., De Gregoriis,E., Gianna,R., Margarit,I., Zamai,M. and Grandi,G.
    Effect of Glu-143 and His-231 substitutions on the catalytic activity and secretion of Bacillus subtilis neutral protease
    Protein Eng2, 359-364. PubMed  Europe PubMed
  169. Van Den Burg,B., Eijsink,V.G., Stulp,B.K. and Venema,G.
    One-step affinity purification of Bacillus neutral proteases using bacitracin-silica
    J Biochem Biophys Methods18, 209-219. PubMed  Europe PubMed  I
  170. 1988
  171. Fontana,A.
    Structure and stability of thermophilic enzymes. Studies on thermolysin
    Biophys Chem29, 181-193. PubMed  Europe PubMed
  172. [YEAR:25-7-1988]Gettins,P.
    Thermolysin-inhibitor complexes examined by 31P and 113Cd NMR spectroscopy
    J Biol Chem263, 10208-10211. PubMed  Europe PubMed  I
  173. Holden,H.M. and Matthews,B.W.
    The binding of L-valyl-L-tryptophan to crystalline thermolysin illustrates the mode of interaction of a product of peptide hydrolysis
    J Biol Chem263, 3256-3260. PubMed  Europe PubMed  S
  174. Matthews,B.W.
    Structural basis of the action of thermolysin and related zinc peptidases
    Acc Chem Res21, 333-340.  S
  175. Pauptit,R.A., Karlsson,R., Picot,D., Jenkins,J.A., Niklaus-Reimer,A.S. and Jansonius,J.N.
    Crystal structure of neutral protease from Bacillus cereus refined at 3.0 A resolution and comparison with the homologous but more thermostable enzyme thermolysin
    J Mol Biol199, 525-537. PubMed  Europe PubMed  S
  176. 1987
  177. [YEAR:29-12-1987]Bartlett,P.A. and Marlowe,C.K.
    Possible role for water dissociation in the slow binding of phosphorus-containing transition-state-analogue inhibitors of thermolysin
    Biochemistry26, 8553-8561. PubMed  Europe PubMed  I
  178. [YEAR:29-12-1987]Holden,H.M., Tronrud,D.E., Monzingo,A.F., Weaver,L.H. and Matthews,B.W.
    Slow- and fast-binding inhibitors of thermolysin display different modes of binding: crystallographic analysis of extended phosphonamidate transition-state analogues
    Biochemistry26, 8542-8553. PubMed  Europe PubMed  I
  179. [YEAR:30-1-1987]Tronrud,D.E., Holden,H.M. and Matthews,B.W.
    Structures of two thermolysin-inhibitor complexes that differ by a single hydrogen bond
    Science235, 571-574. PubMed  Europe PubMed  I
  180. 1986
  181. Hersh,L.B. and Morihara,K.
    Comparison of the subsite specificity of the mammalian neutral endopeptidase 24.11 (enkephalinase) to the bacterial neutral endopeptidase thermolysin
    J Biol Chem261, 6433-6437. PubMed  Europe PubMed  P
  182. Sidler,W., Niederer,E., Suter,F. and Zuber,H.
    The primary structure of Bacillus cereus neutral proteinase and comparison with thermolysin and Bacillus subtilis neutral proteinase
    Biol Chem Hoppe Seyler367, 643-657. PubMed  Europe PubMed
  183. [YEAR:2-6-1986]Tronrud,D.E., Monzingo,A.F. and Matthews,B.W.
    Crystallographic structural analysis of phosphoramidates as inhibitors and transition-state analogs of thermolysin
    Eur J Biochem157, 261-268. PubMed  Europe PubMed  S  I
  184. 1985
  185. Ooshima,H., Mori,H. and Harano,Y.
    Synthesis of aspartame precursor by thermolysin solid in organic solvent
    Biotechnol Lett7, 789-792.
  186. Takagi,M., Imanaka,T. and Aiba,S.
    Nucleotide sequence and promoter region for the neutral protease gene from Bacillus stearothermophilus
    J Bacteriol163, 824-831. PubMed  Europe PubMed
  187. 1984
  188. Hangauer,D.G., Monzingo,A.F. and Matthews,B.W.
    An interactive computer graphics study of thermolysin-catalyzed peptide cleavage and inhibition by N-carboxymethyl dipeptides
    Biochemistry23, 5730-5741. PubMed  Europe PubMed  I
  189. Kawamura,F. and Doi,R.H.
    Construction of a Bacillus subtilis double mutant deficient in extracellular alkaline and neutral proteases
    J Bacteriol160, 442-444. PubMed  Europe PubMed
  190. Kitagishi,K. and Hiromi,K.
    Binding between thermolysin and its specific inhibitor, phosphoramidon
    J Biochem95, 529-534. PubMed  Europe PubMed  I
  191. Monzingo,A.F. and Matthews,B.W.
    Binding of N-carboxymethyl dipeptide inhibitors to thermolysin determined by X-ray crystallography: a novel class of transition- state analogues for zinc peptidases
    Biochemistry23, 5724-5729. PubMed  Europe PubMed  S  I
  192. 1983
  193. [YEAR:4-1-1983]Holmes,M.A., Tronrud,D.E. and Matthews,B.W.
    Structural analysis of the inhibition of thermolysin by an active-site-directed irreversible inhibitor
    Biochemistry22, 236-240. PubMed  Europe PubMed  I
  194. Wayne,S.I. and Fruton,J.S.
    Thermolysin-catalyzed peptide bond synthesis
    Proc Natl Acad Sci U S A80, 3241-3244. PubMed  Europe PubMed
  195. 1982
  196. Holmes,M.A. and Matthews,B.W.
    Structure of thermolysin refined at 1.6 A resolution
    J Mol Biol160, 623-639. PubMed  Europe PubMed  S
  197. Kunugi,S., Hirohara,H. and Ise,N.
    pH and temperature dependences of thermolysin catalysis. Catalytic role of zinc-coordinated water
    Eur J Biochem124, 157-163. PubMed  Europe PubMed
  198. [YEAR:6-7-1982]Monzingo,A.F. and Matthews,B.W.
    Structure of a mercaptan-thermolysin complex illustrates mode of inhibition of zinc proteases by substrate-analogue mercaptans
    Biochemistry21, 3390-3394. PubMed  Europe PubMed  I
  199. 1981
  200. [YEAR:24-11-1981]Holmes,M.A. and Matthews,B.W.
    Binding of hydroxamic acid inhibitors to crystalline thermolysin suggests a pentacoordinate zinc intermediate in catalysis
    Biochemistry20, 6912-6920. PubMed  Europe PubMed  I
  201. 1979
  202. [YEAR:10-2-1979]Bolognesi,M.C. and Matthews,B.W.
    Binding of the biproduct analog L-benzylsuccinic acid to thermolysin determined by X-ray crystallography
    J Biol Chem254, 634-639. PubMed  Europe PubMed  S  I
  203. Holmquist,B. and Vallee,B.L.
    Metal-coordinating substrate analogs as inhibitors of metalloenzymes
    Proc Natl Acad Sci U S A76, 6216-6220. PubMed  Europe PubMed  I
  204. Isowa,Y., Ichikawa,T. and Mori,K.
    The thermolysin catalyzed condensation reactions of N-substituted aspartic and glutamic acids with phenylalanine alkylesters
    Tetrahedron Lett28, 2611-2612.
  205. Nishino,N. and Powers,J.C.
    Design of potent reversible inhibitors for thermolysin. Peptides containing zinc coordinating ligands and their use in affinity chromatography
    Biochemistry18, 4340-4347. PubMed  Europe PubMed  I
  206. 1978
  207. Nishino,N. and Powers,J.C.
    Peptide hydroxamic acids as inhibitors of thermolysin
    Biochemistry17, 2846-2850. PubMed  Europe PubMed  I
  208. Rasnick,D. and Powers,J.C.
    Active site directed irreversible inhibition of thermolysin
    Biochemistry17, 4363-4369. PubMed  Europe PubMed  I
  209. Roche,R.S., Voordouw,G. and Matthews,B.W.
    The structural and functional roles of metal ions in thermolysin
    Crit Rev Biochem Mol Biol5, 1-23. PubMed  Europe PubMed DOI
  210. 1977
  211. [YEAR:10-11-1977]Kester,W.R. and Matthews,B.W.
    Comparison of the structures of carboxypeptidase A and thermolysin
    J Biol Chem252, 7704-7710. PubMed  Europe PubMed  S
  212. [YEAR:31-5-1977]Kester,W.R. and Matthews,B.W.
    Crystallographic study of the binding of dipeptide inhibitors to thermolysin: implications for the mechanism of catalysis
    Biochemistry16, 2506-2516. PubMed  Europe PubMed  S  I
  213. Priest,F.G.
    Extracellular enzyme synthesis in the genus Bacillus
    Bacteriol Rev41, 711-753. PubMed  Europe PubMed
  214. Weaver,L.H., Kester,W.R. and Matthews,B.W.
    A crystallographic study of the complex of phosphoramidon with thermolysin. A model for the presumed catalytic transition state and for the binding of extended substrates
    J Mol Biol114, 119-132. PubMed  Europe PubMed  S  I
  215. 1976
  216. [YEAR:9-3-1976]Dahlquist,F.W., Long,J.W. and Bigbee,W.L.
    Role of calcium in the thermal stability of thermolysin
    Biochemistry15, 1103-1111. PubMed  Europe PubMed
  217. 1975
  218. Komiyama,T., Suda,H., Aoyagi,T., Takeuchi,T. and Umezawa,H.
    Studies on inhibitory effect of phosphoramidon and its analogs on thermolysin
    Arch Biochem Biophys171, 727-731. PubMed  Europe PubMed  I
  219. Levy,P.L., Pangburn,M.K., Burstein,Y., Ericsson,L.H., Neurath,H. and Walsh,K.A.
    Evidence of homologous relationship between thermolysin and neutral protease A of Bacillus subtilis
    Proc Natl Acad Sci U S A72, 4341-4345. PubMed  Europe PubMed
  220. 1974
  221. Feder,J., Brougham,L.R. and Wildi,B.S.
    Inhibition of thermolysin by dipeptides
    Biochemistry13, 1186-1189. PubMed  Europe PubMed  I
  222. Holmquist,B. and Vallee,B.L.
    Metal substitutions and inhibition of thermolysin: spectra of the cobalt enzyme
    J Biol Chem249, 4601-4607. PubMed  Europe PubMed
  223. 1973
  224. Fogarty,W.M. and Griffin,P.J.
    Production and purification of the metalloprotease of Bacillus polymyxa
    Appl Microbiol26, 185-190. PubMed  Europe PubMed
  225. Griffin,P.J. and Fogarty,W.M.
    Physiochemical properties of the native, zinc- and manganese-prepared metalloprotease of Bacillus polymyxa
    Appl Microbiol26, 191-195. PubMed  Europe PubMed
  226. Suda,H., Aoyagi,T., Takeuchi,T. and Umezawa,H.
    A thermolysin inhibitor produced by actinomycetes: phosphoramidon
    J Antibiot (Tokyo)26, 621-623. PubMed  Europe PubMed  I
  227. 1972
  228. Colman,P.M., Jansonius,J.N. and Matthews,B.W.
    The structure of thermolysin: an electron density map at 2.3_ resolution
    J Mol Biol70, 701-724. PubMed  Europe PubMed  S
  229. Matthews,B.W., Colman,P.M., Jansonius,J.N., Titani,K., Walsh,K.A. and Neurath,H.
    Structure of thermolysin
    Nat New Biol238, 41-43. PubMed  Europe PubMed  S
  230. Matthews,B.W., Jansonius,J.N., Colman,P.M., Schoenborn,B.P. and Dupourque,D.
    Three-dimensional structure of thermolysin
    Nat New Biol238, 37-41. PubMed  Europe PubMed  S
  231. Titani,K., Hermodson,M.A., Ericsson,L.H., Walsh,K.A. and Neurath,H.
    Amino-acid sequence of thermolysin
    Nat New Biol238, 35-37. PubMed  Europe PubMed
  232. Titani,K., Hermodson,M.A., Ericsson,L.H., Walsh,K.A. and Neurath,H.
    Amino-acid sequence of thermolysin
    Nat New Biology238, 58-59. DOI
  233. 1971
  234. Feder,J., Garrett,L.R. and Wildi,B.S.
    Studies on the role of calcium in thermolysin
    Biochemistry10, 4552-4556. PubMed  Europe PubMed
  235. Feder,J., Keay,L., Garrett,L.R., Cirulis,N., Moseley,M.H. and Wildi,B.S.
    Bacillus cereus neutral protease
    Biochim Biophys Acta251, 74-78. PubMed  Europe PubMed
  236. Morihara,K. and Tsuzuki,H.
    Comparative study of various neutral proteinases from microorganisms: specificity with oligopeptides
    Arch Biochem Biophys146, 291-296. PubMed  Europe PubMed
  237. 1970
  238. Matsubara,H.
    Purification and assay of thermolysin
    Methods Enzymol19, 642-651.  A
  239. Morihara,K. and Tsuzuki,H.
    Thermolysin: kinetic study with oligopeptides
    Eur J Biochem15, 374-380. PubMed  Europe PubMed  P
  240. Wang,T.W. and Kassell,B.
    Digestion of the basic trypsin inhibitor of bovine pancreas by thermolysin
    Biochem Biophys Res Commun40, 1039-1045. PubMed  Europe PubMed
  241. 1969
  242. Latt,S.A., Holmquist,B. and Vallee,B.L.
    Thermolysin: a zinc metalloenzyme
    Biochem Biophys Res Commun37, 333-339. PubMed  Europe PubMed
  243. Millet,J. and Acher,R.
    [Specificity of megateriopeptidase: an amino-endopeptidase with hydrophobic characteristics]
    Eur J Biochem9, 456-462. PubMed  Europe PubMed
  244. [YEAR:4-6-1969]Millet,J.
    [Study of megateriopeptidase, exocellular protease of Bacillus megaterium. 1. Purification and general properties]
    Bull Soc Chim Biol (Paris)51, 61-68. PubMed  Europe PubMed
  245. Millet,J., Acher,R. and Aubert,J.P.
    Biochemical and physiological properties of an extracellular protease produced by Bacillus megaterium
    Biotechnol Bioeng11, 1233-1246. PubMed  Europe PubMed DOI
  246. Millet,J. and Aubert,J.P.
    [Study of megateriopeptidase, an exocellular peptidase of Bacillus megaterium. 3. Biosynthesis and physiological function]
    Ann Inst Pasteur (Paris)117, 461-473. PubMed  Europe PubMed
  247. 1968
  248. [YEAR:26-7-1968]Feder,J.
    A spectrophotometric assay for neutral protease
    Biochem Biophys Res Commun32, 326-332. PubMed  Europe PubMed
  249. Millet,J. and Acher,R.
    ["Hydrophobic" specificity of an endopeptidase isolated from Bacillus megaterium]
    Biochim Biophys Acta151, 302-305. PubMed  Europe PubMed
  250. 1966
  251. Matsubara,H.
    Observations on the specificity of thermolysin with synthetic peptides
    Biochem Biophys Res Commun24, 427-430. PubMed  Europe PubMed  P
  252. Matsubara,H., Sasaki,R., Singer,A. and Jukes,T.H.
    Specific nature of hydrolysis of insulin and tobacco mosaic virus protein by thermolysin
    Arch Biochem Biophys115, 324-331. PubMed  Europe PubMed
  253. Ohta,Y., Ogura,Y. and Wada,A.
    Thermostable protease from thermophilic bacteria. I. Thermostability, physiochemical properties, and amino acid composition
    J Biol Chem241, 5919-5925. PubMed  Europe PubMed