Literature for peptidase C30.007: coronavirus COVID-19 3C-like peptidase

Summary Alignment Sequences Sequence features Distribution Literature Substrates

(Topics flags: S Structure, T Target, K Knockout, I Inhibitor, V Review. To select only the references relevant to a single topic, click the link above. See explanation.)

    2025
  1. Aboelnga,M.M., Petgrave,M., Kalyaanamoorthy,S. and Ganesan,A.
    Revealing the impact of active site residues in modeling the inhibition mechanism of SARS-Cov-2 main protease by GC373
    Comput Biol Med187, 109779-109779. PubMed  Europe PubMed DOI  I
  2. Akula,R.K., El Kilani,H., Metzen,A., Roske,J., Zhang,K., Gohl,M., Arisetti,N., Marsh,G.P., Maple,H.J., Cooper,M.S., Karadogan,B., Jochmans,D., Neyts,J., Rox,K., Hilgenfeld,R. and Bronstrup,M.
    Structure-Based Optimization of Pyridone alpha-Ketoamides as Inhibitors of the SARS-CoV-2 Main Protease
    J Med Chem PubMed  Europe PubMed DOI  I
  3. Atatreh,N., Mahgoub,R.E. and Ghattas,M.A.
    Exploring covalent inhibitors of SARS-CoV-2 main protease: from peptidomimetics to novel scaffolds
    J Enzyme Inhib Med Chem40, 2460045-2460045. PubMed  Europe PubMed DOI
  4. Bao,H., Meng,H., Gong,S., Gong,Y., Tu,G., Du,Z., Wang,Y., Wu,J., Ma,C., Ma,Q. and Yao,X.
    Design, synthesis and activity evaluation of 4-(quinoline-2-yl)aniline derivatives as SARS-CoVƒ_'2 main protease inhibitors
    Bioorg Med Chem121, 118135-118135. PubMed  Europe PubMed DOI  I
  5. Bhandari,D., Coates,L., Aniana,A., Louis,J.M., Bonnesen,P.V. and Kovalevsky,A.
    Influence of Steric and Electronic Properties of P2 Groups on Covalent Inhibitor Binding to SARS-CoV-2 Main Protease
    ACS Infect Dis PubMed  Europe PubMed DOI  I
  6. Bhardwaj,M., Anjum,R., Hariprasad,P. and Patel,A.K.
    Allosteric mutations impact the catalytic activity and oligomeric state of the main protease of coronavirus
    Int J Biol Macromol309, 142765-142765. PubMed  Europe PubMed DOI
  7. Cao,L., Shi,S., Zhang,C. and Zhao,C.
    A phycobiliprotein-based reporter assay for the evaluation of SARS-CoV-2 main protease activity
    Virology608, 110540-110540. PubMed  Europe PubMed DOI
  8. Chen,J., Wang,J., Yang,W., Zhao,L. and Xu,X.
    Identifying Inhibitor-SARS-CoV2-3CL(pro) Binding Mechanism Through Molecular Docking, GaMD Simulations, Correlation Network Analysis and MM-GBSA Calculations
    Molecules30, PubMed  Europe PubMed DOI
  9. D'Oliviera,A., Dai,X., Mottaghinia,S., Olson,S., Geissler,E.P., Etienne,L., Zhang,Y. and Mugridge,J.S.
    Recognition and cleavage of human tRNA methyltransferase TRMT1 by the SARS-CoV-2 main protease
    elife12, PubMed  Europe PubMed DOI
  10. Detomasi,T.C., Degotte,G., Huang,S., Suryawanshi,R.K., Diallo,A., Lizzadro,L., Zaptero-Belinchon,F.J., Taha,T.Y., Li,J., Richards,A.L., Hantz,E.R., Alam,Z., Montano,M., McCavitt-Malvido,M., Gumpena,R., Partridge,J.R., Correy,G.J., Matsui,Y., Charvat,A.F., Glenn,I.S., Rosecrans,J., Revalde,J.L., Anderson,D., Hultquist,J.F., Arkin,M.R., Neitz,R.J., Swaney,D.L., Krogan,N.J., Shoichet,B.K., Verba,K.A., Ott,M., Renslo,A.R. and Craik,C.S.
    Structure-based discovery of highly bioavailable, covalent, broad-spectrum coronavirus M(Pro) inhibitors with potent in vivo efficacy
    Sci Adv11, eadt7836-eadt7836. PubMed  Europe PubMed DOI  I
  11. Evans,D., Sheraz,S. and Lau,A.Y.
    SARS-CoV-2 Mpro Dihedral Angles Reveal Allosteric Signaling
    Proteins PubMed  Europe PubMed DOI
  12. Filippova,T.A., Masamrekh,R.A., Farafonova,T.E., Khudoklinova,Y.Y., Shumyantseva,V.V., Moshkovskii,S.A. and Kuzikov,A.V.
    Determination of SARS-CoV-2 Main Protease (M(pro)) Activity Based on Electrooxidation of Tyrosine Residue of a Model Peptide
    Biochemistry (Mosc)90, 120-131. PubMed  Europe PubMed DOI
  13. Gu,X., Zhang,X., Zhang,X., Wang,X., Sun,W., Zhang,Y. and Hu,Z.
    Unveiling the mechanism of action of a novel natural dual inhibitor of SARS-CoV-2 Mpro and PLpro with molecular dynamics simulations
    Nat Prod Bioprospect15, 3-3. PubMed  Europe PubMed DOI  I
  14. Hennecker,C., Venegas,F., Wang,G., Stille,J., Milaczewska,A., Moitessier,N. and Mittermaier,A.
    Mechanistic Characterization of Covalent Enzyme Inhibition by Isothermal Titration Calorimetry Kinetic Competition (ITC-KC)
    Anal Chem PubMed  Europe PubMed DOI
  15. Iacobucci,I., Cipollone,I., Cozzolino,F., Iaconis,D., Talarico,C., Coppola,G., Morasso,S., Costanzi,E., Malune,P., Storici,P., Tramontano,E., Esposito,F. and Monti,M.
    Cys44 of SARS-CoV-2 3CL(pro) affects its catalytic activity
    Int J Biol Macromol295, 139590-139590. PubMed  Europe PubMed DOI
  16. Kenneson,J.R., Papini,C., Tang,S., Huynh,K., Zhang,C.H., Jorgensen,W.L. and Anderson,K.S.
    Exploring Possible Drug-Resistant Variants of SARS-CoV-2 Main Protease (M(pro)) with Noncovalent Preclinical Candidate, Mpro61
    ACS Bio Med Chem Au5, 215-226. PubMed  Europe PubMed DOI  I
  17. Liu,H., Zask,A., Forouhar,F., Iketani,S., Williams,A., Vaz,D.R., Habashi,D., Choi,K., Resnick,S.J., Hong,S.J., Lovett,D.H., Bai,T., Chavez,A., Ho,D.D. and Stockwell,B.R.
    Development of small molecule non-covalent coronavirus 3CL protease inhibitors from DNA-encoded chemical library screening
    Nat Commun16, 152-152. PubMed  Europe PubMed DOI
  18. Lu,J., Tang,Y., Li,H., Chen,X., Qin,P., Xu,J., Li,W. and Chen,L.
    Identifying Exifone as a Dual-Target Agent Targeting Both SARS-CoV-2 3CL Protease and the ACE2/S-RBD Interaction Among Clinical Polyphenolic Compounds
    Int J Mol Sci26, PubMed  Europe PubMed DOI  V
  19. Ren,J., Zhang,Z., Xia,Y., Zhao,D., Li,D. and Zhang,S.
    Research Progress on the Structure and Function, Immune Escape Mechanism, Antiviral Drug Development Methods, and Clinical Use of SARS-CoV-2 M(pro)
    Molecules30, PubMed  Europe PubMed DOI  V
  20. Singh,A., Jangid,K., Nehul,S., Dhaka,P., Rani,R., Pareek,A., Sharma,G.K., Kumar,P. and Tomar,S.
    Structural and Mechanistic Insights into the Main Protease (Mpro) Dimer Interface Destabilization Inhibitor: Unveiling New Therapeutic Avenues against SARS-CoV-2
    Biochemistry PubMed  Europe PubMed DOI  I
  21. Thuy La,V.N., Kang,L. and Minh,D.D.L.
    Enzyme kinetics model for the coronavirus main protease including dimerization and ligand binding
    bioRxiv PubMed  Europe PubMed DOI  I
  22. Wang,X., Chen,L., Chang,X., Yi,X., Yu,W. and Wang,R.
    Investigating the inhibition of benzimidazole derivatives on SARS-CoV-2 M(pro) by enzyme activity inhibition, spectroscopy, and molecular docking
    J Biomol Struct Dyn1-16. PubMed  Europe PubMed DOI
  23. Weerawarna,P.M.
    How Polyproline Type II Conformation at P(2) Residues Influences the Success of Proline-Based Peptidyl Inhibitors Against Coronavirus Main Protease
    Biochemistry64, 533-546. PubMed  Europe PubMed DOI
  24. Wei,C., Li,Y., Guo,L., Shao,Z. and Diao,H.
    Development of Peptidomimetic PROTACs as Potential Degraders of 3-Chymotrypsin-like Protease of SARS-CoV-2
    Int J Mol Sci26, PubMed  Europe PubMed DOI
  25. 2024
  26. Albani,S., Costanzi,E., Hoang,G.L., Kuzikov,M., Frings,M., Ansari,N., Demitri,N., Nguyen,T.T., Rizzi,V., Schulz,J.B., Bolm,C., Zaliani,A., Carloni,P., Storici,P. and Rossetti,G.
    Unexpected Single-Ligand Occupancy and Negative Cooperativity in the SARS-CoV-2 Main Protease
    J Chem Inf Model64, 892-904. PubMed  Europe PubMed DOI
  27. Allerton,C.M.N., Arcari,J.T., Aschenbrenner,L.M., Avery,M., Bechle,B.M., Behzadi,M.A., Boras,B., Buzon,L.M., Cardin,R.D., Catlin,N.R., Carlo,A.A., Coffman,K.J., Dantonio,A., Di,L., Eng,H., Farley,K.A., Ferre,R.A., Gernhardt,S.S., Gibson,S.A., Greasley,S.E., Greenfield,S.R., Hurst,B.L., Kalgutkar,A.S., Kimoto,E., Lanyon,L.F., Lovett,G.H., Lian,Y., Liu,W., Martinez Alsina,L.A., Noell,S., Obach,R.S., Owen,D.R., Patel,N.C., Rai,D.K., Reese,M.R., Rothan,H.A., Sakata,S., Sammons,M.F., Sathish,J.G., Sharma,R., Steppan,C.M., Tuttle,J.B., Verhoest,P.R., Wei,L., Yang,Q., Yurgelonis,I. and Zhu,Y.
    A Second-Generation Oral SARS-CoV-2 Main Protease Inhibitor Clinical Candidate for the Treatment of COVID-19
    J Med Chem67, 13550-13571. PubMed  Europe PubMed DOI  I
  28. Altincekic,N., Jores,N., Lohr,F., Richter,C., Ehrhardt,C., Blommers,M.J.J., Berg,H., Ozturk,S., Gande,S.L., Linhard,V., Orts,J., Abi Saad,M.J., Butikofer,M., Kaderli,J., Karlsson,B.G., Brath,U., Hedenstrom,M., Grobner,G., Sauer,U.H., Perrakis,A., Langer,J., Banci,L., Cantini,F., Fragai,M., Grifagni,D., Barthel,T., Wollenhaupt,J., Weiss,M.S., Robertson,A., Bax,A., Sreeramulu,S. and Schwalbe,H.
    Targeting the Main Protease (M(pro), nsp5) by Growth of Fragment Scaffolds Exploiting Structure-Based Methodologies
    ACS Chem Biol19, 563-574. PubMed  Europe PubMed DOI
  29. Alugubelli,Y.R., Xiao,J., Khatua,K., Kumar,S., Sun,L., Ma,Y., Ma,X.R., Vulupala,V.R., Atla,S., Blankenship,L.R., Coleman,D., Xie,X., Neuman,B.W., Liu,W.R. and Xu,S.
    Discovery of First-in-Class PROTAC Degraders of SARS-CoV-2 Main Protease
    J Med Chem67, 6495-6507. PubMed  Europe PubMed DOI
  30. Amorim,V.M.F., Soares,E.P., Ferrari,A.S.A., Merighi,D.G.S., de Souza,R.F., Guzzo,C.R. and Souza,A.S.
    3-Chymotrypsin-like Protease (3CLpro) of SARS-CoV-2: Validation as a Molecular Target, Proposal of a Novel Catalytic Mechanism, and Inhibitors in Preclinical and Clinical Trials
    Viruses16, PubMed  Europe PubMed DOI  V
  31. Aniana,A., Nashed,N.T., Ghirlando,R., Drago,V.N., Kovalevsky,A. and Louis,J.M.
    Characterization of alternate encounter assemblies of SARS-CoV-2 main protease
    J Biol Chem107675-107675. PubMed  Europe PubMed DOI  I
  32. Bairagya,H.R., Tasneem,A. and Sarmadhikari,D.
    Structural and thermodynamic properties of conserved water molecules in Mpro native: A combined approach by MD simulation and Grid Inhomogeneous Solvation Theory
    Proteins92, 735-749. PubMed  Europe PubMed DOI
  33. Bhat,Z.A., Khan,M.M., Rehman,A., Iqbal,J., Sanjeev,B.S. and Madhumalar,A.
    MD simulations indicate Omicron P132H of SARS-CoV-2 M(pro) is a potential allosteric mutant involved in modulating the dynamics of catalytic site entry loop
    Int J Biol Macromol262, 130077-130077. PubMed  Europe PubMed DOI
  34. Biernacki,K., Ciupak,O., Dasko,M., Rachon,J., Flis,D., Budka,J., Inkielewicz-Stepniak,I., Czaja,A., Rak,J. and Demkowicz,S.
    Development of potent and effective SARS-CoV-2 main protease inhibitors based on maleimide analogs for the potential treatment of COVID-19
    J Enzyme Inhib Med Chem39, 2290910-2290910. PubMed  Europe PubMed DOI  I
  35. Blankenship,L.R., Yang,K.S., Vulupala,V.R., Alugubelli,Y.R., Khatua,K., Coleman,D., Ma,X.R., Sankaran,B., Cho,C.D., Ma,Y., Neuman,B.W., Xu,S. and Liu,W.R.
    SARS-CoV-2 Main Protease Inhibitors That Leverage Unique Interactions with the Solvent Exposed S3 Site of the Enzyme
    ACS Med Chem Lett15, 950-957. PubMed  Europe PubMed DOI
  36. Butalewicz,J.P., Sipe,S.N., Juetten,K.J., James,V.K., Kim,K., Zhang,Y.J., Meek,T.D. and Brodbelt,J.S.
    Insights into the Main Protease of SARS-CoV-2: Thermodynamic Analysis, Structural Characterization, and the Impact of Inhibitors
    Anal Chem96, 15898-15906. PubMed  Europe PubMed DOI
  37. Cesar Ramos de Jesus,H., Solis,N., Machado,Y., Pablos,I., Bell,P.A., Kappelhoff,R., Grin,P.M., Sorgi,C.A., Butler,G.S. and Overall,C.M.
    Optimization of quenched fluorescent peptide substrates of SARS-CoV-2 3CL(pro) main protease (Mpro) from proteomic identification of P6-P6' active site specificity
    J Virole0004924-e0004924. PubMed  Europe PubMed DOI
  38. Chaibi,F.Z., Brier,L., Carre,P., Landry,V., Desmarets,L., Tarricone,A., Cantrelle,F.X., Moschidi,D., Herledan,A., Biela,A., Bourgeois,F., Ribes,C., Ikherbane,S., Malessan,M., Dubuisson,J., Belouzard,S., Hanoulle,X., Leroux,F., Deprez,B. and Charton,J.
    N-acylbenzimidazoles as selective Acylators of the catalytic cystein of the coronavirus 3CL protease
    Eur J Med Chem276, 116707-116707. PubMed  Europe PubMed DOI  I
  39. Chen,P., Wu,L., Qin,B., Yao,H., Xu,D., Cui,S. and Zhao,L.
    Computational Insights into Acrylamide Fragment Inhibition of SARS-CoV-2 Main Protease
    Curr Issues Mol Biol46, 12847-12865. PubMed  Europe PubMed DOI
  40. Chen,X., Huang,X., Ma,Q., Kuzmic,P., Zhou,B., Zhang,S., Chen,J., Xu,J., Liu,B., Jiang,H., Zhang,W., Yang,C., Wu,S., Huang,J., Li,H., Long,C., Zhao,X., Xu,H., Sheng,Y., Guo,Y., Niu,C., Xue,L., Xu,Y., Liu,J., Zhang,T., Spencer,J., Zhu,Z., Deng,W., Chen,X., Chen,S.H., Zhong,N., Xiong,X. and Yang,Z.
    Preclinical evaluation of the SARS-CoV-2 M(pro) inhibitor RAY1216 shows improved pharmacokinetics compared with nirmatrelvir
    Nat Microbiol9, 1075-1088. PubMed  Europe PubMed DOI  I
  41. Cheng,S., Feng,Y., Li,W., Liu,T., Lv,X., Tong,X., Xi,G., Ye,X. and Li,X.
    Development of novel antivrial agents that induce the degradation of the main protease of human-infecting coronaviruses
    Eur J Med Chem275, 116629-116629. PubMed  Europe PubMed DOI  I
  42. Choudhary,M.K., Ansari,K., Junghare,V., Nayak,S.K., Hazra,S. and Mula,S.
    A Facile Synthesis of 3-Substituted Coumarins and Investigation of Their 3CLpro Inhibition Activity Against SARS-CoV-2
    ChemistryOpene202400319-e202400319. PubMed  Europe PubMed DOI
  43. Ciaglia,T., Vestuto,V., Di Sarno,V., Musella,S., Smaldone,G., Di Matteo,F., Napolitano,V., Miranda,M.R., Pepe,G., Basilicata,M.G., Novi,S., Capolupo,I., Bifulco,G., Campiglia,P., Gomez-Monterrey,I., Snoeck,R., Andrei,G., Manfra,M., Ostacolo,C., Lauro,G. and Bertamino,A.
    Peptidomimetics as potent dual SARS-CoV-2 cathepsin-L and main protease inhibitors: In silico design, synthesis and pharmacological characterization
    Eur J Med Chem266, 116128-116128. PubMed  Europe PubMed DOI  I
  44. de Souza,L.G., Penna,E.A., Rosa,A.S., da Silva,J.C., Schaeffer,E., Guimaraes,J.V., de Paiva,D.M., de Souza,V.C., Ferreira,V.N.S., Souza,D.D.C., Roxo,S., Conceicao,G.B., Constant,L.E.C., Frenzel,G.B., Landim,M.J.N., Baltazar,M.L.P., Silva,C.C., Brand,A.L.M., Nunes,J.S., Montagnoli,T.L., Zapata-Sudo,G., Alves,M.A., Allonso,D., Goliatt,P.V.Z.C., Miranda,M.D. and da Silva,A.J.M.
    Benzocarbazoledinones as SARS-CoV-2 Replication Inhibitors: Synthesis, Cell-Based Studies, Enzyme Inhibition, Molecular Modeling, and Pharmacokinetics Insights
    Viruses16, PubMed  Europe PubMed DOI  I
  45. Desantis,J., Bazzacco,A., Eleuteri,M., Tuci,S., Bianconi,E., Macchiarulo,A., Mercorelli,B., Loregian,A. and Goracci,L.
    Design, synthesis, and biological evaluation of first-in-class indomethacin-based PROTACs degrading SARS-CoV-2 main protease and with broad-spectrum antiviral activity
    Eur J Med Chem268, 116202-116202. PubMed  Europe PubMed DOI
  46. Devoy,C., Flores Bueso,Y., Buckley,S., Walker,S. and Tangney,M.
    Synthetic protein protease sensor platform
    Front Bioeng Biotechnol12, 1347953-1347953. PubMed  Europe PubMed DOI
  47. Diogo,M.A., Cabral,A.G.T. and de Oliveira,R.B.
    Advances in the Search for SARS-CoV-2 M(pro) and PL(pro) Inhibitors
    Pathogens13, PubMed  Europe PubMed DOI  V
  48. Dou,X., Sun,Q., Liu,Y., Lu,Y., Zhang,C., Xu,G., Xu,Y., Huo,T., Zhao,X., Su,L., Xing,Y., Lai,L. and Jiao,N.
    Discovery of 3-oxo-1,2,3,4-tetrahydropyrido[1,2-a]pyrazin derivatives as SARS-CoV-2 main protease inhibitors through virtual screening and biological evaluation
    Bioorg Med Chem Lett97, 129547-129547. PubMed  Europe PubMed DOI  I
  49. Evans,D., Sheraz,S. and Lau,A.
    SARS-CoV-2 3CLPro Dihedral Angles Reveal Allosteric Signaling
    bioRxiv PubMed  Europe PubMed DOI
  50. Fagnani,L., Bellio,P., Di Giulio,A., Nazzicone,L., Iorio,R., Petricca,S., Franceschini,N., Bertarini,L., Tondi,D. and Celenza,G.
    Mechanism of non-competitive inhibition of the SARS-CoV-2 3CL protease dimerization: Therapeutic and clinical promise of the lichen secondary metabolite perlatolinic acid
    Heliyon10, e38445-e38445. PubMed  Europe PubMed DOI
  51. Feys,J.R., Edwards,K., Joyce,M.A., Saffran,H.A., Shields,J.A., Garcia,K., Tyrrell,D.L. and Fischer,C.
    Peptide Aldehydes Incorporating Thiazol-4-yl Alanine Are Potent In Vitro Inhibitors of SARS-CoV-2 Main Protease
    ACS Med Chem Lett15, 2046-2052. PubMed  Europe PubMed DOI  I
  52. Fornasier,E., Fabbian,S., Shehi,H., Enderle,J., Gatto,B., Volpin,D., Biondi,B., Bellanda,M., Giachin,G., Sosic,A. and Battistutta,R.
    Allostery in homodimeric SARS-CoV-2 main protease
    Commun Biol7, 1435-1435. PubMed  Europe PubMed DOI
  53. Fukumoto,Y., Suzuki,N., Hara,R., Tanaka,Y.K. and Ogra,Y.
    Development of a Biosafety Level 1 Cellular Assay for Identifying Small-Molecule Antivirals Targeting the Main Protease of SARS-CoV-2: Evaluation of Cellular Activity of GC376, Boceprevir, Carmofur, Ebselen, and Selenoneine
    Int J Mol Sci25, PubMed  Europe PubMed DOI  I
  54. Funk,L.M., Poschmann,G., Rabe von Pappenheim,F., Chari,A., Stegmann,K.M., Dickmanns,A., Wensien,M., Eulig,N., Paknia,E., Heyne,G., Penka,E., Pearson,A.R., Berndt,C., Fritz,T., Bazzi,S., Uranga,J., Mata,R.A., Dobbelstein,M., Hilgenfeld,R., Curth,U. and Tittmann,K.
    Multiple redox switches of the SARS-CoV-2 main protease in vitro provide opportunities for drug design
    Nat Commun15, 411-411. PubMed  Europe PubMed DOI
  55. Gevorgyan,S., Khachatryan,H., Shavina,A., Gharaghani,S. and Zakaryan,H.
    Targeting SARS-CoV-2 main protease: a comprehensive approach using advanced virtual screening, molecular dynamics, and in vitro validation
    Virol J21, 330-330. PubMed  Europe PubMed DOI
  56. Grifagni,D., Lenci,E., De Santis,A., Orsetti,A., Barracchia,C.G., Tedesco,F., Bellini Puglielli,R., Lucarelli,F., Lauriola,A., Assfalg,M., Cantini,F., Calderone,V., Guardavaccaro,D., Trabocchi,A., D'Onofrio,M. and Ciofi-Baffoni,S.
    Development of a GC-376 Based Peptidomimetic PROTAC as a Degrader of 3-Chymotrypsin-like Protease of SARS-CoV-2
    ACS Med Chem Lett15, 250-257. PubMed  Europe PubMed DOI  I
  57. Grin,P.M., Baid,K., de Jesus,H.C.R., Kozarac,N., Bell,P.A., Jiang,S.Z., Kappelhoff,R., Butler,G.S., Leborgne,N.G.F., Pan,C., Pablos,I., Machado,Y., Vederas,J.C., Kim,H., Benarafa,C., Banerjee,A. and Overall,C.M.
    SARS-CoV-2 3CL(pro) (main protease) regulates caspase activation of gasdermin-D/E pores leading to secretion and extracellular activity of 3CL(pro)
    Cell Rep43, 115080-115080. PubMed  Europe PubMed DOI
  58. Haghir Ebrahim Abadi,M.H., Ghasemlou,A., Bayani,F., Sefidbakht,Y., Vosough,M., Mozaffari-Jovin,S. and Uversky,V.N.
    AI-driven covalent drug design strategies targeting main protease (m(pro)) against SARS-CoV-2: structural insights and molecular mechanisms
    J Biomol Struct Dyn1-29. PubMed  Europe PubMed DOI  V  I
  59. Handa,Y., Okuwaki,K., Kawashima,Y., Hatada,R., Mochizuki,Y., Komeiji,Y., Tanaka,S., Furuishi,T., Yonemochi,E., Honma,T. and Fukuzawa,K.
    Prediction of Binding Pose and Affinity of Nelfinavir, a SARS-CoV-2 Main Protease Repositioned Drug, by Combining Docking, Molecular Dynamics, and Fragment Molecular Orbital Calculations
    J Phys Chem B128, 2249-2265. PubMed  Europe PubMed DOI  I
  60. Hattori,S.I., Bulut,H., Hayashi,H., Kishimoto,N., Takamune,N., Hasegawa,K., Furusawa,Y., Yamayoshi,S., Murayama,K., Tamamura,H., Li,M., Wlodawer,A., Kawaoka,Y., Misumi,S. and Mitsuya,H.
    Structural and virologic mechanism of the emergence of resistance to M(pro) inhibitors in SARS-CoV-2
    Proc Natl Acad Sci U S A121, e2404175121-e2404175121. PubMed  Europe PubMed DOI
  61. Huang,L., Gish,M., Boehlke,J., Jeep,R.H. and Chen,C.
    Assay Development and Validation for Innovative Antiviral Development Targeting the N-Terminal Autoprocessing of SARS-CoV-2 Main Protease Precursors
    Viruses16, PubMed  Europe PubMed DOI
  62. Hue,B.T.B., Nguyet Huong Giang,H., Nguyen,C.Q., Chou,F.P., La Duc Thanh,D., Tran,Q., Hieu,V.T., Hoang Phuong Mai,L., Lin,H.C. and Wu,T.K.
    Discovery of a novel benzimidazole conjugated quinazolinone derivative as a promising SARS-CoV-2 3CL protease inhibitor
    RSC Adv14, 33820-33829. PubMed  Europe PubMed DOI  I
  63. Ibrahim,M., Sun,X., de Oliveira,V.M., Liu,R., Clayton,J., Kilani,H.E., Shen,J. and Hilgenfeld,R.
    Why is the Omicron main protease of SARS-CoV-2 less stable than its wild-type counterpart? A crystallographic, biophysical, and theoretical study of the free enzyme and its complex with inhibitor 13b-K
    bioRxiv PubMed  Europe PubMed DOI
  64. Janin,Y.L.
    On the origins of SARS-CoV-2 main protease inhibitors
    RSC Med Chem15, 81-118. PubMed  Europe PubMed DOI  V  I
  65. Jiang,H., Li,W., Zhou,X., Zhang,J. and Li,J.
    Crystal structures of coronaviral main proteases in complex with the non-covalent inhibitor X77
    Int J Biol Macromol276, 133706-133706. PubMed  Europe PubMed DOI  I
  66. Jiang,H., Zou,X., Zhou,X., Zhang,J. and Li,J.
    Crystal structure of SARS-CoV-2 main protease (M(pro)) mutants in complex with the non-covalent inhibitor CCF0058981
    Biochem Biophys Res Commun692, 149352-149352. PubMed  Europe PubMed DOI  I
  67. Kenward,C., Vuckovic,M., Paetzel,M. and Strynadka,N.C.J.
    Kinetic comparison of all eleven viral polyprotein cleavage site processing events by SARS-CoV-2 Main Protease using a linked protein FRET platform
    J Biol Chem107367-107367. PubMed  Europe PubMed DOI
  68. Khachatryan,H., Matevosyan,M., Harutyunyan,V., Gevorgyan,S., Shavina,A., Tirosyan,I., Gabrielyan,Y., Ayvazyan,M., Bozdaganyan,M., Fakhar,Z., Gharaghani,S. and Zakaryan,H.
    Computational evaluation and benchmark study of 342 crystallographic holo-structures of SARS-CoV-2 Mpro enzyme
    Sci Rep14, 14255-14255. PubMed  Europe PubMed DOI
  69. Kovalevsky,A., Aniana,A., Coates,L., Ghirlando,R., Nashed,N.T. and Louis,J.M.
    Visualizing the Active Site Oxyanion Loop Transition Upon Ensitrelvir Binding and Transient Dimerization of SARS-CoV-2 Main Protease
    J Mol Biol436, 168616-168616. PubMed  Europe PubMed DOI  I
  70. Kovar,P., Richardson,P.L., Korepanova,A., Afanador,G.A., Stojkovic,V., Li,T., Schrimpf,M.R., Ng,T.I., Degoey,D.A., Gopalakrishnan,S.M. and Chen,J.
    Development of a Sensitive High-throughput Enzymatic Assay Capable of Measuring Sub-nanomolar Inhibitors of SARS-CoV2 Mpro
    SLAS Discov100179-100179. PubMed  Europe PubMed DOI
  71. Krismer,L., Schoppe,H., Rauch,S., Bante,D., Sprenger,B., Naschberger,A., Costacurta,F., Furst,A., Sauerwein,A., Rupp,B., Kaserer,T., von Laer,D. and Heilmann,E.
    Study of key residues in MERS-CoV and SARS-CoV-2 main proteases for resistance against clinically applied inhibitors nirmatrelvir and ensitrelvir
    Npj Viruses2, 23-23. PubMed  Europe PubMed DOI  I
  72. Lee,E. and Rauscher,S.
    The Conformational Space of the SARS-CoV-2 Main Protease Active Site Loops Is Determined by Ligand Binding and Interprotomer Allostery
    Biochemistry PubMed  Europe PubMed DOI
  73. Li,F. and Zhang,J.
    Time-resolved fluorescence studies reveal differences in dynamic motion between main proteases of SARS-CoV-2 and SARS-CoV
    Int J Biol Macromol287, 138313-138313. PubMed  Europe PubMed DOI
  74. Li,Q., Zhou,X., Wang,W., Xu,Q., Wang,Q. and Li,J.
    Structural basis of rosmarinic acid inhibitory mechanism on SARS-CoV-2 main protease
    Biochem Biophys Res Commun724, 150230-150230. PubMed  Europe PubMed DOI  I
  75. Liu,X., Ren,X., Hua,M., Liu,F., Ren,X., Sui,C., Li,Q., Luo,F., Jiang,Z., Xia,Z., Chen,J. and Yang,B.
    Progress of SARS-CoV-2 Main protease peptide-like inhibitors
    Chem Biol Drug Des103, e14425-e14425. PubMed  Europe PubMed DOI  V
  76. Mao,L., Shaabani,N., Zhang,X., Jin,C., Xu,W., Argent,C., Kushnareva,Y., Powers,C., Stegman,K., Liu,J., Xie,H., Xu,C., Bao,Y., Xu,L., Zhang,Y., Yang,H., Qian,S., Hu,Y., Shao,J., Zhang,C., Li,T., Li,Y., Liu,N., Lin,Z., Wang,S., Wang,C., Shen,W., Lin,Y., Shu,D., Zhu,Z., Kotoi,O., Kerwin,L., Han,Q., Chumakova,L., Teijaro,J., Royal,M., Brunswick,M., Allen,R., Ji,H., Lu,H. and Xu,X.
    Olgotrelvir, a dual inhibitor of SARS-CoV-2 M(pro) and cathepsin L, as a standalone antiviral oral intervention candidate for COVID-19
    Med5, 42-61. PubMed  Europe PubMed DOI  I
  77. Mao,L., Shaabani,N., Zhang,X., Jin,C., Xu,W., Argent,C., Kushnareva,Y., Powers,C., Stegman,K., Liu,J., Xie,H., Xu,C., Bao,Y., Xu,L., Zhang,Y., Yang,H., Qian,S., Hu,Y., Shao,J., Zhang,C., Li,T., Li,Y., Liu,N., Lin,Z., Wang,S., Wang,C., Shen,W., Lin,Y., Shu,D., Zhu,Z., Kotoi,O., Kerwin,L., Han,Q., Chumakova,L., Teijaro,J., Royal,M., Brunswick,M., Allen,R., Ji,H., Lu,H. and Xu,X.
    Olgotrelvir, a dual inhibitor of SARS-CoV-2 M(pro) and cathepsin L, as a standalone antiviral oral intervention candidate for COVID-19
    Med5, 169-171. PubMed  Europe PubMed DOI  I
  78. Martinusen,S.G., Slaton,E.W., Nelson,S.E., Pulgar,M.A., Besu,J.T., Simas,C.F. and Denard,C.A.
    Modular and integrative activity reporters enhance biochemical studies in the yeast ER
    Protein Eng Des Sel37, PubMed  Europe PubMed DOI
  79. Moon,C., Porges,E., Roberts,A. and Bacon,J.
    A combination of nirmatrelvir and ombitasvir boosts inhibition of SARS-CoV-2 replication
    Antiviral Res225, 105859-105859. PubMed  Europe PubMed DOI  I
  80. Nguyen,H.T., Nguyen,N.T., Le,T.T., Pham,X.T., Pham,H.L., Le,H.T., Phan,T.N. and Dinh,N.T.
    Improved expression and purification of highly-active 3 chymotrypsin-like protease from SARS-CoV-2
    Protein Expr Purif215, 106414-106414. PubMed  Europe PubMed DOI
  81. Novotny,P., Humpolickova,J., Novakova,V., Stanchev,S., Strisovsky,K., Zgarbova,M., Weber,J., Krystufek,R., Starkova,J., Hradilek,M., Moravcova,A., Gunterova,J., Bach,K., Majer,P., Konvalinka,J. and Majerova,T.
    The zymogenic form of SARS-CoV-2 main protease: A discrete target for drug discovery
    J Biol Chem108079-108079. PubMed  Europe PubMed DOI
  82. Pan,F., Zhou,Q., Yan,M., Yang,S., Hu,R., Chen,Y., Wen,Y., Chao,Y., Xie,C., Ou,W., Li,Y., Zhang,H., Guo,D. and Zhang,X.
    Development of pyrimidone derivatives as nonpeptidic and noncovalent 3-chymotrypsin-like protease (3CL(pro)) inhibitors with anti-coronavirus activities
    Bioorg Chem154, 107988-107988. PubMed  Europe PubMed DOI  I
  83. Pandit,S., Duchow,M., Chao,W., Capasso,A. and Samanta,D.
    DNA-Barcoded Plasmonic Nanostructures for Activity-Based Protease Sensing
    Angew Chem Int Ed Engl63, e202310964-e202310964. PubMed  Europe PubMed DOI
  84. Papini,C., Ullah,I., Ranjan,A.P., Zhang,S., Wu,Q., Spasov,K.A., Zhang,C., Mothes,W., Crawford,J.M., Lindenbach,B.D., Uchil,P.D., Kumar,P., Jorgensen,W.L. and Anderson,K.S.
    Proof-of-concept studies with a computationally designed M(pro) inhibitor as a synergistic combination regimen alternative to Paxlovid
    Proc Natl Acad Sci U S A121, e2320713121-e2320713121. PubMed  Europe PubMed DOI  I
  85. Peng,J.Q., Xiao,Y.Q., Long,J., Zhang,S.S., Zhu,Y.Y. and Gu,S.X.
    Design, synthesis, and biological evaluation of dithiocarbamate derivatives as SARS-CoV-2 M(pro) inhibitors
    Bioorg Med Chem Lett114, 130011-130011. PubMed  Europe PubMed DOI  I
  86. Previti,S., Ettari,R., Calcaterra,E., Roggia,M., Natale,B., Weldert,A.C., Muller-Ruttloff,C., Salisch,F., Irto,A., Cigala,R.M., Ziebuhr,J., Schirmeister,T., Cosconati,S. and Zappala,M.
    Identification of Dual Inhibitors Targeting Main Protease (M(pro)) and Cathepsin L as Potential Anti-SARS-CoV-2 Agents
    ACS Med Chem Lett15, 602-609. PubMed  Europe PubMed DOI
  87. Reinke,P.Y.A., Schubert,R., Oberthur,D., Galchenkova,M., Rahmani Mashhour,A., Gunther,S., Chretien,A., Round,A., Seychell,B.C., Norton-Baker,B., Kim,C., Schmidt,C., Koua,F.H.M., Tolstikova,A., Ewert,W., Pena Murillo,G.E., Mills,G., Kirkwood,H., Brognaro,H., Han,H., Koliyadu,J., Schulz,J., Bielecki,J., Lieske,J., Maracke,J., Knoska,J., Lorenzen,K., Brings,L., Sikorski,M., Kloos,M., Vakili,M., Vagovic,P., Middendorf,P., de Wijn,R., Bean,R., Letrun,R., Han,S., Falke,S., Geng,T., Sato,T., Srinivasan,V., Kim,Y., Yefanov,O.M., Gelisio,L., Beck,T., Dore,A.S., Mancuso,A.P., Betzel,C., Bajt,S., Redecke,L., Chapman,H.N., Meents,A., Turk,D., Hinrichs,W. and Lane,T.J.
    SARS-CoV-2 M(pro) responds to oxidation by forming disulfide and NOS/SONOS bonds
    Nat Commun15, 3827-3827. PubMed  Europe PubMed DOI
  88. Rocho,F.R., Snipas,S.J., Shamim,A., Rut,W., Drag,M., Montanari,C.A. and Salvesen,G.S.
    Differential specificity of SARS-CoV-2 main protease variants on peptide versus protein-based substrates
    FEBS J291, 61-69. PubMed  Europe PubMed DOI
  89. Sancineto,L., Mangiavacchi,F., Dabrowska,A., Pacula-Miszewska,A.J., Obieziurska-Fabisiak,M., Scimmi,C., Ceccucci,V., Kong,J., Zhao,Y., Ciancaleoni,G., Nascimento,V., Rizzuti,B., Bortoli,M., Orian,L., Kula-Pacurar,A., Yang,H., Scianowski,J., Lei,Y., Pyrc,K. and Santi,C.
    New insights in the mechanism of the SARS-CoV-2 M(pro) inhibition by benzisoselenazolones and diselenides
    Sci Rep14, 24751-24751. PubMed  Europe PubMed DOI
  90. Shawky,A.M., Almalki,F.A., Alzahrani,H.A., Abdalla,A.N., Youssif,B.G.M., Ibrahim,N.A., Gamal,M., El-Sherief,H.A.M., Abdel-Fattah,M.M., Hefny,A.A., Abdelazeem,A.H. and Gouda,A.M.
    Covalent small-molecule inhibitors of SARS-CoV-2 Mpro: Insights into their design, classification, biological activity, and binding interactions
    Eur J Med Chem277, 116704-116704. PubMed  Europe PubMed DOI  V  I
  91. Shen,S., Guo,H., Li,Y., Zhang,L., Tang,Y., Li,H., Li,X., Wang,P.H., Yu,X.F. and Wei,W.
    SARS-CoV-2 and oncolytic EV-D68-encoded proteases differentially regulate pyroptosis
    J Virol98, e0190923-e0190923. PubMed  Europe PubMed DOI
  92. Shen,W., Chen,X., Zhou,L., Cheng,Y., Zhang,Y., Jiang,X., Sun,H. and Shen,J.
    Discovery of the potent covalent inhibitor with an acrylate warhead for SARS-CoV-2 3CL protease
    Bioorg Med Chem Lett112, 129942-129942. PubMed  Europe PubMed DOI  I
  93. Sheng,Y.J., Kuo,S.A., Yang,T., Zhang,H.E., Russell,D.H., Yan,X., Xu,S., Liu,W.R. and Fierke,C.A.
    BRD4354 Is a Potent Covalent Inhibitor against the SARS-CoV-2 Main Protease
    Biochemistry PubMed  Europe PubMed DOI  I
  94. Souza,B., Pontes,M., de,O.C., Sousa,F.d., Tizziani,T., Pollo,E., Dambros,B.P., Scotti,M.T., Steindel,M., Braga,A.L., Schirmeister,T., Assis,F.d. and Sandjo,L.P.
    Inhibitory Effects of Mangifera indica Secondary Metabolites and Their Synthetic Derivatives against SARS-CoV-2 M(pro) and NS2B/NS3 (ZIKV and DENV-2)
    ACS Omega9, 44624-44638. PubMed  Europe PubMed DOI
  95. Tan,Y., Yang,J., Wang,M., Peng,Q., Li,Y., Fu,L., Zhang,M., Wu,J., Yang,G., Hipolito,C.J., Zhang,Y., Qi,J., Shi,Y. and Yin,Y.
    De Novo Discovery of a Noncovalent Cell-Penetrating Bicyclic Peptide Inhibitor Targeting SARS-CoV-2 Main Protease
    J Med Chem67, 20258-20274. PubMed  Europe PubMed DOI
  96. Tian,L., Qiang,T., Yang,X., Gao,Y., Zhai,X., Kang,K., Du,C., Lu,Q., Gao,H., Zhang,D., Xie,X. and Liang,C.
    Development of de-novo coronavirus 3-chymotrypsin-like protease (3CL(pro)) inhibitors since COVID-19 outbreak: A strategy to tackle challenges of persistent virus infection
    Eur J Med Chem264, 115979-115979. PubMed  Europe PubMed DOI
  97. Tunon,I., Schillings,J., Ramos-Guzman,C.A. and Ruiz-Pernia,J.J.
    Pomotrelvir and Nirmatrelvir Binding and Reactivity with SARS-CoV-2 Main Protease: Implications for Resistance Mechanisms from Computations
    Angew Chem Int Ed Engle202409527-e202409527. PubMed  Europe PubMed DOI  I
  98. Vlachou,A., Nchioua,R., Regensburger,K., Kirchhoff,F. and Kmiec,D.
    A Gaussia luciferase reporter assay for the evaluation of coronavirus Nsp5/3CLpro activity
    Sci Rep14, 20697-20697. PubMed  Europe PubMed DOI
  99. Wang,Q., Ge,R., Wang,C., Elazab,A., Fang,Q. and Zhang,R.
    TDFFM: Transformer and Deep Forest Fusion Model for Predicting Coronavirus 3C-Like Protease Cleavage Sites
    IEEE/ACM Trans Comput Biol BioinformPP, PubMed  Europe PubMed DOI
  100. Wang,W.W., Zeng,P., Liu,T., Zhou,X.L., Lin,C., Guo,L., Wang,Q.S. and Li,J.
    Structural Basis of Main Proteases of Coronavirus Bound to Bofutrelvir
    J Mol Biol436, 168784-168784. PubMed  Europe PubMed DOI  I
  101. Xia,S., Liang,E., Xu,L., Tan,L., Guo,X. and Cheng,K.
    Ultrasensitive Chemiluminescence Probes Designed from Covalent Inhibitors for SRAS-CoV-2 M(pro) Detection
    Anal Chem PubMed  Europe PubMed DOI
  102. Xu,J., Zhu,Q., Li,W., Yin,X. and Li,J.
    Structural basis for the inhibition of the HCoV-NL63 main protease M(pro) by X77
    Biochem Biophys Res Commun724, 150231-150231. PubMed  Europe PubMed DOI  I
  103. Yamasaki,M., Saso,W., Yamamoto,T., Sato,M., Takagi,H., Hasegawa,T., Kozakura,Y., Yokoi,H., Ohashi,H., Tsuchimoto,K., Hashimoto,R., Fukushi,S., Uda,A., Muramatsu,M., Takayama,K., Maeda,K., Takahashi,Y., Nagase,T. and Watashi,K.
    Anti-SARS-CoV-2 gapmer antisense oligonucleotides targeting the main protease region of viral RNA
    Antiviral Res230, 105992-105992. PubMed  Europe PubMed DOI
  104. Ye,J., Xu,T., Zhang,R., Liu,X., Zhang,C. and Chen,Y.
    Invalidating betulinic acid as a potential inhibitor against the main protease of SARS-CoV-2 via combined approaches
    Steroids212, 109522-109522. PubMed  Europe PubMed DOI
  105. Zhou,N.E., Tang,S., Bian,X., Parai,M.K., Krieger,I.V., Flores,A., Jaiswal,P.K., Bam,R., Wood,J.L., Shi,Z., Stevens,L.J., Scobey,T., Diefenbacher,M.V., Moreira,F.R., Baric,T.J., Acharya,A., Shin,J., Rathi,M.M., Wolff,K.C., Riva,L., Bakowski,M.A., McNamara,C.W., Catanzaro,N.J., Graham,R.L., Schultz,D.C., Cherry,S., Kawaoka,Y., Halfmann,P.J., Baric,R.S., Denison,M.R., Sheahan,T.P. and Sacchettini,J.C.
    An oral non-covalent non-peptidic inhibitor of SARS-CoV-2 Mpro ameliorates viral replication and pathogenesis in vivo
    Cell Rep43, 114929-114929. PubMed  Europe PubMed DOI  I
  106. Zhou,X., Lu,X., Lin,C., Zou,X., Li,W., Zeng,X., Wang,J., Zeng,P., Wang,W., Zhang,J., Jiang,H. and Li,J.
    Structural basis for the inhibition of coronaviral main proteases by PF-00835231
    Acta Biochim Biophys Sin (Shanghai)56, 1813-1822. PubMed  Europe PubMed DOI  I
  107. 2023
  108. Ahuja,R., Kaur,A., Kumari,G., Kumar,A., Kumar,S., Roy,A.K. and Majumdar,T.
    Enhanced expression and solubility of main protease (Mpro) of SARS-CoV-2 from E. coli
    Protein Expr Purif211, 106337-106337. PubMed  Europe PubMed DOI
  109. Al Adem,K., Ferreira,J.C., Fadl,S. and Rabeh,W.M.
    pH profiles of 3-chymotrypsin-like protease (3CLpro) from SARS-CoV-2 elucidate its catalytic mechanism and a histidine residue critical for activity
    J Biol Chem299, 102790-102790. PubMed  Europe PubMed DOI
  110. Al Adem,K., Ferreira,J.C., Fadl,S., Mustafa,M. and Rabeh,W.M.
    Key Allosteric and Active Site Residues of SARS-CoV-2 3CLpro Are Promising Drug Targets
    Biochem J PubMed  Europe PubMed DOI
  111. Alugubelli,Y.R., Xiao,J., Khatua,K., Kumar,S., Ma,Y., Ma,X.R., Vulupala,V.R., Atla,S.R., Blankenship,L., Coleman,D., Neuman,B.W., Liu,W.R. and Xu,S.
    Discovery of First-in-Class PROTAC Degraders of SARS-CoV-2 Main Protease
    bioRxiv PubMed  Europe PubMed DOI
  112. Aniana,A., Nashed,N.T., Ghirlando,R., Coates,L., Kneller,D.W., Kovalevsky,A. and Louis,J.M.
    Insights into the mechanism of SARS-CoV-2 main protease autocatalytic maturation from model precursors
    Commun Biol6, 1159-1159. PubMed  Europe PubMed DOI
  113. Anton,D.B., Galvez Bulhoes Pedreira,J., Zvirtes,M.L., Laufer,S.A., Ducati,R.G., Goettert,M. and Saraiva Macedo Timmers,L.F.
    Targeting SARS-CoV-2 Main Protease (MPro) with Kinase Inhibitors: A Promising Approach for Discovering Antiviral and Anti-inflammatory Molecules against SARS-CoV-2
    J Chem Inf Model63, 4138-4146. PubMed  Europe PubMed DOI
  114. Belenkaya,S.V., Merkuleva,I.A., Yarovaya,O.I., Chirkova,V.Y., Sharlaeva,E.A., Shanshin,D.V., Volosnikova,E.A., Vatsadze,S.Z., Khvostov,M.V., Salakhutdinov,N.F. and Shcherbakov,D.N.
    The main protease 3CLpro of the SARS-CoV-2 virus: how to turn an enemy into a helper
    Front Bioeng Biotechnol11, 1187761-1187761. PubMed  Europe PubMed DOI
  115. Bello,S.O., Imam,M.U., Bello,M.B., Yunusa,A., Ahmed Adamu,A., Shuaibu,A., Igumbor,E.U., Habib,Z.G., Popoola,M.A., Ochu,C.L., Yahaya Bello,A., Deeni,Y.Y. and Okoye,I.
    Erythromycin, retapamulin, pyridoxine, folic acid, and ivermectin inhibit cytopathic effect, papain-like protease, and M(PRO) enzymes of SARS-CoV-2
    Front Cell Infect Microbiol13, 1273982-1273982. PubMed  Europe PubMed DOI  I
  116. Boby,M.L., Fearon,D., Ferla,M., Filep,M., Koekemoer,L., Robinson,M.C., Chodera,J.D., Lee,A.A., London,N., von Delft,A., von Delft,F., Achdout,H., Aimon,A., Alonzi,D.S., Arbon,R., Aschenbrenner,J.C., Balcomb,B.H., Bar-David,E., Barr,H., Ben-Shmuel,A., Bennett,J., Bilenko,V.A., Borden,B., Boulet,P., Bowman,G.R., Brewitz,L., Brun,J., Bvnbs,S., Calmiano,M., Carbery,A., Carney,D.W., Cattermole,E., Chang,E., Chernyshenko,E., Clyde,A., Coffland,J.E., Cohen,G., Cole,J.C., Contini,A., Cox,L., Croll,T.I., Cvitkovic,M., De Jonghe,S., Dias,A., Donckers,K., Dotson,D.L., Douangamath,A., Duberstein,S., Dudgeon,T., Dunnett,L.E., Eastman,P., Erez,N., Eyermann,C.J., Fairhead,M., Fate,G., Fedorov,O., Fernandes,R.S., Ferrins,L., Foster,R., Foster,H., Fraisse,L., Gabizon,R., Garcia-Sastre,A., Gawriljuk,V.O., Gehrtz,P., Gileadi,C., Giroud,C., Glass,W.G., Glen,R.C., Glinert,I., Godoy,A.S., Gorichko,M., Gorrie-Stone,T., Griffen,E.J., Haneef,A., Hassell Hart,S., Heer,J., Henry,M., Hill,M., Horrell,S., Huang,Q.Y.J., Huliak,V.D., Hurley,M.F.D., Israely,T., Jajack,A., Jansen,J., Jnoff,E., Jochmans,D., John,T., Kaminow,B., Kang,L., Kantsadi,A.L., Kenny,P.W., Kiappes,J.L., Kinakh,S.O., Kovar,B., Krojer,T., La,V.N.T., Laghnimi-Hahn,S., Lefker,B.A., Levy,H., Lithgo,R.M., Logvinenko,I.G., Lukacik,P., Macdonald,H.B., MacLean,E.M., Makower,L.L., Malla,T.R., Marples,P.G., Matviiuk,T., McCorkindale,W., McGovern,B.L., Melamed,S., Melnykov,K.P., Michurin,O., Miesen,P., Mikolajek,H., Milne,B.F., Minh,D., Morris,A., Morris,G.M., Morwitzer,M.J., Moustakas,D., Mowbray,C.E., Nakamura,A.M., Neto,J.B., Neyts,J., Nguyen,L., Noske,G.D., Oleinikovas,V., Oliva,G., Overheul,G.J., Owen,C.D., Pai,R., Pan,J., Paran,N., Payne,A.M., Perry,B., Pingle,M., Pinjari,J., Politi,B., Powell,A., Psenak,V., Pulido,I., Puni,R., Rangel,V.L., Reddi,R.N., Rees,P., Reid,S.P., Reid,L., Resnick,E., Ripka,E.G., Robinson,R.P., Rodriguez-Guerra,J., Rosales,R., Rufa,D.A., Saar,K., Saikatendu,K.S., Salah,E., Schaller,D., Scheen,J., Schiffer,C.A., Schofield,C.J., Shafeev,M., Shaikh,A., Shaqra,A.M., Shi,J., Shurrush,K., Singh,S., Sittner,A., Sjo,P., Skyner,R., Smalley,A., Smeets,B., Smilova,M.D., Solmesky,L.J., Spencer,J., Strain-Damerell,C., Swamy,V., Tamir,H., Taylor,J.C., Tennant,R.E., Thompson,W., Thompson,A., Tomasio,S., Tomlinson,C.W.E., Tsurupa,I.S., Tumber,A., Vakonakis,I., van Rij,R.P., Vangeel,L., Varghese,F.S., Vaschetto,M., Vitner,E.B., Voelz,V., Volkamer,A., Walsh,M.A., Ward,W., Weatherall,C., Weiss,S., White,K.M., Wild,C.F., Witt,K.D., Wittmann,M., Wright,N., Yahalom-Ronen,Y., Yilmaz,N.K., Zaidmann,D., Zhang,I., Zidane,H., Zitzmann,N. and Zvornicanin,S.N.
    Open science discovery of potent noncovalent SARS-CoV-2 main protease inhibitors
    Science382, eabo7201-eabo7201. PubMed  Europe PubMed DOI
  117. Cardoso-Ortiz,J., Leyva-Ramos,S., Baines,K.M., Gomez-Duran,C.F.A., Hernandez-Lopez,H., Palacios-Can,F.J., Valcarcel-Gamino,J.A., Leyva-Peralta,M.A. and Razo-Hernandez,R.S.
    Novel ciprofloxacin and norfloxacin-tetrazole hybrids as potential antibacterial and antiviral agents: Targeting S. aureus topoisomerase and SARS-CoV-2-MPro
    J Mol Struct1274, 134507-134507. PubMed  Europe PubMed DOI
  118. Castillo-Garit,J.A., Canizares-Carmenate,Y., Pham-The,H., Perez-Donate,V., Torrens,F. and Perez-Gimenez,F.
    A Review of Computational Approaches Targeting SARS-CoV-2 Main Protease to the Discovery of New Potential Antiviral Compounds
    Curr Top Med Chem23, 3-16. PubMed  Europe PubMed DOI  V
  119. Chakraborty,C., Bhattacharya,M., Alshammari,A., Alharbi,M., Albekairi,T.H. and Zheng,C.
    Exploring the structural and molecular interaction landscape of nirmatrelvir and Mpro complex: The study might assist in designing more potent antivirals targeting SARS-CoV-2 and other viruses
    J Infect Public Health16, 1961-1970. PubMed  Europe PubMed DOI  I
  120. Chan,H.T.H., Oliveira,A.S.F., Schofield,C.J., Mulholland,A.J. and Duarte,F.
    Dynamical Nonequilibrium Molecular Dynamics Simulations Identify Allosteric Sites and Positions Associated with Drug Resistance in the SARS-CoV-2 Main Protease
    JACS Au3, 1767-1774. PubMed  Europe PubMed DOI
  121. Chan,L.C., Mat Yassim,A.S., Ahmad Fuaad,A.A.H., Leow,T.C., Sabri,S., Radin Yahaya,R.S. and Abu Bakar,A.M.S.
    Inhibition of SARS-CoV-2 3CL protease by the anti-viral chimeric protein RetroMAD1
    Sci Rep13, 20178-20178. PubMed  Europe PubMed DOI
  122. Chen,S.A., Arutyunova,E., Lu,J., Khan,M.B., Rut,W., Zmudzinski,M., Shahbaz,S., Iyyathurai,J., Moussa,E.W., Turner,Z., Bai,B., Lamer,T., Nieman,J.A., Vederas,J.C., Julien,O., Drag,M., Elahi,S., Young,H.S. and Lemieux,M.J.
    SARS-CoV-2 M(pro) Protease Variants of Concern Display Altered Viral Substrate and Cell Host Target Galectin-8 Processing but Retain Sensitivity toward Antivirals
    ACS Cent Sci9, 696-708. PubMed  Europe PubMed DOI
  123. Clayton,J., de Oliveira,V.M., Ibrahim,M.F., Sun,X., Mahinthichaichan,P., Shen,M., Hilgenfeld,R. and Shen,J.
    Integrative Approach to Dissect the Drug Resistance Mechanism of the H172Y Mutation of SARS-CoV-2 Main Protease
    J Chem Inf Model63, 3521-3533. PubMed  Europe PubMed DOI
  124. Costacurta,F., Dodaro,A., Bante,D., Schoppe,H., Sprenger,B., Moghadasi,S.A., Fleischmann,J., Pavan,M., Bassani,D., Menin,S., Rauch,S., Krismer,L., Sauerwein,A., Heberle,A., Rabensteiner,T., Ho,J., Harris,R.S., Stefan,E., Schneider,R., Kaserer,T., Moro,S., von Laer,D. and Heilmann,E.
    A comprehensive study of SARS-CoV-2 main protease (M(pro)) inhibitor-resistant mutants selected in a VSV-based system
    bioRxiv PubMed  Europe PubMed DOI  I
  125. de Munnik,M., Lithgow,J., Brewitz,L., Christensen,K.E., Bates,R.H., Rodriguez-Miquel,B. and Schofield,C.J.
    alphabeta,alpha'beta'-Diepoxyketones are mechanism-based inhibitors of nucleophilic cysteine enzymes
    Chem Commun (Camb)59, 12859-12862. PubMed  Europe PubMed DOI
  126. Dos Santos Nascimento,I.J. and de Moura,R.O.
    Would the Development of a Multitarget Inhibitor of 3CLpro and TMPRSS2 be Promising in the Fight Against SARS-CoV-2?
    Med Chem19, 405-412. PubMed  Europe PubMed DOI  V
  127. Duan,Y., Zhou,H., Liu,X., Iketani,S., Lin,M., Zhang,X., Bian,Q., Wang,H., Sun,H., Hong,S.J., Culbertson,B., Mohri,H., Luck,M.I., Zhu,Y., Liu,X., Lu,Y., Yang,X., Yang,K., Sabo,Y., Chavez,A., Goff,S.P., Rao,Z., Ho,D.D. and Yang,H.
    Molecular mechanisms of SARS-CoV-2 resistance to nirmatrelvir
    Nature622, 376-382. PubMed  Europe PubMed DOI  I
  128. Duan,Y., Wang,H., Yuan,Z. and Yang,H.
    Structural biology of SARS-CoV-2 M(pro) and drug discovery
    Curr Opin Struct Biol82, 102667-102667. PubMed  Europe PubMed DOI  V
  129. Farkas,B., Minneci,M., Misevicius,M. and Rozas,I.
    A Tale of Two Proteases: M(Pro) and TMPRSS2 as Targets for COVID-19 Therapies
    Pharmaceuticals (Basel)16, PubMed  Europe PubMed DOI  V
  130. Ferdous,N., Reza,M.N., Hossain,M.U., Mahmud,S., Napis,S., Chowdhury,K. and Mohiuddin,A.K.M.
    Mpropred: A machine learning (ML) driven Web-App for bioactivity prediction of SARS-CoV-2 main protease (Mpro) antagonists
    PLoS ONE18, e0287179-e0287179. PubMed  Europe PubMed DOI
  131. Ghahremanpour,M.M., Saar,A., Tirado-Rives,J. and Jorgensen,W.L.
    Computation of Absolute Binding Free Energies for Noncovalent Inhibitors with SARS-CoV-2 Main Protease
    J Chem Inf Model63, 5309-5318. PubMed  Europe PubMed DOI
  132. He,Z., Yuan,J., Zhang,Y., Li,R., Mo,M., Wang,Y. and Ti,H.
    Recent advances towards natural plants as potential inhibitors of SARS-Cov-2 targets
    Pharm Biol61, 1186-1210. PubMed  Europe PubMed DOI  V
  133. Hooper,A., Macdonald,J.D., Reilly,B., Maw,J., Wirrick,A.P., Han,S.H., Lindsey,A.A., Rico,E.G., Romigh,T., Goins,C.M., Wang,N.S. and Stauffer,S.
    SARS-CoV-2 3CL-protease inhibitors derived from ML300: investigation of P1 and replacements of the 1,2,3-benzotriazole
    Res Sq PubMed  Europe PubMed DOI  I
  134. Hu,Y., Lewandowski,E.M., Tan,H., Zhang,X., Morgan,R.T., Zhang,X., Jacobs,L.M.C., Butler,S.G., Gongora,M.V., Choy,J., Deng,X., Chen,Y. and Wang,J.
    Naturally Occurring Mutations of SARS-CoV-2 Main Protease Confer Drug Resistance to Nirmatrelvir
    ACS Cent Sci9, 1658-1669. PubMed  Europe PubMed DOI  I
  135. Iketani,S., Mohri,H., Culbertson,B., Hong,S.J., Duan,Y., Luck,M.I., Annavajhala,M.K., Guo,Y., Sheng,Z., Uhlemann,A.C., Goff,S.P., Sabo,Y., Yang,H., Chavez,A. and Ho,D.D.
    Multiple pathways for SARS-CoV-2 resistance to nirmatrelvir
    Nature613, 558-564. PubMed  Europe PubMed DOI
  136. Ip,J.D., Wing-Ho Chu,A., Chan,W.M., Cheuk-Ying Leung,R., Umer Abdullah,S.M., Sun,Y. and Kai-Wang To,K.
    Global prevalence of SARS-CoV-2 3CL protease mutations associated with nirmatrelvir or ensitrelvir resistance
    EBioMedicine91, 104559-104559. PubMed  Europe PubMed DOI  I
  137. Jacobs,L., van der Westhuyzen,A., Pribut,N., Dentmon,Z.W., Cui,D., D'Erasmo,M.P., Bartsch,P.W., Liu,K., Cox,R.M., Greenlund,S.F., Plemper,R.K., Mitchell,D., Marlow,J., Andrews,M.K., Krueger,R.E., Sticher,Z.M., Kolykhalov,A.A., Natchus,M.G., Zhou,B., Pelly,S.C. and Liotta,D.C.
    Design and Optimization of Novel Competitive, Non-peptidic, SARS-CoV-2 M(pro) Inhibitors
    ACS Med Chem Lett14, 1434-1440. PubMed  Europe PubMed DOI
  138. Jiang,H., Zhou,Y., Zou,X., Hu,X., Wang,J., Zeng,P., Li,W., Zeng,X., Zhang,J. and Li,J.
    Evaluation of the Inhibition Potency of Nirmatrelvir against Main Protease Mutants of SARS-CoV-2 Variants
    Biochemistry62, 2055-2064. PubMed  Europe PubMed DOI  I
  139. Jiang,H., Zou,X., Zeng,P., Zeng,X., Zhou,X., Wang,J., Zhang,J. and Li,J.
    Crystal structures of main protease (M(pro)) mutants of SARS-CoV-2 variants bound to PF-07304814
    Mol Biomed4, 23-23. PubMed  Europe PubMed DOI
  140. Jiang,X., Su,H., Shang,W., Zhou,F., Zhang,Y., Zhao,W., Zhang,Q., Xie,H., Jiang,L., Nie,T., Yang,F., Xiong,M., Huang,X., Li,M., Chen,P., Peng,S., Xiao,G., Jiang,H., Tang,R., Zhang,L., Shen,J. and Xu,Y.
    Structure-based development and preclinical evaluation of the SARS-CoV-2 3C-like protease inhibitor simnotrelvir
    Nat Commun14, 6463-6463. PubMed  Europe PubMed DOI  I
  141. Jin,Z., Li,Y., Li,K., Zhou,J., Yeung,J., Ling,C., Yim,W., He,T., Cheng,Y., Xu,M., Creyer,M.N., Chang,Y.C., Fajtova,P., Retout,M., Qi,B., Li,S., O'Donoghue,A.J. and Jokerst,J.V.
    Peptide Amphiphile Mediated Co-assembly for Nanoplasmonic Sensing
    Angew Chem Int Ed Engl62, e202214394-e202214394. PubMed  Europe PubMed DOI
  142. Kattula,B., Reddi,B., Jangam,A., Naik,L., Adimoolam,B.M., Vavilapalli,S., Are,S., Thota,J.R., Jadav,S.S., Arifuddin,M. and Addlagatta,A.
    Development of 2-chloroquinoline based heterocyclic frameworks as dual inhibitors of SARS-CoV-2 M(Pro) and PL(Pro)
    Int J Biol Macromol242, 124772-124772. PubMed  Europe PubMed DOI  I
  143. Kawashima,S., Matsui,Y., Adachi,T., Morikawa,Y., Inoue,K., Takebayashi,S., Nobori,H., Rokushima,M., Tachibana,Y. and Kato,T.
    Ensitrelvir is effective against SARS-CoV-2 3CL protease mutants circulating globally
    Biochem Biophys Res Commun645, 132-136. PubMed  Europe PubMed DOI  I
  144. Kiso,M., Yamayoshi,S., Iida,S., Furusawa,Y., Hirata,Y., Uraki,R., Imai,M., Suzuki,T. and Kawaoka,Y.
    In vitro and in vivo characterization of SARS-CoV-2 resistance to ensitrelvir
    Nat Commun14, 4231-4231. PubMed  Europe PubMed DOI  I
  145. Kosenko,M., Onkhonova,G., Susloparov,I. and Ryzhikov,A.
    SARS-CoV-2 proteins structural studies using synchrotron radiation
    Biophys Rev15, 1185-1194. PubMed  Europe PubMed DOI
  146. Kovalevsky,A., Aniana,A., Coates,L., Bonnesen,P.V., Nashed,N.T. and Louis,J.M.
    Contribution of the catalytic dyad of SARS-CoV-2 main protease to binding covalent and noncovalent inhibitors
    J Biol Chem299, 104886-104886. PubMed  Europe PubMed DOI  I
  147. Kronenberger,T., Laufer,S.A. and Pillaiyar,T.
    COVID-19 therapeutics: Small-molecule drug development targeting SARS-CoV-2 main protease
    Drug Discov Today28, 103579-103579. PubMed  Europe PubMed DOI  V
  148. Kushwaha,N.D., Mohan,J., Kushwaha,B., Ghazi,T., Nwabuife,J.C., Koorbanally,N. and Chuturgoon,A.A.
    A comprehensive review on the global efforts on vaccines and repurposed drugs for combating COVID-19
    Eur J Med Chem260, 115719-115719. PubMed  Europe PubMed DOI
  149. Lear,T.B., Boudreau,A.N., Lockwood,K.C., Chu,E., Camarco,D.P., Cao,Q., Nguyen,M., Evankovich,J.W., Finkel,T., Liu,Y. and Chen,B.B.
    E3 ubiquitin ligase ZBTB25 suppresses beta coronavirus infection through ubiquitination of the main viral protease MPro
    J Biol Chem299, 105388-105388. PubMed  Europe PubMed DOI
  150. Leonard,R.A., Rao,V.N., Bartlett,A., Froggatt,H.M., Luftig,M.A., Heaton,B.E. and Heaton,N.S.
    A low-background, fluorescent assay to evaluate inhibitors of diverse viral proteases
    J Virol97, e0059723-e0059723. PubMed  Europe PubMed DOI  I
  151. Li,F., Fang,T., Guo,F., Zhao,Z. and Zhang,J.
    Comprehensive Understanding of the Kinetic Behaviors of Main Protease from SARS-CoV-2 and SARS-CoV: New Data and Comparison to Published Parameters
    Molecules28, PubMed  Europe PubMed DOI
  152. Li,X. and Song,Y.
    Structure and function of SARS-CoV and SARS-CoV-2 main proteases and their inhibition: A comprehensive review
    Eur J Med Chem260, 115772-115772. PubMed  Europe PubMed DOI
  153. Lin,C., Jiang,H., Li,W., Zeng,P., Zhou,X., Zhang,J. and Li,J.
    Structural basis for the inhibition of coronaviral main proteases by ensitrelvir
    Structure31, 1016-1024. PubMed  Europe PubMed DOI  I
  154. Lin,X., Sha,Z., Trimpert,J., Kunec,D., Jiang,C., Xiong,Y., Xu,B., Zhu,Z., Xue,W. and Wu,H.
    The NSP4 T492I mutation increases SARS-CoV-2 infectivity by altering non-structural protein cleavage
    Cell Host Microbe31, 1170-1184. PubMed  Europe PubMed DOI
  155. Liu,M., Li,J., Liu,W., Yang,Y., Zhang,M., Ye,Y., Zhu,W., Zhou,C., Zhai,H., Xu,Z., Zhang,G. and Huang,H.
    The S1'-S3' Pocket of the SARS-CoV-2 Main Protease Is Critical for Substrate Selectivity and Can Be Targeted with Covalent Inhibitors
    Angew Chem Int Ed Engl62, e202309657-e202309657. PubMed  Europe PubMed DOI
  156. Luo,J., Wang,W., Jiang,H., Li,W., Zeng,P., Wang,J., Zhou,X., Zou,X., Chen,S., Wang,Q., Zhang,J. and Li,J.
    Crystal structures of main proteases of SARS-CoV-2 variants bound to a benzothiazole-based inhibitor
    Acta Biochim Biophys Sin (Shanghai)55, 1257-1264. PubMed  Europe PubMed DOI  I
  157. Maltarollo,V.G., da Silva,E.B., Kronenberger,T., Sena Andrade,M.M., de Lima Marques,G.V., Candido Oliveira,N.J., Santos,L.H., Oliveira Rezende Junior,C., Cassiano Martinho,A.C., Skinner,D., Fajtova,P., Fernandes,M., Silveira Dos Santos,E.D., Rodrigues Gazolla,P.A., Martins de Souza,A.P., Da Silva,M.L., Dos Santos,F.S., Lavorato,S.N., Oliveira Bretas,A.C., Carvalho,D.T., Franco,L.L., Luedtke,S., Giardini,M.A., Poso,A., Dias,L.C., Podust,L.M., Alves,R.J., McKerrow,J., Andrade,S.F., Teixeira,R.R., Siqueira-Neto,J.L., O'Donoghue,A., de Oliveira,R.B. and Ferreira,R.S.
    Structure-based discovery of thiosemicarbazones as SARS-CoV-2 main protease inhibitors
    Future Med Chem15, 959-985. PubMed  Europe PubMed DOI  I
  158. Mazzei,L., Greene-Cramer,R., Bafna,K., Jovanovic,A., De Falco,A., Acton,T.B., Royer,C.A., Ciurli,S. and Montelione,G.T.
    Protocol for production and purification of SARS-CoV-2 3CL(pro)
    STAR Protoc4, 102326-102326. PubMed  Europe PubMed DOI
  159. Melano,I., Lo,Y.C. and Su,W.C.
    Characterization of host substrates of SARS-CoV-2 main protease
    Front Microbiol14, 1251705-1251705. PubMed  Europe PubMed DOI  V
  160. Moghadasi,S.A., Heilmann,E., Khalil,A.M., Nnabuife,C., Kearns,F.L., Ye,C., Moraes,S.N., Costacurta,F., Esler,M.A., Aihara,H., von Laer,D., Martinez-Sobrido,L., Palzkill,T., Amaro,R.E. and Harris,R.S.
    Transmissible SARS-CoV-2 variants with resistance to clinical protease inhibitors
    Sci Adv9, eade8778-eade8778. PubMed  Europe PubMed DOI
  161. Narwal,M., Armache,J.P., Edwards,T.J. and Murakami,K.S.
    SARS-CoV-2 polyprotein substrate regulates the stepwise M(pro) cleavage reaction
    J Biol Chem299, 104697-104697. PubMed  Europe PubMed DOI
  162. Ou,J., Lewandowski,E.M., Hu,Y., Lipinski,A.A., Aljasser,A., Colon-Ascanio,M., Morgan,R.T., Jacobs,L.M.C., Zhang,X., Bikowitz,M.J., Langlais,P.R., Tan,H., Wang,J., Chen,Y. and Choy,J.S.
    A yeast-based system to study SARS-CoV-2 Mpro structure and to identify nirmatrelvir resistant mutations
    PLoS Pathog19, e1011592-e1011592. PubMed  Europe PubMed DOI
  163. Paciaroni,A., Libera,V., Ripanti,F., Orecchini,A., Petrillo,C., Francisci,D., Schiaroli,E., Sabbatini,S., Gidari,A., Bianconi,E., Macchiarulo,A., Hussain,R., Silvestrini,L., Moretti,P., Belhaj,N., Vercelli,M., Roque,Y., Mariani,P., Comez,L. and Spinozzi,F.
    Stabilization of the Dimeric State of SARS-CoV-2 Main Protease by GC376 and Nirmatrelvir
    Int J Mol Sci24, PubMed  Europe PubMed DOI  I
  164. Ramos-Guzman,C.A., Andjelkovic,M., Zinovjev,K., Ruiz-Pernia,J.J. and Tunon,I.
    The impact of SARS-CoV-2 3CL protease mutations on nirmatrelvir inhibitory efficiency. Computational insights into potential resistance mechanisms
    Chem Sci14, 2686-2697. PubMed  Europe PubMed DOI  I
  165. Ren,P., Yu,C., Zhang,R., Nie,T., Hu,Q., Li,H., Zhang,X., Zhang,X., Li,S., Liu,L., Dai,W., Li,J., Xu,Y., Su,H., Zhang,L., Liu,H. and Bai,F.
    Discovery, synthesis and mechanism study of 2,3,5-substituted [1,2,4]-thiadiazoles as covalent inhibitors targeting 3C-Like protease of SARS-CoV-2
    Eur J Med Chem249, 115129-115129. PubMed  Europe PubMed DOI  I
  166. Ren,P., Li,H., Nie,T., Jian,X., Yu,C., Li,J., Su,H., Zhang,X., Li,S., Yang,X., Peng,C., Yin,Y., Zhang,L., Xu,Y., Liu,H. and Bai,F.
    Discovery and Mechanism Study of SARS-CoV-2 3C-like Protease Inhibitors with a New Reactive Group
    J Med Chem66, 12266-12283. PubMed  Europe PubMed DOI  I
  167. Rong,Y., Zhang,C., Gao,W.C. and Zhao,C.
    Optimization of the expression of the main protease from SARS-CoV-2
    Protein Expr Purif203, 106208-106208. PubMed  Europe PubMed DOI
  168. Ruatta,S.M., Prada Gori,D.N., Flo Diaz,M., Lorenzelli,F., Perelmuter,K., Alberca,L.N., Bellera,C.L., Medeiros,A., Lopez,G.V., Ingold,M., Porcal,W., Dibello,E., Ihnatenko,I., Kunick,C., Incerti,M., Luzardo,M., Colobbio,M., Ramos,J.C., Manta,E., Minini,L., Lavaggi,M.L., Hernandez,P., Sarlauskas,J., Huerta Garcia,C.S., Castillo,R., Hernandez-Campos,A., Ribaudo,G., Zagotto,G., Carlucci,R., Medran,N.S., Labadie,G.R., Martinez-Amezaga,M., Delpiccolo,C.M.L., Mata,E.G., Scarone,L., Posada,L., Serra,G., Calogeropoulou,T., Prousis,K., Detsi,A., Cabrera,M., Alvarez,G., Aicardo,A., Araujo,V., Chavarria,C., Masic,L.P., Gantner,M.E., Llanos,M.A., Rodriguez,S., Gavernet,L., Park,S., Heo,J., Lee,H., Paul Park,K.H., Bollati-Fogolin,M., Pritsch,O., Shum,D., Talevi,A. and Comini,M.A.
    Garbage in, garbage out: how reliable training data improved a virtual screening approach against SARS-CoV-2 MPro
    Front Pharmacol14, 1193282-1193282. PubMed  Europe PubMed DOI
  169. Saar,K.L., McCorkindale,W., Fearon,D., Boby,M., Barr,H., Ben-Shmuel,A., London,N., von Delft,F., Chodera,J.D. and Lee,A.A.
    Turning high-throughput structural biology into predictive inhibitor design
    Proc Natl Acad Sci U S A120, e2214168120-e2214168120. PubMed  Europe PubMed DOI
  170. Samanta,P.N., Majumdar,D. and Leszczynski,J.
    Elucidating Atomistic Insight into the Dynamical Responses of the SARS-CoV-2 Main Protease for the Binding of Remdesivir Analogues: Leveraging Molecular Mechanics To Decode the Inhibition Mechanism
    J Chem Inf Model63, 3404-3422. PubMed  Europe PubMed DOI
  171. Sang,X., Wang,J., Zhou,J., Xu,Y., An,J., Warshel,A. and Huang,Z.
    A Chemical Strategy for the Degradation of the Main Protease of SARS-CoV-2 in Cells
    J Am Chem Soc145, 27248-27253. PubMed  Europe PubMed DOI
  172. Sawang,N., Phongphanphanee,S., Wong-Ekkabut,J. and Sutthibutpong,T.
    Biophysical Interpretation of Evolutionary Consequences on the SARS-CoV2 Main Protease through Molecular Dynamics Simulations and Network Topology Analysis
    J Phys Chem B127, 2331-2343. PubMed  Europe PubMed DOI
  173. Shen,Y., Robertson,A.J. and Bax,A.
    Validation of X-ray Crystal Structure Ensemble Representations of SARS-CoV-2 Main Protease by Solution NMR Residual Dipolar Couplings
    J Mol Biol435, 168067-168067. PubMed  Europe PubMed DOI
  174. Tan,H., Hu,Y. and Wang,J.
    FlipGFP protease assay for evaluating in vitro inhibitory activity against SARS-CoV-2 M(pro) and PL(pro)
    STAR Protoc4, 102323-102323. PubMed  Europe PubMed DOI
  175. Tasci,H.S., Akkus,E., Yildiz,M. and Kocak,A.
    Computational analysis of substrate recognition of Sars-Cov-2 Mpro main protease
    Comput Biol Chem107, 107960-107960. PubMed  Europe PubMed DOI
  176. Tong,X., Keung,W., Arnold,L.D., Stevens,L.J., Pruijssers,A.J., Kook,S., Lopatin,U., Denison,M. and Kwong,A.D.
    Evaluation of in vitro antiviral activity of SARS-CoV-2 M(pro) inhibitor pomotrelvir and cross-resistance to nirmatrelvir resistance substitutions
    Antimicrob Agents Chemother67, e0084023-e0084023. PubMed  Europe PubMed DOI  I
  177. Tran,N., Dasari,S., Barwell,S.A.E., McLeod,M.J., Kalyaanamoorthy,S., Holyoak,T. and Ganesan,A.
    The H163A mutation unravels an oxidized conformation of the SARS-CoV-2 main protease
    Nat Commun14, 5625-5625. PubMed  Europe PubMed DOI
  178. Tsuji,K., Ishii,T., Kobayakawa,T., Higashi-Kuwata,N., Shinohara,K., Azuma,C., Miura,Y., Nakano,H., Wada,N., Hattori,S.I., Bulut,H., Mitsuya,H. and Tamamura,H.
    Structure-Activity Relationship Studies of SARS-CoV-2 Main Protease Inhibitors Containing 4-Fluorobenzothiazole-2-carbonyl Moieties
    J Med Chem66, 13516-13529. PubMed  Europe PubMed DOI  I
  179. Uddin,M.J., Akhter,H., Chowdhury,U., Mawah,J., Karim,S.T., Jomel,M., Islam,M.S., Islam,M.R., Onin,L.A.B., Ali,M.A., Efaz,F.M. and Halim,M.A.
    Large scale peptide screening against main protease of SARS CoV-2
    J Comput Chem44, 887-901. PubMed  Europe PubMed DOI
  180. Wang,B., Li,H.J., Cai,M.M., Lin,Z.X., Ou,X.F., Wu,S.H., Cai,R.H., Wei,Y.N., Yang,F., Zhu,Y.M., Yang,Z.F., Zhong,N.S. and Lin,L.
    Antiviral efficacy of RAY1216 monotherapy and combination therapy with ritonavir in patients with COVID-19: a phase 2, single centre, randomised, double-blind, placebo-controlled trial
    EClinicalMedicine63, 102189-102189. PubMed  Europe PubMed DOI  I
  181. Watanabe,C., Tanaka,S., Okiyama,Y., Yuki,H., Ohyama,T., Kamisaka,K., Takaya,D., Fukuzawa,K. and Honma,T.
    Quantum Chemical Interaction Analysis between SARS-CoV-2 Main Protease and Ensitrelvir Compared with Its Initial Screening Hit
    J Phys Chem Lett14, 3609-3620. PubMed  Europe PubMed DOI  I
  182. Wralstad,E.C., Sayers,J. and Raines,R.T.
    Bayesian Inference Elucidates the Catalytic Competency of the SARS-CoV-2 Main Protease 3CL(pro)
    Anal Chem95, 14981-14989. PubMed  Europe PubMed DOI
  183. Wu,J., Zhang,H.X. and Zhang,J.
    The molecular mechanism of non-covalent inhibitor WU-04 targeting SARS-CoV-2 3CLpro and computational evaluation of its effectiveness against mainstream coronaviruses
    Phys Chem Chem Phys25, 23555-23567. PubMed  Europe PubMed DOI  I
  184. Wu,Y., Li,K., Li,M., Pu,X. and Guo,Y.
    Attention Mechanism-Based Graph Neural Network Model for Effective Activity Prediction of SARS-CoV-2 Main Protease Inhibitors: Application to Drug Repurposing as Potential COVID-19 Therapy
    J Chem Inf Model63, 7011-7031. PubMed  Europe PubMed DOI
  185. Xu,H., Zhong,Y., Yang,J., Fu,L., Shi,Y., Huang,L. and Gao,G.F.
    Reply to Yan et al.: Quercetin possesses a fluorescence quenching effect but is a weak inhibitor against SARS-CoV-2 main protease
    Proc Natl Acad Sci U S A120, e2309870120-e2309870120. PubMed  Europe PubMed DOI  I
  186. Xu,L., Chen,R., Liu,J., Patterson,T.A. and Hong,H.
    Analyzing 3D structures of the SARS-CoV-2 main protease reveals structural features of ligand binding for COVID-19 drug discovery
    Drug Discov Today28, 103727-103727. PubMed  Europe PubMed DOI
  187. Yan,H., Zhang,R., Liu,X., Wang,Y. and Chen,Y.
    Reframing quercetin as a promiscuous inhibitor against SARS-CoV-2 main protease
    Proc Natl Acad Sci U S A120, e2309289120-e2309289120. PubMed  Europe PubMed DOI  I
  188. Yang,X.M., Yang,Y., Yao,B.F., Ye,P.P., Xu,Y., Peng,S.P., Yang,Y.M., Shu,P., Li,P.J., Li,S., Hu,H.L., Li,Q., Song,L.L., Chen,K.G., Zhou,H.Y., Zhang,Y.H., Zhao,F.R., Tang,B.H., Zhang,W., Zhang,X.F., Fu,S.M., Hao,G.X., Zheng,Y., Shen,J.S., Xu,Y.C., Jiang,X.R., Zhang,L.K., Tang,R.H. and Zhao,W.
    A first-in-human phase 1 study of simnotrelvir, a 3CL-like protease inhibitor for treatment of COVID-19, in healthy adult subjects
    Eur J Pharm Sci191, 106598-106598. PubMed  Europe PubMed DOI  I
  189. Yevsieieva,L.V., Lohachova,K.O., Kyrychenko,A., Kovalenko,S.M., Ivanov,V.V. and Kalugin,O.N.
    Main and papain-like proteases as prospective targets for pharmacological treatment of coronavirus SARS-CoV-2
    RSC Adv13, 35500-35524. PubMed  Europe PubMed DOI  V
  190. Yildirim,A. and Tekpinar,M.
    Building Quantitative Bridges between Dynamics and Sequences of SARS-CoV-2 Main Protease and a Diverse Set of Thirty-Two Proteins
    J Chem Inf Model63, 9-19. PubMed  Europe PubMed DOI
  191. Yim,W., Retout,M., Chen,A.A., Ling,C., Amer,L., Jin,Z., Chang,Y.C., Chavez,S., Barrios,K., Lam,B., Li,Z., Zhou,J., Shi,L., Pascal,T.A. and Jokerst,J.V.
    Goldilocks Energy Minimum: Peptide-Based Reversible Aggregation and Biosensing
    ACS Appl Mater Interfaces15, 42293-42303. PubMed  Europe PubMed DOI
  192. Zhang,H., Li,J., Toth,K., Tollefson,A.E., Jing,L., Gao,S., Liu,X. and Zhan,P.
    Identification of Ebselen derivatives as novel SARS-CoV-2 main protease inhibitors: Design, synthesis, biological evaluation, and structure-activity relationships exploration
    Bioorg Med Chem96, 117531-117531. PubMed  Europe PubMed DOI  I
  193. Zhao,K., Li,Y., Guo,M., Ma,L. and Dang,B.
    Identification of SARS-CoV-2 PLpro and 3CLpro human proteome substrates using substrate phage display coupled with protein network analysis
    J Biol Chem299, 104831-104831. PubMed  Europe PubMed DOI
  194. Zhou,K. and Chen,D.
    Conventional Understanding of SARS-CoV-2 M(pro) and Common Strategies for Developing Its Inhibitors
    Chembiochem24, e202300301-e202300301. PubMed  Europe PubMed DOI  V
  195. Zhou,Y., Wang,W., Zeng,P., Feng,J., Li,D., Jing,Y., Zhang,J., Yin,X., Li,J., Ye,H. and Wang,Q.
    Structural basis of main proteases of HCoV-229E bound to inhibitor PF-07304814 and PF-07321332
    Biochem Biophys Res Commun657, 16-23. PubMed  Europe PubMed DOI  I
  196. 2022
  197. Abe,K., Kabe,Y., Uchiyama,S., Iwasaki,Y.W., Ishizu,H., Uwamino,Y., Takenouchi,T., Uno,S., Ishii,M., Maruno,T., Noda,M., Murata,M., Hasegawa,N., Saya,H., Kitagawa,Y., Fukunaga,K., Amagai,M., Siomi,H., Suematsu,M. and Kosaki,K.
    Pro108Ser mutation of SARS-CoV-2 3CL(pro) reduces the enzyme activity and ameliorates the clinical severity of COVID-19
    Sci Rep12, 1299-1299. PubMed  Europe PubMed DOI
  198. Agost-Beltran,L., Hoz-Rodriguez,S., Bou-Iserte,L., Rodriguez,S., Fernandez-de-la-Pradilla,A. and Gonzalez,F.V.
    Advances in the Development of SARS-CoV-2 Mpro Inhibitors
    Molecules27, PubMed  Europe PubMed DOI
  199. Almutairi,G.O., Malik,A., Alonazi,M., Khan,J.M., Alhomida,A.S., Khan,M.S., Alenad,A.M., Altwaijry,N. and Alafaleq,N.O.
    Expression, purification, and biophysical characterization of recombinant MERS-CoV main (M(pro)) protease
    Int J Biol Macromol209, 984-990. PubMed  Europe PubMed DOI
  200. Alvarado,Y.J., Olivarez,Y., Lossada,C., Vera-Villalobos,J., Paz,J.L., Vera,E., Lorono,M., Vivas,A., Torres,F.J., Jeffreys,L.N., Hurtado-Leon,M.L. and Gonzalez-Paz,L.
    Interaction of the new inhibitor paxlovid (PF-07321332) and ivermectin with the monomer of the main protease SARS-CoV-2: A volumetric study based on molecular dynamics, elastic networks, classical thermodynamics and SPT
    Comput Biol Chem99, 107692-107692. PubMed  Europe PubMed DOI
  201. Alzyoud,L., Ghattas,M.A. and Atatreh,N.
    Allosteric Binding Sites of the SARS-CoV-2 Main Protease: Potential Targets for Broad-Spectrum Anti-Coronavirus Agents
    Drug Des Devel Ther16, 2463-2478. PubMed  Europe PubMed DOI  V
  202. Antonopoulou,I., Sapountzaki,E., Rova,U. and Christakopoulos,P.
    Inhibition of the main protease of SARS-CoV-2 (M(pro)) by repurposing/designing drug-like substances and utilizing nature's toolbox of bioactive compounds
    Comput Struct Biotechnol J20, 1306-1344. PubMed  Europe PubMed DOI
  203. Arif,M.N.
    Catechin Derivatives as Inhibitor of COVID-19 Main Protease (Mpro): Molecular Docking studies unveils an opportunity against CORONA
    Comb Chem High Throughput Screen25, 197-203. PubMed  Europe PubMed DOI  I
  204. Bajrai,L.H., Faizo,A.A., Alkhaldy,A.A., Dwivedi,V.D. and Azhar,E.I.
    Repositioning of anti-dengue compounds against SARS-CoV-2 as viral polyprotein processing inhibitor
    PLoS ONE17, e0277328-e0277328. PubMed  Europe PubMed DOI
  205. Boonamnaj,P., Pandey,R.B. and Sompornpisut,P.
    Effect of pH on stability of dimer structure of the main protease of coronavirus-2
    Biophys Chem287, 106829-106829. PubMed  Europe PubMed DOI
  206. Bray,S., Dudgeon,T., Skyner,R., Backofen,R., Gruning,B. and von Delft,F.
    Galaxy workflows for fragment-based virtual screening: a case study on the SARS-CoV-2 main protease
    J Cheminform14, 22-22. PubMed  Europe PubMed DOI
  207. Bulut,H.
    Drug development targeting SARS-CoV-2 main protease
    Glob Health Med4, 296-300. PubMed  Europe PubMed DOI  V
  208. Campitelli,P., Lu,J. and Ozkan,S.B.
    Dynamic allostery highlights the evolutionary differences between the CoV-1 and CoV-2 main proteases
    Biophys J121, 1483-1492. PubMed  Europe PubMed DOI
  209. Chen,X., Leyendecker,S. and van den Bedem,H.
    Kinematic Vibrational Entropy Assessment and Analysis of SARS CoV-2 Main Protease
    J Chem Inf Model62, 2869-2879. PubMed  Europe PubMed DOI
  210. Chen,Y., Yang,W.H., Chen,H.F., Huang,L.M., Gao,J.Y., Lin,C.W., Wang,Y.C., Yang,C.S., Liu,Y.L., Hou,M.H., Tsai,C.L., Chou,Y.Z., Huang,B.Y., Hung,C.F., Hung,Y.L., Wang,W.J., Su,W.C., Kumar,V., Wu,Y.C., Chao,S.W., Chang,C.S., Chen,J.S., Chiang,Y.P., Cho,D.Y., Jeng,L.B., Tsai,C.H. and Hung,M.C.
    Tafenoquine and its derivatives as inhibitors for the severe acute respiratory syndrome coronavirus 2
    J Biol Chem298, 101658-101658. PubMed  Europe PubMed DOI  I
  211. DasGupta,D., Chan,W.K.B. and Carlson,H.A.
    Computational Identification of Possible Allosteric Sites and Modulators of the SARS-CoV-2 Main Protease
    J Chem Inf Model62, 618-626. PubMed  Europe PubMed DOI
  212. Dawood,A.A.
    The efficacy of Paxlovid against COVID-19 is the result of the tight molecular docking between M(pro) and antiviral drugs (nirmatrelvir and ritonavir)
    Adv Med Sci68, 1-9. PubMed  Europe PubMed DOI  I
  213. de Oliveira,V., Ibrahim,M., Sun,X., Hilgenfeld,R. and Shen,J.
    H172Y mutation perturbs the S1 pocket and nirmatrelvir binding of SARS-CoV-2 main protease through a nonnative hydrogen bond
    Res Sq PubMed  Europe PubMed DOI  I
  214. Du,X., Xu,L., Ma,Y., Lu,S., Tang,K., Qiao,X., Liu,J., Wang,X., Peng,X. and Jiang,C.
    Herbal inhibitors of SARS-CoV-2 M(pro) effectively ameliorate acute lung injury in mice
    IUBMB Life74, 532-542. PubMed  Europe PubMed DOI
  215. El-Ashrey,M.K., Bakr,R.O., Fayed,M.A.A., Refaey,R.H. and Nissan,Y.M.
    Pharmacophore based virtual screening for natural product database revealed possible inhibitors for SARS-COV-2 main protease
    Virology570, 18-28. PubMed  Europe PubMed DOI
  216. Ertem,F.B., Guven,O., Buyukdag,C., Gocenler,O., Ayan,E., Yuksel,B., Gul,M., Usta,G., Cakilkaya,B., Johnson,J.A., Dao,E.H., Su,Z., Poitevin,F., Yoon,C.H., Kupitz,C., Hayes,B., Liang,M., Hunter,M.S., Batyuk,A., Sierra,R.G., Ketawala,G., Botha,S., Dag,C. and Demirci,H.
    Protocol for structure determination of SARS-CoV-2 main protease at near-physiological-temperature by serial femtosecond crystallography
    STAR Protoc3, 101158-101158. PubMed  Europe PubMed DOI
  217. Ferreira,J.C., Fadl,S. and Rabeh,W.M.
    Key dimer interface residues impact the catalytic activity of 3CLpro, the main protease of SARS-CoV-2
    J Biol Chem298, 102023-102023. PubMed  Europe PubMed DOI
  218. Firouzi,R., Ashouri,M. and Karimi-Jafari,M.H.
    Structural insights into the substrate-binding site of main protease for the structure-based COVID-19 drug discovery
    Proteins90, 1090-1101. PubMed  Europe PubMed DOI
  219. Flynn,J.M., Samant,N., Schneider-Nachum,G., Barkan,D.T., Yilmaz,N.K., Schiffer,C.A., Moquin,S.A., Dovala,D. and Bolon,D.N.A.
    Comprehensive fitness landscape of SARS-CoV-2 M(pro) reveals insights into viral resistance mechanisms
    elife11, PubMed  Europe PubMed DOI
  220. Garland,G.D., Harvey,R.F., Mulroney,T.E., Monti,M., Fuller,S., Haigh,R., Gerber,P.P., Barer,M.R., Matheson,N.J. and Willis,A.E.
    Development of a colorimetric assay for the detection of SARS-CoV-2 3CLpro activity
    Biochem J479, 901-920. PubMed  Europe PubMed DOI
  221. Giudetti,G., Polyakov,I., Grigorenko,B.L., Faraji,S., Nemukhin,A.V. and Krylov,A.I.
    How Reproducible Are QM/MM Simulations? Lessons from Computational Studies of the Covalent Inhibition of the SARS-CoV-2 Main Protease by Carmofur
    J Chem Theory Comput18, 5056-5067. PubMed  Europe PubMed DOI
  222. Glab-Ampai,K., Kaewchim,K., Saenlom,T., Thepsawat,W., Mahasongkram,K., Sookrung,N., Chaicumpa,W. and Chulanetra,M.
    Human Superantibodies to 3CL(pro) Inhibit Replication of SARS-CoV-2 across Variants
    Int J Mol Sci23, PubMed  Europe PubMed DOI
  223. Gomes,I.S., Santana,C.A., Marcolino,L.S., Lima,L.H.F., Melo-Minardi,R.C., Dias,R.S., de Paula,S.O. and Silveira,S.A.
    Computational prediction of potential inhibitors for SARS-COV-2 main protease based on machine learning, docking, MM-PBSA calculations, and metadynamics
    PLoS ONE17, e0267471-e0267471. PubMed  Europe PubMed DOI
  224. Hu,Y., Lewandowski,E.M., Tan,H., Zhang,X., Morgan,R.T., Zhang,X., Jacobs,L.M.C., Butler,S.G., Gongora,M.V., Choy,J., Deng,X., Chen,Y. and Wang,J.
    Naturally occurring mutations of SARS-CoV-2 main protease confer drug resistance to nirmatrelvir
    bioRxiv PubMed  Europe PubMed DOI  I
  225. Hung,Y.P., Lee,J.C., Chiu,C.W., Lee,C.C., Tsai,P.J., Hsu,I.L. and Ko,W.C.
    Oral Nirmatrelvir/Ritonavir Therapy for COVID-19: The Dawn in the Dark?
    Antibiotics (Basel)11, PubMed  Europe PubMed DOI  I
  226. Iketani,S., Hong,S.J., Sheng,J., Bahari,F., Culbertson,B., Atanaki,F.F., Aditham,A.K., Kratz,A.F., Luck,M.I., Tian,R., Goff,S.P., Montazeri,H., Sabo,Y., Ho,D.D. and Chavez,A.
    Functional map of SARS-CoV-2 3CL protease reveals tolerant and immutable sites
    Cell Host Microbe30, 1354-1362. PubMed  Europe PubMed DOI
  227. Iketani,S., Mohri,H., Culbertson,B., Hong,S.J., Duan,Y., Luck,M.I., Annavajhala,M.K., Guo,Y., Sheng,Z., Uhlemann,A.C., Goff,S.P., Sabo,Y., Yang,H., Chavez,A. and Ho,D.D.
    Multiple pathways for SARS-CoV-2 resistance to nirmatrelvir
    bioRxiv PubMed  Europe PubMed DOI  I
  228. Issa,S.S., Sokornova,S.V., Zhidkin,R.R. and Matveeva,T.V.
    The Main Protease of SARS-CoV-2 as a Target for Phytochemicals against Coronavirus
    Plants (Basel)11, PubMed  Europe PubMed DOI  V
  229. Iyengar,S.M., Barnsley,K.K., Vu,H.Y., Bongalonta,I.J.A., Herrod,A.S., Scott,J.A. and Ondrechen,M.J.
    Identification and characterization of alternative sites and molecular probes for SARS-CoV-2 target proteins
    Front Chem10, 1017394-1017394. PubMed  Europe PubMed DOI
  230. Jo,S., Kim,H.Y., Shin,D.H. and Kim,M.S.
    Dimerization Tendency of 3CLpros of Human Coronaviruses Based on the X-ray Crystal Structure of the Catalytic Domain of SARS-CoV-2 3CLpro
    Int J Mol Sci23, PubMed  Europe PubMed DOI
  231. Kaptan,S., Girych,M., Enkavi,G., Kulig,W., Sharma,V., Vuorio,J., Rog,T. and Vattulainen,I.
    Maturation of the SARS-CoV-2 virus is regulated by dimerization of its main protease
    Comput Struct Biotechnol J20, 3336-3346. PubMed  Europe PubMed DOI
  232. Katre,S.G., Asnani,A.J., Pratyush,K., Sakharkar,N.G., Bhope,A.G., Sawarkar,K.T. and Nimbekar,V.S.
    Review on development of potential inhibitors of SARS-CoV-2 main protease (M(Pro))
    Futur J Pharm Sci8, 36-36. PubMed  Europe PubMed DOI  V
  233. Kidera,A., Moritsugu,K., Ekimoto,T. and Ikeguchi,M.
    Functional dynamics of SARS-CoV-2 3C-like protease as a member of clan PA
    Biophys Rev14, 1473-1485. PubMed  Europe PubMed DOI  V
  234. Kovalevsky,A., Coates,L., Kneller,D.W., Ghirlando,R., Aniana,A., Nashed,N.T. and Louis,J.M.
    Unmasking the Conformational Stability and Inhibitor Binding to SARS-CoV-2 Main Protease Active Site Mutants and Miniprecursor
    J Mol Biol434, 167876-167876. PubMed  Europe PubMed DOI  I
  235. Kumar,V., Kar,S., De,P., Roy,K. and Leszczynski,J.
    Identification of potential antivirals against 3CLpro enzyme for the treatment of SARS-CoV-2: A multi-step virtual screening study
    SAR QSAR Environ Res33, 357-386. PubMed  Europe PubMed DOI
  236. Kuo,C.J. and Liang,P.H.
    SARS-CoV-2 3CL(pro) displays faster self-maturation in vitro than SARS-CoV 3CL(pro) due to faster C-terminal cleavage
    FEBS Lett596, 1214-1224. PubMed  Europe PubMed DOI
  237. La Monica,G., Bono,A., Lauria,A. and Martorana,A.
    Targeting SARS-CoV-2 Main Protease for Treatment of COVID-19: Covalent Inhibitors Structure-Activity Relationship Insights and Evolution Perspectives
    J Med Chem65, 12500-12534. PubMed  Europe PubMed DOI
  238. Lee,J., Kenward,C., Worrall,L.J., Vuckovic,M., Gentile,F., Ton,A.T., Ng,M., Cherkasov,A., Strynadka,N.C.J. and Paetzel,M.
    X-ray crystallographic characterization of the SARS-CoV-2 main protease polyprotein cleavage sites essential for viral processing and maturation
    Nat Commun13, 5196-5196. PubMed  Europe PubMed DOI
  239. Legare,S., Heide,F., Bailey-Elkin,B.A. and Stetefeld,J.
    Improved SARS-CoV-2 main protease high-throughput screening assay using a 5-carboxyfluorescein substrate
    J Biol Chem298, 101739-101739. PubMed  Europe PubMed DOI
  240. Li,J., Lin,C., Zhou,X., Zhong,F., Zeng,P., Yang,Y., Zhang,Y., Yu,B., Fan,X., McCormick,P.J., Fu,R., Fu,Y., Jiang,H. and Zhang,J.
    Structural Basis of the Main Proteases of Coronavirus Bound to Drug Candidate PF-07321332
    J Virol96, e0201321-e0201321. PubMed  Europe PubMed DOI
  241. Li,J., Lin,C., Zhou,X., Zhong,F., Zeng,P., McCormick,P.J., Jiang,H. and Zhang,J.
    Structural Basis of Main Proteases of Coronavirus Bound to Drug Candidate PF-07304814
    J Mol Biol434, 167706-167706. PubMed  Europe PubMed DOI
  242. Ma,Y., Yang,K.S., Geng,Z.Z., Alugubelli,Y.R., Shaabani,N., Vatansever,E.C., Ma,X.R., Cho,C.C., Khatua,K., Xiao,J., Blankenship,L.R., Yu,G., Sankaran,B., Li,P., Allen,R., Ji,H., Xu,S. and Liu,W.R.
    A multi-pronged evaluation of aldehyde-based tripeptidyl main protease inhibitors as SARS-CoV-2 antivirals
    Eur J Med Chem240, 114570-114570. PubMed  Europe PubMed DOI
  243. Majerova,T. and Konvalinka,J.
    Viral proteases as therapeutic targets
    Mol Aspects Med88, 101159-101159. PubMed  Europe PubMed DOI  V  I
  244. McCarthy,M.W.
    Ensitrelvir as a potential treatment for COVID-19
    Expert Opin Pharmacother23, 1995-1998. PubMed  Europe PubMed DOI  I
  245. Meewan,I., Kattoula,J., Kattoula,J.Y., Skinner,D., Fajtova,P., Giardini,M.A., Woodworth,B., McKerrow,J.H., Lage de Siqueira-Neto,J., O'Donoghue,A.J. and Abagyan,R.
    Discovery of Triple Inhibitors of Both SARS-CoV-2 Proteases and Human Cathepsin L
    Pharmaceuticals (Basel)15, PubMed  Europe PubMed DOI  I
  246. Moghadasi,S.A., Esler,M.A., Otsuka,Y., Becker,J.T., Moraes,S.N., Anderson,C.B., Chamakuri,S., Belica,C., Wick,C., Harki,D.A., Young,D.W., Scampavia,L., Spicer,T.P., Shi,K., Aihara,H., Brown,W.L. and Harris,R.S.
    Gain-of-Signal Assays for Probing Inhibition of SARS-CoV-2 M(pro)/3CL(pro) in Living Cells
    MBio13, e0078422-e0078422. PubMed  Europe PubMed DOI
  247. Mondal,S., Chen,Y., Lockbaum,G.J., Sen,S., Chaudhuri,S., Reyes,A.C., Lee,J.M., Kaur,A.N., Sultana,N., Cameron,M.D., Shaffer,S.A., Schiffer,C.A., Fitzgerald,K.A. and Thompson,P.R.
    Dual Inhibitors of Main Protease (M(Pro)) and Cathepsin L as Potent Antivirals against SARS-CoV2
    J Am Chem Soc144, 21035-21045. PubMed  Europe PubMed DOI  K  I
  248. Narayanan,A., Toner,S.A. and Jose,J.
    Structure-based inhibitor design and repurposing clinical drugs to target SARS-CoV-2 proteases
    Biochem Soc Trans50, 151-165. PubMed  Europe PubMed DOI
  249. Nashed,N.T., Kneller,D.W., Coates,L., Ghirlando,R., Aniana,A., Kovalevsky,A. and Louis,J.M.
    Autoprocessing and oxyanion loop reorganization upon GC373 and nirmatrelvir binding of monomeric SARS-CoV-2 main protease catalytic domain
    Commun Biol5, 976-976. PubMed  Europe PubMed DOI  I
  250. Ngo,S.T., Nguyen,T.H., Tung,N.T. and Mai,B.K.
    Insights into the binding and covalent inhibition mechanism of PF-07321332 to SARS-CoV-2 M(pro)
    RSC Adv12, 3729-3737. PubMed  Europe PubMed DOI  I
  251. Ou,J., Lewandowski,E., Hu,Y., Lipinski,A., Morgan,R., Jacobs,L., Zhang,X., Bikowitz,M., Langlais,P., Tan,H., Wang,J., Chen,Y. and Choy,J.
    A yeast-based system to study SARS-CoV-2 Mpro structure and to identify nirmatrelvir resistant mutations
    Res Sq PubMed  Europe PubMed DOI  I
  252. Padhi,A.K. and Tripathi,T.
    High-throughput design of symmetrical dimeric SARS-CoV-2 main protease: structural and physical insights into hotspots for adaptation and therapeutics
    Phys Chem Chem Phys24, 9141-9145. PubMed  Europe PubMed DOI
  253. Padhi,A.K. and Tripathi,T.
    Hotspot residues and resistance mutations in the nirmatrelvir-binding site of SARS-CoV-2 main protease: Design, identification, and correlation with globally circulating viral genomes
    Biochem Biophys Res Commun629, 54-60. PubMed  Europe PubMed DOI  I
  254. Pavan,M., Bassani,D., Sturlese,M. and Moro,S.
    Bat coronaviruses related to SARS-CoV-2: what about their 3CL proteases (MPro)?
    J Enzyme Inhib Med Chem37, 1077-1082. PubMed  Europe PubMed DOI
  255. Pelliccia,S., Cerchia,C., Esposito,F., Cannalire,R., Corona,A., Costanzi,E., Kuzikov,M., Gribbon,P., Zaliani,A., Brindisi,M., Storici,P., Tramontano,E. and Summa,V.
    Easy access to alpha-ketoamides as SARS-CoV-2 and MERS M(pro) inhibitors via the PADAM oxidation route
    Eur J Med Chem244, 114853-114853. PubMed  Europe PubMed DOI
  256. Sacco,M.D., Hu,Y., Gongora,M.V., Meilleur,F., Kemp,M.T., Zhang,X., Wang,J. and Chen,Y.
    The P132H mutation in the main protease of Omicron SARS-CoV-2 decreases thermal stability without compromising catalysis or small-molecule drug inhibition
    Cell Res32, 498-500. PubMed  Europe PubMed DOI
  257. Scott,B.M., Lacasse,V., Blom,D.G., Tonner,P.D. and Blom,N.S.
    Predicted coronavirus Nsp5 protease cleavage sites in the human proteome
    BMC Genom Data23, 25-25. PubMed  Europe PubMed DOI
  258. Sondag,D., Merx,J., Rossing,E., Boltje,T.J., Lowik,D.W.P.M., Nelissen,F.H.T., van Geffen,M., van 't Veer,C., van Heerde,W.L. and Rutjes,F.P.J.T.
    Luminescent Assay for the Screening of SARS-CoV-2 M(Pro) Inhibitors
    Chembiochem23, e202200190-e202200190. PubMed  Europe PubMed DOI
  259. Sun,Y., Zhao,B., Wang,Y., Chen,Z., Zhang,H., Qu,L., Zhao,Y. and Song,J.
    Optimization of potential non-covalent inhibitors for the SARS-CoV-2 main protease inspected by a descriptor of the subpocket occupancy
    Phys Chem Chem Phys24, 29940-29951. PubMed  Europe PubMed DOI
  260. Sun,Z., Wang,L., Li,X., Fan,C., Xu,J., Shi,Z., Qiao,H., Lan,Z., Zhang,X., Li,L., Zhou,X. and Geng,Y.
    An extended conformation of SARS-CoV-2 main protease reveals allosteric targets
    Proc Natl Acad Sci U S A119, e2120913119-e2120913119. PubMed  Europe PubMed DOI
  261. Tyndall,J.D.A.
    S-217622, a 3CL Protease Inhibitor and Clinical Candidate for SARS-CoV-2
    J Med Chem65, 6496-6498. PubMed  Europe PubMed DOI  I
  262. Ullrich,S., Ekanayake,K.B., Otting,G. and Nitsche,C.
    Main protease mutants of SARS-CoV-2 variants remain susceptible to nirmatrelvir
    Bioorg Med Chem Lett62, 128629-128629. PubMed  Europe PubMed DOI  I
  263. Unoh,Y., Uehara,S., Nakahara,K., Nobori,H., Yamatsu,Y., Yamamoto,S., Maruyama,Y., Taoda,Y., Kasamatsu,K., Suto,T., Kouki,K., Nakahashi,A., Kawashima,S., Sanaki,T., Toba,S., Uemura,K., Mizutare,T., Ando,S., Sasaki,M., Orba,Y., Sawa,H., Sato,A., Sato,T., Kato,T. and Tachibana,Y.
    Discovery of S-217622, a Noncovalent Oral SARS-CoV-2 3CL Protease Inhibitor Clinical Candidate for Treating COVID-19
    J Med Chem65, 6499-6512. PubMed  Europe PubMed DOI  I
  264. Venugopal,P.P., Singh,O. and Chakraborty,D.
    Understanding the role of water on temperature-dependent structural modifications of SARS CoV-2 main protease binding sites
    J Mol Liq363, 119867-119867. PubMed  Europe PubMed DOI
  265. Wang,Y.T., Liao,J.M., Lin,W.W., Li,C.C., Huang,B.C., Cheng,T.L. and Chen,T.C.
    Structural insights into Nirmatrelvir (PF-07321332)-3C-like SARS-CoV-2 protease complexation: a ligand Gaussian accelerated molecular dynamics study
    Phys Chem Chem Phys24, 22898-22904. PubMed  Europe PubMed DOI  I
  266. Xiong,D., Zhao,X., Luo,S., Zhang,J.Z.H. and Duan,L.
    Molecular Mechanism of the Non-Covalent Orally Targeted SARS-CoV-2 M(pro) Inhibitor S-217622 and Computational Assessment of Its Effectiveness against Mainstream Variants
    J Phys Chem Lett13, 8893-8901. PubMed  Europe PubMed DOI  I
  267. Yadav,R., Courouble,V.V., Dey,S.K., Harrison,J.J.E.K., Timm,J., Hopkins,J.B., Slack,R.L., Sarafianos,S.G., Ruiz,F.X., Griffin,P.R. and Arnold,E.
    Biochemical and structural insights into SARS-CoV-2 polyprotein processing by Mpro
    Sci Adv8, eadd2191-eadd2191. PubMed  Europe PubMed DOI
  268. Yang,K.S., Leeuwon,S.Z., Xu,S. and Liu,W.R.
    Evolutionary and Structural Insights about Potential SARS-CoV-2 Evasion of Nirmatrelvir
    J Med Chem65, 8686-8698. PubMed  Europe PubMed DOI  I
  269. Zhang,Y., Zheng,L., Yang,Y., Qu,Y., Li,Y.Q., Zhao,M., Mu,Y. and Li,W.
    Structural and energetic features of the dimerization of the main proteinase of SARS-CoV-2 using molecular dynamic simulations
    Phys Chem Chem Phys24, 4324-4333. PubMed  Europe PubMed DOI
  270. Zhao,Y., Fang,C., Zhang,Q., Zhang,R., Zhao,X., Duan,Y., Wang,H., Zhu,Y., Feng,L., Zhao,J., Shao,M., Yang,X., Zhang,L., Peng,C., Yang,K., Ma,D., Rao,Z. and Yang,H.
    Crystal structure of SARS-CoV-2 main protease in complex with protease inhibitor PF-07321332
    Protein Cell13, 689-693. PubMed  Europe PubMed DOI
  271. Zhao,Y., Zhu,Y., Liu,X., Jin,Z., Duan,Y., Zhang,Q., Wu,C., Feng,L., Du,X., Zhao,J., Shao,M., Zhang,B., Yang,X., Wu,L., Ji,X., Guddat,L.W., Yang,K., Rao,Z. and Yang,H.
    Structural basis for replicase polyprotein cleavage and substrate specificity of main protease from SARS-CoV-2
    Proc Natl Acad Sci U S A119, e2117142119-e2117142119. PubMed  Europe PubMed DOI
  272. Zhu,Y., Scholle,F., Kisthardt,S.C. and Xie,D.Y.
    Flavonols and dihydroflavonols inhibit the main protease activity of SARS-CoV-2 and the replication of human coronavirus 229E
    Virology571, 21-33. PubMed  Europe PubMed DOI  I
  273. 2021
  274. Abdelhafez,O.H., Fahim,J.R., Mustafa,M., AboulMagd,A.M., Desoukey,S.Y., Hayallah,A.M., Kamel,M.S. and Abdelmohsen,U.R.
    Natural metabolites from the soft coral Nephthea sp. as potential SARS-CoV-2 main protease inhibitors
    Nat Prod Res1-4. PubMed  Europe PubMed DOI
  275. Abdul-Hammed,M., Adedotun,I.O., Olajide,M., Irabor,C.O., Afolabi,T.I., Gbadebo,I.O., Rhyman,L. and Ramasami,P.
    Virtual screening, ADMET profiling, PASS prediction, and bioactivity studies of potential inhibitory roles of alkaloids, phytosterols, and flavonoids against COVID-19 main protease (M(pro))
    Nat Prod Res1-7. PubMed  Europe PubMed DOI  I
  276. Abosheasha,M.A. and El-Gowily,A.H.
    Superiority of cilostazol among antiplatelet FDA-approved drugs against COVID 19 M(pro) and spike protein: Drug repurposing approach
    Drug Dev Res82, 217-229. PubMed  Europe PubMed DOI
  277. Adhikari,N., Banerjee,S., Baidya,S.K., Ghosh,B. and Jha,T.
    Robust classification-based molecular modelling of diverse chemical entities as potential SARS-CoV-2 3CL(pro) inhibitors: theoretical justification in light of experimental evidences
    SAR QSAR Environ Res32, 473-493. PubMed  Europe PubMed DOI
  278. Ahmad,S., Waheed,Y., Ismail,S., Najmi,M.H. and Ansari,J.K.
    Rational design of potent anti-COVID-19 main protease drugs: An extensive multi-spectrum in silico approach
    J Mol Liq330, 115636-115636. PubMed  Europe PubMed DOI
  279. Aishwarya,S., Gunasekaran,K., Sagaya Jansi,R. and Sangeetha,G.
    From genomes to molecular dynamics - A bottom up approach in extrication of SARS CoV-2 main protease inhibitors
    Comput Toxicol18, 100156-100156. PubMed  Europe PubMed DOI
  280. Akhtar,M. and Shamim,S.
    Development of potent remdesivir derivative against SARS-CoV-2 protease inhibitors: Design, modification, molecular modeling and MD simulations
    Pak J Pharm Sci34, 1119-1126. PubMed  Europe PubMed
  281. Alam,S., Sadiqi,S., Sabir,M., Nisa,S., Ahmad,S. and Abbasi,S.W.
    Bacillus species; a potential source of anti-SARS-CoV-2 main protease inhibitors
    J Biomol Struct Dyn1-11. PubMed  Europe PubMed DOI
  282. Alhadrami,H.A., Sayed,A.M., Sharif,A.M., Azhar,E.I. and Rateb,M.E.
    Olive-Derived Triterpenes Suppress SARS COV-2 Main Protease: A Promising Scaffold for Future Therapeutics
    Molecules26, PubMed  Europe PubMed DOI
  283. Almaraz-Giron,M.A., Calderon-Jaimes,E., Carrillo,A.S., Diaz-Cervantes,E., Alonso,E.C., Islas-Jacome,A., Dominguez-Ortiz,A. and Castanon-Alonso,S.L.
    Search for Non-Protein Protease Inhibitors Constituted with an Indole and Acetylene Core
    Molecules26, PubMed  Europe PubMed DOI
  284. Almasi,F. and Mohammadipanah,F.
    Hypothetical targets and plausible drugs of coronavirus infection caused by SARS-CoV-2
    Transbound Emerg Dis68, 318-332. PubMed  Europe PubMed DOI
  285. Amaral,J.L., Oliveira,J.T.A., Lopes,F.E.S., Freitas,C.D.T., Freire,V.N., Abreu,L.V. and Souza,P.F.N.
    Quantum biochemistry, molecular docking, and dynamics simulation revealed synthetic peptides induced conformational changes affecting the topology of the catalytic site of SARS-CoV-2 main protease
    J Biomol Struct Dyn1-13. PubMed  Europe PubMed DOI
  286. Amendola,G., Ettari,R., Previti,S., Di Chio,C., Messere,A., Di Maro,S., Hammerschmidt,S.J., Zimmer,C., Zimmermann,R.A., Schirmeister,T., Zappala,M. and Cosconati,S.
    Lead Discovery of SARS-CoV-2 Main Protease Inhibitors through Covalent Docking-Based Virtual Screening
    J Chem Inf Model61, 2062-2073. PubMed  Europe PubMed DOI
  287. Amin,S.A., Banerjee,S., Gayen,S. and Jha,T.
    Protease targeted COVID-19 drug discovery: What we have learned from the past SARS-CoV inhibitors?
    Eur J Med Chem215, 113294-113294. PubMed  Europe PubMed DOI
  288. Amin,S.A., Banerjee,S., Singh,S., Qureshi,I.A., Gayen,S. and Jha,T.
    First structure-activity relationship analysis of SARS-CoV-2 virus main protease (Mpro) inhibitors: an endeavor on COVID-19 drug discovery
    Mol Divers PubMed  Europe PubMed DOI
  289. Amporndanai,K., Meng,X., Shang,W., Jin,Z., Rogers,M., Zhao,Y., Rao,Z., Liu,Z.J., Yang,H., Zhang,L., O'Neill,P.M. and Samar Hasnain,S.
    Inhibition mechanism of SARS-CoV-2 main protease by ebselen and its derivatives
    Nat Commun12, 3061-3061. PubMed  Europe PubMed DOI  I
  290. Ansari,N., Rizzi,V., Carloni,P. and Parrinello,M.
    Water-Triggered, Irreversible Conformational Change of SARS-CoV-2 Main Protease on Passing from the Solid State to Aqueous Solution
    J Am Chem Soc143, 12930-12934. PubMed  Europe PubMed DOI
  291. Arouche,T.D.S., Martins,A.Y., Ramalho,T.C., Junior,R.N.C., Costa,F.L.P., Filho,T.S.A. and Neto,A.M.J.C.
    Molecular Docking of Azithromycin, Ritonavir, Lopinavir, Oseltamivir, Ivermectin and Heparin Interacting with Coronavirus Disease 2019 Main and Severe Acute Respiratory Syndrome Coronavirus-2 3C-Like Proteases
    J Nanosci Nanotechnol21, 2075-2089. PubMed  Europe PubMed DOI  I
  292. Arutyunova,E., Khan,M.B., Fischer,C., Lu,J., Lamer,T., Vuong,W., van Belkum,M.J., McKay,R.T., Tyrrell,D.L., Vederas,J.C., Young,H.S. and Lemieux,M.J.
    N-Terminal Finger Stabilizes the S1 Pocket for the Reversible Feline Drug GC376 in the SARS-CoV-2 M(pro) Dimer
    J Mol Biol433, 167003-167003. PubMed  Europe PubMed DOI
  293. Atasever Arslan,B., Kaya,B., Sahin,O., Baday,S., Saylan,C.C. and Ulkuseven,B.
    The iron(III) and nickel(II) complexes with tetradentate thiosemicarbazones. Synthesis, experimental, theoretical characterization, and antiviral effect against SARS-CoV-2
    J Mol Struct1246, 131166-131166. PubMed  Europe PubMed DOI
  294. Awoonor-Williams,E. and Abu-Saleh,A.A.A.
    Covalent and non-covalent binding free energy calculations for peptidomimetic inhibitors of SARS-CoV-2 main protease
    Phys Chem Chem Phys23, 6746-6757. PubMed  Europe PubMed DOI  I
  295. Baker,J.D., Uhrich,R.L., Kraemer,G.C., Love,J.E. and Kraemer,B.C.
    A drug repurposing screen identifies hepatitis C antivirals as inhibitors of the SARS-CoV2 main protease
    PLoS ONE16, e0245962-e0245962. PubMed  Europe PubMed DOI  I
  296. Behnam,M.A.M. and Klein,C.D.
    Inhibitor potency and assay conditions: A case study on SARS-CoV-2 main protease
    Proc Natl Acad Sci U S A118, PubMed  Europe PubMed DOI
  297. Behnam,M.A.M.
    Protein structural heterogeneity: A hypothesis for the basis of proteolytic recognition by the main protease of SARS-CoV and SARS-CoV-2
    Biochimie182, 177-184. PubMed  Europe PubMed DOI
  298. Bhowmik,D., Sharma,R.D., Prakash,A. and Kumar,D.
    Identification of Nafamostat and VR23 as COVID-19 drug candidates by targeting 3CL(pro) and PL(pro)
    J Mol Struct1233, 130094-130094. PubMed  Europe PubMed DOI  I
  299. Bissaro,M., Bolcato,G., Pavan,M., Bassani,D., Sturlese,M. and Moro,S.
    Inspecting the Mechanism of Fragment Hits Binding on SARS-CoV-2 M(pro) by Using Supervised Molecular Dynamics (SuMD) Simulations
    ChemMedChem PubMed  Europe PubMed DOI
  300. Boras,B., Jones,R.M., Anson,B.J., Arenson,D., Aschenbrenner,L., Bakowski,M.A., Beutler,N., Binder,J., Chen,E., Eng,H., Hammond,H., Hammond,J., Haupt,R.E., Hoffman,R., Kadar,E.P., Kania,R., Kimoto,E., Kirkpatrick,M.G., Lanyon,L., Lendy,E.K., Lillis,J.R., Logue,J., Luthra,S.A., Ma,C., Mason,S.W., McGrath,M.E., Noell,S., Obach,R.S., O' Brien,M.N., O'Connor,R., Ogilvie,K., Owen,D., Pettersson,M., Reese,M.R., Rogers,T.F., Rosales,R., Rossulek,M.I., Sathish,J.G., Shirai,N., Steppan,C., Ticehurst,M., Updyke,L.W., Weston,S., Zhu,Y., White,K.M., Garcia-Sastre,A., Wang,J., Chatterjee,A.K., Mesecar,A.D., Frieman,M.B., Anderson,A.S. and Allerton,C.
    Preclinical characterization of an intravenous coronavirus 3CL protease inhibitor for the potential treatment of COVID19
    Nat Commun12, 6055-6055. PubMed  Europe PubMed DOI  I
  301. Borkotoky,S., Banerjee,M., Modi,G.P. and Dubey,V.K.
    Identification of high affinity and low molecular alternatives of boceprevir against SARS-CoV-2 main protease: A virtual screening approach
    Chem Phys Lett770, 138446-138446. PubMed  Europe PubMed DOI  I
  302. Breidenbach,J., Lemke,C., Pillaiyar,T., Schakel,L., Al Hamwi,G., Diett,M., Gedschold,R., Geiger,N., Lopez,V., Mirza,S., Namasivayam,V., Schiedel,A.C., Sylvester,K., Thimm,D., Vielmuth,C., Phuong Vu,L., Zyulina,M., Bodem,J., Gutschow,M. and Muller,C.E.
    Targeting the Main Protease of SARS-CoV-2: From the Establishment of High Throughput Screening to the Design of Tailored Inhibitors
    Angew Chem Int Ed Engl PubMed  Europe PubMed DOI  I
  303. Bung,N., Krishnan,S.R., Bulusu,G. and Roy,A.
    De novo design of new chemical entities for SARS-CoV-2 using artificial intelligence
    Future Med Chem13, 575-585. PubMed  Europe PubMed DOI
  304. Byun,J. and Lee,J.
    Identifying the Hot Spot Residues of the SARS-CoV-2 Main Protease Using MM-PBSA and Multiple Force Fields
    Life (Basel)12, PubMed  Europe PubMed DOI
  305. Cao,T.Q., Kim,J.A., Woo,M.H. and Min,B.S.
    SARS-CoV-2 main protease inhibition by compounds isolated from Luffa cylindrica using molecular docking
    Bioorg Med Chem Lett40, 127972-127972. PubMed  Europe PubMed DOI
  306. Cardoso,W.B. and Mendanha,S.A.
    Molecular dynamics simulation of docking structures of SARS-CoV-2 main protease and HIV protease inhibitors
    J Mol Struct1225, 129143-129143. PubMed  Europe PubMed DOI  I
  307. Cetin,A.
    In silico studies on stilbenolignan analogues as SARS-CoV-2 Mpro inhibitors
    Chem Phys Lett771, 138563-138563. PubMed  Europe PubMed DOI
  308. Chamakuri,S., Lu,S., Ucisik,M.N., Bohren,K.M., Chen,Y.C., Du,H.C., Faver,J.C., Jimmidi,R., Li,F., Li,J.Y., Nyshadham,P., Palmer,S.S., Pollet,J., Qin,X., Ronca,S.E., Sankaran,B., Sharma,K.L., Tan,Z., Versteeg,L., Yu,Z., Matzuk,M.M., Palzkill,T. and Young,D.W.
    DNA-encoded chemistry technology yields expedient access to SARS-CoV-2 M(pro) inhibitors
    Proc Natl Acad Sci U S A118, PubMed  Europe PubMed DOI
  309. Chen,C.C., Yu,X., Kuo,C.J., Min,J., Chen,S., Wu,S., Ma,L., Liu,K. and Guo,R.T.
    Overview of antiviral drug candidates targeting coronaviral 3C-like main proteases
    FEBS J PubMed  Europe PubMed DOI
  310. Chhetri,A., Chettri,S., Rai,P., Sinha,B. and Brahman,D.
    Exploration of inhibitory action of Azo imidazole derivatives against COVID-19 main protease (M(pro)): A computational study
    J Mol Struct1224, 129178-129178. PubMed  Europe PubMed DOI  I
  311. Chia,C.S.B., Xu,W. and Shuyi Ng,P.
    A Patent Review on SARS Coronavirus Main Protease (3CL(pro) ) Inhibitors
    ChemMedChem PubMed  Europe PubMed DOI  V
  312. Chiou,W.C., Hsu,M.S., Chen,Y.T., Yang,J.M., Tsay,Y.G., Huang,H.C. and Huang,C.
    Repurposing existing drugs: identification of SARS-CoV-2 3C-like protease inhibitors
    J Enzyme Inhib Med Chem36, 147-153. PubMed  Europe PubMed DOI  I
  313. Cho,E., Rosa,M., Anjum,R., Mehmood,S., Soban,M., Mujtaba,M., Bux,K., Moin,S.T., Tanweer,M., Dantu,S., Pandini,A., Yin,J., Ma,H., Ramanathan,A., Islam,B., Mey,A.S.J.S., Bhowmik,D. and Haider,S.
    Dynamic Profiling of beta-Coronavirus 3CL M(pro) Protease Ligand-Binding Sites
    J Chem Inf Model61, 3058-3073. PubMed  Europe PubMed DOI
  314. Chtita,S., Belhassan,A., Bakhouch,M., Taourati,A.I., Aouidate,A., Belaidi,S., Moutaabbid,M., Belaaouad,S., Bouachrine,M. and Lakhlifi,T.
    QSAR study of unsymmetrical aromatic disulfides as potent avian SARS-CoV main protease inhibitors using quantum chemical descriptors and statistical methods
    Chemometr Intell Lab Syst210, 104266-104266. PubMed  Europe PubMed DOI
  315. Cubuk,H. and Ozbil,M.
    Comparison of clinically approved molecules on SARS-CoV-2 drug target proteins: a molecular docking study
    Turk J Chem45, 35-41. PubMed  Europe PubMed DOI  I
  316. Dampalla,C.S., Zheng,J., Perera,K.D., Wong,L.R., Meyerholz,D.K., Nguyen,H.N., Kashipathy,M.M., Battaile,K.P., Lovell,S., Kim,Y., Perlman,S., Groutas,W.C. and Chang,K.O.
    Postinfection treatment with a protease inhibitor increases survival of mice with a fatal SARS-CoV-2 infection
    Proc Natl Acad Sci U S A118, PubMed  Europe PubMed DOI  I
  317. Daoud,S., Alabed,S.J. and Dahabiyeh,L.A.
    Identification of potential COVID-19 main protease inhibitors using structure-based pharmacophore approach, molecular docking and repurposing studies
    Acta Pharm71, 163-174. PubMed  Europe PubMed DOI  I
  318. de Azevedo Junior,W.F., Bitencourt-Ferreira,G., Godoy,J.R., Adriano,H.M.A., Dos Santos Bezerra,W.A. and Dos Santos Soares,A.M.
    Protein-ligand Docking Simulations with AutoDock4 Focused on the Main Protease of SARS-CoV-2
    Curr Med Chem PubMed  Europe PubMed DOI  V
  319. de Vries,M., Mohamed,A.S., Prescott,R.A., Valero-Jimenez,A.M., Desvignes,L., O'Connor,R., Steppan,C., Devlin,J.C., Ivanova,E., Herrera,A., Schinlever,A., Loose,P., Ruggles,K., Koralov,S.B., Anderson,A.S., Binder,J. and Dittmann,M.
    A comparative analysis of SARS-CoV-2 antivirals characterizes 3CL(pro) inhibitor PF-00835231 as a potential new treatment for COVID-19
    J Virol PubMed  Europe PubMed DOI  I
  320. Debnath,S., Bhaumik,S., Sen,D. and Debnath,B.
    Phytochemicals of Zingiberaceae family exhibit potentiality against SARS-CoV-2 main protease identified by a rational computer-aided drug design
    Nat Prod Res1-6. PubMed  Europe PubMed DOI
  321. Delaney,C., Sheng,Y., Pectol,D.C., Vantansever,E., Zhang,H., Bhuvanesh,N., Salas,I., Liu,W.R., Fierke,C.F. and Darensbourg,M.Y.
    Zinc thiotropolone combinations as inhibitors of the SARS-CoV-2 main protease
    Dalton Trans PubMed  Europe PubMed DOI
  322. Diaz,N. and Suarez,D.
    Influence of charge configuration on substrate binding to SARS-CoV-2 main protease
    Chem Commun (Camb)57, 5314-5317. PubMed  Europe PubMed DOI
  323. Drazic,T., Kuhl,N., Leuthold,M.M., Behnam,M.A.M. and Klein,C.D.
    Efficiency Improvements and Discovery of New Substrates for a SARS-CoV-2 Main Protease FRET Assay
    SLAS Discov24725552211020681-24725552211020681. PubMed  Europe PubMed DOI
  324. Dubanevics,I. and McLeish,T.C.B.
    Computational analysis of dynamic allostery and control in the SARS-CoV-2 main protease
    J R Soc Interface18, 20200591-20200591. PubMed  Europe PubMed DOI
  325. El-Mageed,H.R.A., Abdelrheem,D.A., Ahmed,S.A., Rahman,A.A., Elsayed,K.N.M., Ahmed,S.A., El-Bassuony,A.A. and Mohamed,H.S.
    Combination and tricombination therapy to destabilize the structural integrity of COVID-19 by some bioactive compounds with antiviral drugs: insights from molecular docking study
    Struct Chem1-16. PubMed  Europe PubMed DOI  I
  326. Elzupir,A.O.
    Molecular Docking and Dynamics Investigations for Identifying Potential Inhibitors of the 3-Chymotrypsin-like Protease of SARS-CoV-2: Repurposing of Approved Pyrimidonic Pharmaceuticals for COVID-19 Treatment
    Molecules26, PubMed  Europe PubMed DOI
  327. Ferreira,J.C., Fadl,S., Ilter,M., Pekel,H., Rezgui,R., Sensoy,O. and Rabeh,W.M.
    Dimethyl sulfoxide reduces the stability but enhances catalytic activity of the main SARS-CoV-2 protease 3CLpro
    FASEB J35, e21774-e21774. PubMed  Europe PubMed DOI
  328. Fischer,A., Sellner,M., Mitusinska,K., Bzowka,M., Lill,M.A., Gora,A. and Smiesko,M.
    Computational Selectivity Assessment of Protease Inhibitors against SARS-CoV-2
    Int J Mol Sci22, PubMed  Europe PubMed DOI
  329. Fung,S.Y., Siu,K.L., Lin,H., Yeung,M.L. and Jin,D.Y.
    SARS-CoV-2 main protease suppresses type I interferon production by preventing nuclear translocation of phosphorylated IRF3
    Int J Biol Sci17, 1547-1554. PubMed  Europe PubMed DOI
  330. Gao,K., Wang,R., Chen,J., Tepe,J.J., Huang,F. and Wei,G.W.
    Perspectives on SARS-CoV-2 Main Protease Inhibitors
    J Med Chem64, 16922-16955. PubMed  Europe PubMed DOI
  331. Ghosh,K., Amin,S.A., Gayen,S. and Jha,T.
    Chemical-informatics approach to COVID-19 drug discovery: Exploration of important fragments and data mining based prediction of some hits from natural origins as main protease (Mpro) inhibitors
    J Mol Struct1224, 129026-129026. PubMed  Europe PubMed DOI
  332. Gunther,S., Reinke,P.Y.A., Fernandez-Garcia,Y., Lieske,J., Lane,T.J., Ginn,H.M., Koua,F.H.M., Ehrt,C., Ewert,W., Oberthuer,D., Yefanov,O., Meier,S., Lorenzen,K., Krichel,B., Kopicki,J.D., Gelisio,L., Brehm,W., Dunkel,I., Seychell,B., Gieseler,H., Norton-Baker,B., Escudero-Perez,B., Domaracky,M., Saouane,S., Tolstikova,A., White,T.A., Hanle,A., Groessler,M., Fleckenstein,H., Trost,F., Galchenkova,M., Gevorkov,Y., Li,C., Awel,S., Peck,A., Barthelmess,M., Schlunzen,F., Lourdu Xavier,P., Werner,N., Andaleeb,H., Ullah,N., Falke,S., Srinivasan,V., Franca,B.A., Schwinzer,M., Brognaro,H., Rogers,C., Melo,D., Zaitseva-Doyle,J.J., Knoska,J., Pena-Murillo,G.E., Mashhour,A.R., Hennicke,V., Fischer,P., Hakanpaa,J., Meyer,J., Gribbon,P., Ellinger,B., Kuzikov,M., Wolf,M., Beccari,A.R., Bourenkov,G., von Stetten,D., Pompidor,G., Bento,I., Panneerselvam,S., Karpics,I., Schneider,T.R., Garcia-Alai,M.M., Niebling,S., Gunther,C., Schmidt,C., Schubert,R., Han,H., Boger,J., Monteiro,D.C.F., Zhang,L., Sun,X., Pletzer-Zelgert,J., Wollenhaupt,J., Feiler,C.G., Weiss,M.S., Schulz,E.C., Mehrabi,P., Karnicar,K., Usenik,A., Loboda,J., Tidow,H., Chari,A., Hilgenfeld,R., Uetrecht,C., Cox,R., Zaliani,A., Beck,T., Rarey,M., Gunther,S., Turk,D., Hinrichs,W., Chapman,H.N., Pearson,A.R., Betzel,C. and Meents,A.
    X-ray screening identifies active site and allosteric inhibitors of SARS-CoV-2 main protease
    Science372, 642-646. PubMed  Europe PubMed DOI
  333. Guo,S., Xie,H., Lei,Y., Liu,B., Zhang,L., Xu,Y. and Zuo,Z.
    Discovery of novel inhibitors against main protease (Mpro) of SARS-CoV-2 via virtual screening and biochemical evaluation
    Bioorg Chem110, 104767-104767. PubMed  Europe PubMed DOI
  334. Hammerschmidt,S.J., Muller,P. and Schirmeister,T.
    SARS-CoV-PLpro-Inhibitoren als m”gliche Breitspektrum-Virostatika
    BIOspektrum (Heidelb)27, 254-256. PubMed  Europe PubMed DOI
  335. Hariyono,P., Patramurti,C., Candrasari,D.S. and Hariono,M.
    An integrated virtual screening of compounds from Carica papaya leaves against multiple protein targets of SARS-Coronavirus-2
    Results Chem3, 100113-100113. PubMed  Europe PubMed DOI
  336. Hartini,Y., Saputra,B., Wahono,B., Auw,Z., Indayani,F., Adelya,L., Namba,G. and Hariono,M.
    Biflavonoid as potential 3-chymotrypsin-like protease (3CLpro) inhibitor of SARS-Coronavirus
    Results Chem3, 100087-100087. PubMed  Europe PubMed DOI  V
  337. Hattori,S.I., Higashi-Kuwata,N., Hayashi,H., Allu,S.R., Raghavaiah,J., Bulut,H., Das,D., Anson,B.J., Lendy,E.K., Takamatsu,Y., Takamune,N., Kishimoto,N., Murayama,K., Hasegawa,K., Li,M., Davis,D.A., Kodama,E.N., Yarchoan,R., Wlodawer,A., Misumi,S., Mesecar,A.D., Ghosh,A.K. and Mitsuya,H.
    A small molecule compound with an indole moiety inhibits the main protease of SARS-CoV-2 and blocks virus replication
    Nat Commun12, 668-668. PubMed  Europe PubMed DOI  I
  338. Hu,Y., Ma,C., Szeto,T., Hurst,B., Tarbet,B. and Wang,J.
    Boceprevir, Calpain Inhibitors II and XII, and GC-376 Have Broad-Spectrum Antiviral Activity against Coronaviruses
    ACS Infect Dis7, 586-597. PubMed  Europe PubMed DOI  I
  339. Huff,S., Kummetha,I.R., Tiwari,S.K., Huante,M.B., Clark,A.E., Wang,S., Bray,W., Smith,D., Carlin,A.F., Endsley,M. and Rana,T.M.
    Discovery and Mechanism of SARS-CoV-2 Main Protease Inhibitors
    J Med Chem PubMed  Europe PubMed DOI
  340. Ihssen,J., Faccio,G., Yao,C., Sirec,T. and Spitz,U.
    Fluorogenic in vitro activity assay for the main protease M(pro) from SARS-CoV-2 and its adaptation to the identification of inhibitors
    STAR Protoc2, 100793-100793. PubMed  Europe PubMed DOI
  341. Iketani,S., Forouhar,F., Liu,H., Hong,S.J., Lin,F.Y., Nair,M.S., Zask,A., Huang,Y., Xing,L., Stockwell,B.R., Chavez,A. and Ho,D.D.
    Lead compounds for the development of SARS-CoV-2 3CL protease inhibitors
    Nat Commun12, 2016-2016. PubMed  Europe PubMed DOI  I
  342. Iketani,S., Forouhar,F., Liu,H., Hong,S.J., Lin,F.Y., Nair,M.S., Zask,A., Huang,Y., Xing,L., Stockwell,B.R., Chavez,A. and Ho,D.D.
    Author Correction: Lead compounds for the development of SARS-CoV-2 3CL protease inhibitors
    Nat Commun12, 2708-2708. PubMed  Europe PubMed DOI
  343. Jaskolski,M., Dauter,Z., Shabalin,I.G., Gilski,M., Brzezinski,D., Kowiel,M., Rupp,B. and Wlodawer,A.
    Crystallographic models of SARS-CoV-2 3CL(pro): in-depth assessment of structure quality and validation
    IUCrJ8, 238-256. PubMed  Europe PubMed DOI
  344. Jin,Z., Mantri,Y., Retout,M., Cheng,Y., Zhou,J., Jorns,A., Fajtova,P., Yim,W., Moore,C., Xu,M., Creyer,M.N., Borum,R.M., Zhou,J., Wu,Z., He,T., Penny,W.F., O'Donoghue,A.J. and Jokerst,J.V.
    A Charge-Switchable Zwitterionic Peptide for Rapid Detection of SARS-CoV-2 Main Protease
    Angew Chem Int Ed Engle202112995-e202112995. PubMed  Europe PubMed DOI
  345. Karges,J., Kalaj,M., Bembicky,M. and Cohen,S.M.
    Re(I) Tricarbonyl Complexes as Coordinate Covalent Inhibitors for the SARS-CoV-2 Main Cysteine Protease
    Angew Chem Int Ed Engl PubMed  Europe PubMed DOI
  346. Khater,I. and Nassar,A.
    In silico molecular docking analysis for repurposing approved antiviral drugs against SARS-CoV-2 main protease
    Biochem Biophys Rep27, 101032-101032. PubMed  Europe PubMed DOI
  347. Kidera,A., Moritsugu,K., Ekimoto,T. and Ikeguchi,M.
    Allosteric Regulation of 3CL Protease of SARS-CoV-2 and SARS-CoV Observed in the Crystal Structure Ensemble
    J Mol Biol433, 167324-167324. PubMed  Europe PubMed DOI
  348. Kneller,D.W., Zhang,Q., Coates,L., Louis,J.M. and Kovalevsky,A.
    Michaelis-like complex of SARS-CoV-2 main protease visualized by room-temperature X-ray crystallography
    IUCrJ8, 973-979. PubMed  Europe PubMed DOI
  349. Kneller,D.W., Li,H., Galanie,S., Phillips,G., Labbe,A., Weiss,K.L., Zhang,Q., Arnould,M.A., Clyde,A., Ma,H., Ramanathan,A., Jonsson,C.B., Head,M.S., Coates,L., Louis,J.M., Bonnesen,P.V. and Kovalevsky,A.
    Structural, Electronic, and Electrostatic Determinants for Inhibitor Binding to Subsites S1 and S2 in SARS-CoV-2 Main Protease
    J Med Chem PubMed  Europe PubMed DOI
  350. Kneller,D.W., Phillips,G., Weiss,K.L., Zhang,Q., Coates,L. and Kovalevsky,A.
    Direct Observation of Protonation State Modulation in SARS-CoV-2 Main Protease upon Inhibitor Binding with Neutron Crystallography
    J Med Chem64, 4991-5000. PubMed  Europe PubMed DOI  I
  351. Krishnamoorthy,N. and Fakhro,K.
    Identification of mutation resistance coldspots for targeting the SARS-CoV2 main protease
    IUBMB Life73, 670-675. PubMed  Europe PubMed DOI
  352. Kumar Verma,A., Kumar,V., Singh,S., Goswami,B.C., Camps,I., Sekar,A., Yoon,S. and Lee,K.W.
    Repurposing potential of Ayurvedic medicinal plants derived active principles against SARS-CoV-2 associated target proteins revealed by molecular docking, molecular dynamics and MM-PBSA studies
    Biomed Pharmacother137, 111356-111356. PubMed  Europe PubMed DOI  I
  353. Kumar,A., Loharch,S., Kumar,S., Ringe,R.P. and Parkesh,R.
    Exploiting cheminformatic and machine learning to navigate the available chemical space of potential small molecule inhibitors of SARS-CoV-2
    Comput Struct Biotechnol J19, 424-438. PubMed  Europe PubMed DOI  I
  354. Kumar,P. and Mohanty,D.
    Development of a Novel Pharmacophore Model Guided by the Ensemble of Waters and Small Molecule Fragments Bound to SARS-CoV-2 Main Protease
    Mol Informe2100178-e2100178. PubMed  Europe PubMed DOI
  355. Kuo,C.J., Chao,T.L., Kao,H.C., Tsai,Y.M., Liu,Y.K., Wang,L.H., Hsieh,M.C., Chang,S.Y. and Liang,P.H.
    Kinetic characterization and inhibitor screening for the proteases leading to identification of drugs against SARS-CoV-2
    Antimicrob Agents Chemother PubMed  Europe PubMed DOI
  356. Lata,S. and Akif,M.
    Comparative protein structure network analysis on 3CL(pro) from SARS-CoV-1 and SARS-CoV-2
    Proteins PubMed  Europe PubMed DOI
  357. Li,Z., Lin,Y., Huang,Y.Y., Liu,R., Zhan,C.G., Wang,X. and Luo,H.B.
    Reply to Ma and Wang: Reliability of various in vitro activity assays on SARS-CoV-2 main protease inhibitors
    Proc Natl Acad Sci U S A118, PubMed  Europe PubMed DOI
  358. Li,Z., Liu,R., Zhan,C.G., Wang,X. and Luo,H.B.
    Reply to Behnam and Klein: Potential role of the His-tag in C-terminal His-tagged SARS-CoV-2 main protease
    Proc Natl Acad Sci U S A118, PubMed  Europe PubMed DOI
  359. Lin,Y., Zang,R., Ma,Y., Wang,Z., Li,L., Ding,S., Zhang,R., Wei,Z., Yang,J. and Wang,X.
    Xanthohumol Is a Potent Pan-Inhibitor of Coronaviruses Targeting Main Protease
    Int J Mol Sci22, PubMed  Europe PubMed DOI  I
  360. Liu,C., Boland,S., Scholle,M.D., Bardiot,D., Marchand,A., Chaltin,P., Blatt,L.M., Beigelman,L., Symons,J.A., Raboisson,P., Gurard-Levin,Z.A., VanDyck,K. and Deval,J.
    Dual inhibition of SARS-CoV-2 and human rhinovirus with protease inhibitors in clinical development
    Antiviral Res187, 105020-105020. PubMed  Europe PubMed DOI  I
  361. Liu,H., Ye,F., Sun,Q., Liang,H., Li,C., Li,S., Lu,R., Huang,B., Tan,W. and Lai,L.
    Scutellaria baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro
    J Enzyme Inhib Med Chem36, 497-503. PubMed  Europe PubMed DOI  I
  362. Liu,J., Zhai,Y., Liang,L., Zhu,D., Zhao,Q. and Qiu,Y.
    Molecular modeling evaluation of the binding effect of five protease inhibitors to COVID-19 main protease
    Chem Phys542, 111080-111080. PubMed  Europe PubMed DOI  I
  363. Llanos,M.A., Gantner,M.E., Rodriguez,S., Alberca,L.N., Bellera,C.L., Talevi,A. and Gavernet,L.
    Strengths and Weaknesses of Docking Simulations in the SARS-CoV-2 Era: the Main Protease (Mpro) Case Study
    J Chem Inf Model PubMed  Europe PubMed DOI
  364. Lockbaum,G.J., Henes,M., Lee,J.M., Timm,J., Nalivaika,E.A., Thompson,P.R., Kurt Yilmaz,N. and Schiffer,C.A.
    Pan-3C Protease Inhibitor Rupintrivir Binds SARS-CoV-2 Main Protease in a Unique Binding Mode
    Biochemistry PubMed  Europe PubMed DOI  I
  365. Lockbaum,G.J., Reyes,A.C., Lee,J.M., Tilvawala,R., Nalivaika,E.A., Ali,A., Kurt Yilmaz,N., Thompson,P.R. and Schiffer,C.A.
    Crystal Structure of SARS-CoV-2 Main Protease in Complex with the Non-Covalent Inhibitor ML188
    Viruses13, PubMed  Europe PubMed DOI  I
  366. Loschwitz,J., Jackering,A., Keutmann,M., Olagunju,M., Eberle,R.J., Coronado,M.A., Olubiyi,O.O. and Strodel,B.
    Novel inhibitors of the main protease enzyme of SARS-CoV-2 identified via molecular dynamics simulation-guided in vitro assay
    Bioorg Chem111, 104862-104862. PubMed  Europe PubMed DOI
  367. Luan,B. and Huynh,T.
    Crystal-structures-guided design of fragment-based drugs for inhibiting the main protease of SARS-CoV-2
    Proteins PubMed  Europe PubMed DOI
  368. Lv,Z., Cano,K.E., Jia,L., Drag,M., Huang,T.T. and Olsen,S.K.
    Targeting SARS-CoV-2 Proteases for COVID-19 Antiviral Development
    Front Chem9, 819165-819165. PubMed  Europe PubMed DOI  V
  369. Ma,C. and Wang,J.
    Dipyridamole, chloroquine, montelukast sodium, candesartan, oxytetracycline, and atazanavir are not SARS-CoV-2 main protease inhibitors
    Proc Natl Acad Sci U S A118, PubMed  Europe PubMed DOI
  370. MacDonald,E.A., Frey,G., Namchuk,M.N., Harrison,S.C., Hinshaw,S.M. and Windsor,I.W.
    Recognition of Divergent Viral Substrates by the SARS-CoV-2 Main Protease
    ACS Infect Dis7, 2591-2595. PubMed  Europe PubMed DOI
  371. Macip,G., Garcia-Segura,P., Mestres-Truyol,J., Saldivar-Espinoza,B., Ojeda-Montes,M.J., Gimeno,A., Cereto-Massague,A., Garcia-Vallve,S. and Pujadas,G.
    Haste makes waste: A critical review of docking-based virtual screening in drug repurposing for SARS-CoV-2 main protease (M-pro) inhibition
    Med Res Rev PubMed  Europe PubMed DOI
  372. Macip,G., Garcia-Segura,P., Mestres-Truyol,J., Saldivar-Espinoza,B., Pujadas,G. and Garcia-Vallve,S.
    A Review of the Current Landscape of SARS-CoV-2 Main Protease Inhibitors: Have We Hit the Bullseye Yet?
    Int J Mol Sci23, PubMed  Europe PubMed DOI  V
  373. Mahmud,S., Uddin,M.A.R., Paul,G.K., Shimu,M.S.S., Islam,S., Rahman,E., Islam,A., Islam,M.S., Promi,M.M., Emran,T.B. and Saleh,M.A.
    Virtual screening and molecular dynamics simulation study of plant-derived compounds to identify potential inhibitors of main protease from SARS-CoV-2
    Brief Bioinform PubMed  Europe PubMed DOI  V  I
  374. Manandhar,A., Blass,B.E., Colussi,D.J., Almi,I., Abou-Gharbia,M., Klein,M.L. and Elokely,K.M.
    Targeting SARS-CoV-2 M3CLpro by HCV NS3/4a Inhibitors: In Silico Modeling and In Vitro Screening
    J Chem Inf Model61, 1020-1032. PubMed  Europe PubMed DOI  I
  375. Marimuthu,P., Gorle,S. and Karnati,K.R.
    Mechanistic Insights into SARS-CoV-2 Main Protease Inhibition Reveals Hotspot Residues
    J Chem Inf Model61, 6053-6065. PubMed  Europe PubMed DOI
  376. Mathieu,C., Touret,F., Jacquemin,C., Janin,Y.L., Nougairede,A., Brailly,M., Mazelier,M., Decimo,D., Vasseur,V., Hans,A., Valle-Casuso,J.C., de Lamballerie,X., Horvat,B., Andre,P., Si-Tahar,M., Lotteau,V. and Vidalain,P.O.
    A Bioluminescent 3CL(Pro) Activity Assay to Monitor SARS-CoV-2 Replication and Identify Inhibitors
    Viruses13, PubMed  Europe PubMed DOI
  377. Meyer,B., Chiaravalli,J., Gellenoncourt,S., Brownridge,P., Bryne,D.P., Daly,L.A., Grauslys,A., Walter,M., Agou,F., Chakrabarti,L.A., Craik,C.S., Eyers,C.E., Eyers,P.A., Gambin,Y., Jones,A.R., Sierecki,E., Verdin,E., Vignuzzi,M. and Emmott,E.
    Characterising proteolysis during SARS-CoV-2 infection identifies viral cleavage sites and cellular targets with therapeutic potential
    Nat Commun12, 5553-5553. PubMed  Europe PubMed DOI  K
  378. Meyers,J.M., Ramanathan,M., Shanderson,R.L., Donohue,L., Ferguson,I., Guo,M.G., Rao,D.S., Miao,W., Reynolds,D., Yang,X., Zhao,Y., Yang,Y.Y., Wang,Y. and Khavari,P.A.
    The proximal proteome of 17 SARS-CoV-2 proteins links to disrupted antiviral signaling and host translation
    bioRxiv PubMed  Europe PubMed DOI
  379. Milligan,J.C., Zeisner,T.U., Papageorgiou,G., Joshi,D., Soudy,C., Ulferts,R., Wu,M., Lim,C.T., Tan,K.W., Weissmann,F., Canal,B., Fujisawa,R., Deegan,T., Nagaraj,H., Bineva-Todd,G., Basier,C., Curran,J.F., Howell,M., Beale,R., Labib,K., O'Reilly,N. and Diffley,J.F.X.
    Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of Nsp5 main protease
    Biochem J478, 2499-2515. PubMed  Europe PubMed DOI
  380. Muthu Kumar,T., Rohini,K., James,N., Shanthi,V. and Ramanathan,K.
    Discovery of potent Covid-19 main protease inhibitors using integrated drug-repurposing strategy
    Biotechnol Appl Biochem PubMed  Europe PubMed DOI
  381. Namsani,S., Pramanik,D., Khan,M.A., Roy,S. and Singh,J.K.
    Metadynamics-based enhanced sampling protocol for virtual screening: case study for 3CLpro protein for SARS-CoV-2
    J Biomol Struct Dyn1-16. PubMed  Europe PubMed DOI
  382. Noske,G.D., Nakamura,A.M., Gawriljuk,V.O., Fernandes,R.S., Lima,G.M.A., Rosa,H.V.D., Pereira,H.D., Zeri,A.C.M., Nascimento,A.F.Z., Freire,M.C.L.C., Fearon,D., Douangamath,A., von Delft,F., Oliva,G. and Godoy,A.S.
    A Crystallographic Snapshot of SARS-CoV-2 Main Protease Maturation Process
    J Mol Biol433, 167118-167118. PubMed  Europe PubMed DOI
  383. O'Brien,A., Chen,D.Y., Hackbart,M., Close,B.J., O'Brien,T.E., Saeed,M. and Baker,S.C.
    Detecting SARS-CoV-2 3CLpro expression and activity using a polyclonal antiserum and a luciferase-based biosensor
    Virology556, 73-78. PubMed  Europe PubMed DOI
  384. Padhi,A.K. and Tripathi,T.
    Targeted design of drug binding sites in the main protease of SARS-CoV-2 reveals potential signatures of adaptation
    Biochem Biophys Res Commun555, 147-153. PubMed  Europe PubMed DOI  I
  385. Panchariya,L., Khan,W.A., Kuila,S., Sonkar,K., Sahoo,S., Ghoshal,A., Kumar,A., Verma,D.K., Hasan,A., Khan,M.A., Jain,N., Mohapatra,A.K., Das,S., Thakur,J.K., Maiti,S., Nanda,R.K., Halder,R., Sunil,S. and Arockiasamy,A.
    Zinc(2+) ion inhibits SARS-CoV-2 main protease and viral replication in vitro
    Chem Commun (Camb)57, 10083-10086. PubMed  Europe PubMed DOI
  386. Pathak,N., Chen,Y.T., Hsu,Y.C., Hsu,N.Y., Kuo,C.J., Tsai,H.P., Kang,J.J., Huang,C.H., Chang,S.Y., Chang,Y.H., Liang,P.H. and Yang,J.M.
    Uncovering Flexible Active Site Conformations of SARS-CoV-2 3CL Proteases through Protease Pharmacophore Clusters and COVID-19 Drug Repurposing
    ACS Nano15, 857-872. PubMed  Europe PubMed DOI  I
  387. Pekel,H., Ilter,M. and Sensoy,O.
    Inhibition of SARS-CoV-2 main protease: a repurposing study that targets the dimer interface of the protein
    J Biomol Struct Dyn1-16. PubMed  Europe PubMed DOI  I
  388. Qiao,J., Li,Y.S., Zeng,R., Liu,F.L., Luo,R.H., Huang,C., Wang,Y.F., Zhang,J., Quan,B., Shen,C., Mao,X., Liu,X., Sun,W., Yang,W., Ni,X., Wang,K., Xu,L., Duan,Z.L., Zou,Q.C., Zhang,H.L., Qu,W., Long,Y.H., Li,M.H., Yang,R.C., Liu,X., You,J., Zhou,Y., Yao,R., Li,W.P., Liu,J.M., Chen,P., Liu,Y., Lin,G.F., Yang,X., Zou,J., Li,L., Hu,Y., Lu,G.W., Li,W.M., Wei,Y.Q., Zheng,Y.T., Lei,J. and Yang,S.
    SARS-CoV-2 M(pro) inhibitors with antiviral activity in a transgenic mouse model
    Science PubMed  Europe PubMed DOI  I
  389. Qiao,Z., Wei,N., Jin,L., Zhang,H., Luo,J., Zhang,Y. and Wang,K.
    The Mpro structure-based modifications of ebselen derivatives for improved antiviral activity against SARS-CoV-2 virus
    Bioorg Chem117, 105455-105455. PubMed  Europe PubMed DOI  I
  390. Rajpoot,S., Alagumuthu,M. and Baig,M.S.
    Dual targeting of 3CL(pro) and PL(pro) of SARS-CoV-2: A novel structure-based design approach to treat COVID-19
    Curr Res Struct Biol3, 9-18. PubMed  Europe PubMed DOI
  391. Refaey,R.H., El-Ashrey,M.K. and Nissan,Y.M.
    Repurposing of renin inhibitors as SARS-COV-2 main protease inhibitors: A computational study
    Virology554, 48-54. PubMed  Europe PubMed DOI  I
  392. Resnick,S.J., Iketani,S., Hong,S.J., Zask,A., Liu,H., Kim,S., Melore,S., Lin,F.Y., Nair,M.S., Huang,Y., Lee,S., Tay,N.E.S., Rovis,T., Yang,H.W., Xing,L., Stockwell,B.R., Ho,D.D. and Chavez,A.
    Inhibitors of coronavirus 3CL proteases protect cells from protease-mediated cytotoxicity
    J Virol PubMed  Europe PubMed DOI
  393. Robertson,A.J., Courtney,J.M., Shen,Y., Ying,J. and Bax,A.
    Concordance of X-ray and AlphaFold2 Models of SARS-CoV-2 Main Protease with Residual Dipolar Couplings Measured in Solution
    J Am Chem Soc143, 19306-19310. PubMed  Europe PubMed DOI
  394. Roe,M.K., Junod,N.A., Young,A.R., Beachboard,D.C. and Stobart,C.C.
    Targeting novel structural and functional features of coronavirus protease nsp5 (3CL(pro), M(pro)) in the age of COVID-19
    J Gen Virol PubMed  Europe PubMed DOI  V
  395. Sahlan,M., Irdiani,R., Flamandita,D., Aditama,R., Alfarraj,S., Ansari,M.J., Khayrani,A.C., Pratami,D.K. and Lischer,K.
    Molecular interaction analysis of Sulawesi propolis compounds with SARS-CoV-2 main protease as preliminary study for COVID-19 drug discovery
    J King Saud Univ Sci33, 101234-101234. PubMed  Europe PubMed DOI
  396. Shah,A., Patel,V. and Parmar,B.
    Discovery of Some Antiviral Natural products to fight against Novel Corona Virus (SARS-CoV-2) using Insilico approach
    Comb Chem High Throughput Screen24, 1271-1280. PubMed  Europe PubMed DOI  I
  397. Shaheer,M., Singh,R. and Sobhia,M.E.
    Protein degradation: a novel computational approach to design protein degrader probes for main protease of SARS-CoV-2
    J Biomol Struct Dyn1-13. PubMed  Europe PubMed DOI
  398. Sharma,A., Kaliya,K. and Maurya,S.K.
    Recent Advances in Discovery of Potent Proteases Inhibitors Targeting the SARS Coronaviruses
    Curr Top Med Chem21, 307-328. PubMed  Europe PubMed DOI  V
  399. Sheik Amamuddy,O., Afriyie Boateng,R., Barozi,V., Wavinya Nyamai,D. and Tastan Bishop,O.
    Novel dynamic residue network analysis approaches to study allosteric modulation: SARS-CoV-2 M(pro) and its evolutionary mutations as a case study
    Comput Struct Biotechnol J19, 6431-6455. PubMed  Europe PubMed DOI
  400. Shekaari,A. and Jafari,M.
    Structural dynamics of COVID-19 main protease
    J Mol Struct1223, 129235-129235. PubMed  Europe PubMed DOI
  401. Sherif,Y.E., Gabr,S.A., Hosny,N.M., Alghadir,A.H. and Alansari,R.
    Phytochemicals of Rhus spp. as Potential Inhibitors of the SARS-CoV-2 Main Protease: Molecular Docking and Drug-Likeness Study
    Evid Based Complement Alternat Med2021, 8814890-8814890. PubMed  Europe PubMed DOI
  402. Sobhia,M.E., Ghosh,K., Sivangula,S., Kumar,S. and Singh,H.
    Identification of potential SARS-CoV-2 M(pro) inhibitors integrating molecular docking and water thermodynamics
    J Biomol Struct Dyn1-11. PubMed  Europe PubMed DOI
  403. Steuten,K., Kim,H., Widen,J.C., Babin,B.M., Onguka,O., Lovell,S., Bolgi,O., Cerikan,B., Neufeldt,C.J., Cortese,M., Muir,R.K., Bennett,J.M., Geiss-Friedlander,R., Peters,C., Bartenschlager,R. and Bogyo,M.
    Challenges for Targeting SARS-CoV-2 Proteases as a Therapeutic Strategy for COVID-19
    ACS Infect Dis PubMed  Europe PubMed DOI
  404. Su,H., Yao,S., Zhao,W., Zhang,Y., Liu,J., Shao,Q., Wang,Q., Li,M., Xie,H., Shang,W., Ke,C., Feng,L., Jiang,X., Shen,J., Xiao,G., Jiang,H., Zhang,L., Ye,Y. and Xu,Y.
    Identification of pyrogallol as a warhead in design of covalent inhibitors for the SARS-CoV-2 3CL protease
    Nat Commun12, 3623-3623. PubMed  Europe PubMed DOI  I
  405. Sun,Q., Ye,F., Liang,H., Liu,H., Li,C., Lu,R., Huang,B., Zhao,L., Tan,W. and Lai,L.
    Bardoxolone and bardoxolone methyl, two Nrf2 activators in clinical trials, inhibit SARS-CoV-2 replication and its 3C-like protease
    Signal Transduct Target Ther6, 212-212. PubMed  Europe PubMed DOI
  406. Sztain,T., Amaro,R. and McCammon,J.A.
    Elucidation of Cryptic and Allosteric Pockets within the SARS-CoV-2 Main Protease
    J Chem Inf Model PubMed  Europe PubMed DOI
  407. Tekpinar,M. and Yildirim,A.
    Impact of dimerization and N3 binding on molecular dynamics of SARS-CoV and SARS-CoV-2 main proteases
    J Biomol Struct Dyn1-12. PubMed  Europe PubMed DOI
  408. Terse,V.L. and Gosavi,S.
    The Molecular Mechanism of Domain Swapping of the C-Terminal Domain of the SARS-Coronavirus Main Protease
    Biophys J120, 504-516. PubMed  Europe PubMed DOI
  409. Tian,D., Liu,Y., Liang,C., Xin,L., Xie,X., Zhang,D., Wan,M., Li,H., Fu,X., Liu,H. and Cao,W.
    An update review of emerging small-molecule therapeutic options for COVID-19
    Biomed Pharmacother137, 111313-111313. PubMed  Europe PubMed DOI
  410. Tripathi,N., Tripathi,N. and Goshisht,M.K.
    COVID-19: inflammatory responses, structure-based drug design and potential therapeutics
    Mol Divers PubMed  Europe PubMed DOI  V  I
  411. Tuli,H.S., Sood,S., Kaur,J., Kumar,P., Seth,P., Punia,S., Yadav,P., Sharma,A.K., Aggarwal,D. and Sak,K.
    Mechanistic insight into anti-COVID-19 drugs: recent trends and advancements
    3 Biotech11, 110-110. PubMed  Europe PubMed DOI  V  I
  412. VanDyck,K. and Deval,J.
    Considerations for the discovery and development of 3-chymotrypsin-like cysteine protease inhibitors targeting SARS-CoV-2 infection
    Curr Opin Virol49, 36-40. PubMed  Europe PubMed DOI  V  I
  413. VanDyck,K., Abdelnabi,R., Gupta,K., Jochmans,D., Jekle,A., Deval,J., Misner,D., Bardiot,D., Foo,C.S., Liu,C., Ren,S., Beigelman,L., Blatt,L.M., Boland,S., Vangeel,L., Dejonghe,S., Chaltin,P., Marchand,A., Serebryany,V., Stoycheva,A., Chanda,S., Symons,J.A., Raboisson,P. and Neyts,J.
    ALG-097111, a potent and selective SARS-CoV-2 3-chymotrypsin-like cysteine protease inhibitor exhibits in vivo efficacy in a Syrian Hamster model
    Biochem Biophys Res Commun555, 134-139. PubMed  Europe PubMed DOI  I
  414. Vatansever,E.C., Yang,K.S., Drelich,A.K., Kratch,K.C., Cho,C.C., Kempaiah,K.R., Hsu,J.C., Mellott,D.M., Xu,S., Tseng,C.K. and Liu,W.R.
    Bepridil is potent against SARS-CoV-2 in vitro
    Proc Natl Acad Sci U S A118, PubMed  Europe PubMed DOI  I
  415. Venugopal,P.P. and Chakraborty,D.
    Molecular mechanism of inhibition of COVID-19 main protease by beta-adrenoceptor agonists and adenosine deaminase inhibitors using in silico methods
    J Biomol Struct Dyn1-16. PubMed  Europe PubMed DOI
  416. Verma,A.K. and Aggarwal,R.
    Repurposing potential of FDA-approved and investigational drugs for COVID-19 targeting SARS-CoV-2 spike and main protease and validation by machine learning algorithm
    Chem Biol Drug Des97, 836-853. PubMed  Europe PubMed DOI
  417. Verma,V.A., Saundane,A.R., Meti,R.S. and Vennapu,D.R.
    Synthesis of novel indolo[3,2-c]isoquinoline derivatives bearing pyrimidine, piperazine rings and their biological evaluation and docking studies against COVID-19 virus main protease
    J Mol Struct1229, 129829-129829. PubMed  Europe PubMed DOI
  418. Wenzel,J., Lampe,J., Muller-Fielitz,H., Schuster,R., Zille,M., Muller,K., Krohn,M., Korbelin,J., Zhang,L., Ozorhan,U., Neve,V., Wagner,J.U.G., Bojkova,D., Shumliakivska,M., Jiang,Y., Fahnrich,A., Ott,F., Sencio,V., Robil,C., Pfefferle,S., Sauve,F., Coelho,C.F.F., Franz,J., Spiecker,F., Lembrich,B., Binder,S., Feller,N., Konig,P., Busch,H., Collin,L., Villasenor,R., Johren,O., Altmeppen,H.C., Pasparakis,M., Dimmeler,S., Cinatl,J., Puschel,K., Zelic,M., Ofengeim,D., Stadelmann,C., Trottein,F., Nogueiras,R., Hilgenfeld,R., Glatzel,M., Prevot,V. and Schwaninger,M.
    The SARS-CoV-2 main protease M(pro) causes microvascular brain pathology by cleaving NEMO in brain endothelial cells
    Nat Neurosci24, 1522-1533. PubMed  Europe PubMed DOI
  419. Yan,F. and Gao,F.
    An overview of potential inhibitors targeting non-structural proteins 3 (PL(pro) and Mac1) and 5 (3CL(pro)/M(pro)) of SARS-CoV-2
    Comput Struct Biotechnol J19, 4868-4883. PubMed  Europe PubMed DOI  V
  420. Yan,G., Qi,H., Yan,H., Fu,Z., Liu,X. and Chen,Y.
    [Preparation and identification of rat polyclonal antibody against SARS-CoV-2 main protease (Mpro)]
    Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi37, 1032-1037. PubMed  Europe PubMed
  421. Yan,S. and Wu,G.
    Potential 3-chymotrypsin-like cysteine protease cleavage sites in the coronavirus polyproteins pp1a and pp1ab and their possible relevance to COVID-19 vaccine and drug development
    FASEB J35, e21573-e21573. PubMed  Europe PubMed DOI
  422. Yang,H. and Yang,J.
    A review of the latest research on M(pro) targeting SARS-COV inhibitors
    RSC Med Chem12, 1026-1036. PubMed  Europe PubMed DOI
  423. Yang,K.S., Ma,X.R., Ma,Y., Alugubelli,Y.R., Scott,D.A., Vatansever,E.C., Drelich,A.K., Sankaran,B., Geng,Z.Z., Blankenship,L.R., Ward,H.E., Sheng,Y.J., Hsu,J.C., Kratch,K.C., Zhao,B., Hayatshahi,H.S., Liu,J., Li,P., Fierke,C.A., Tseng,C.K., Xu,S. and Liu,W.R.
    A Quick Route to Multiple Highly Potent SARS-CoV-2 Main Protease Inhibitors*
    ChemMedChem16, 942-948. PubMed  Europe PubMed DOI  I
  424. Yuan,F., Wang,L., Fang,Y. and Wang,L.
    Global SNP analysis of 11,183 SARS-CoV-2 strains reveals high genetic diversity
    Transbound Emerg Dis68, 3288-3304. PubMed  Europe PubMed DOI
  425. Zanetti-Polzi,L., Smith,M.D., Chipot,C., Gumbart,J.C., Lynch,D.L., Pavlova,A., Smith,J.C. and Daidone,I.
    Tuning Proton Transfer Thermodynamics in SARS-CoV-2 Main Protease: Implications for Catalysis and Inhibitor Design
    J Phys Chem Lett12, 4195-4202. PubMed  Europe PubMed DOI
  426. Zhang,S., Wang,J. and Cheng,G.
    Protease cleavage of RNF20 facilitates coronavirus replication via stabilization of SREBP1
    Proc Natl Acad Sci U S A118, PubMed  Europe PubMed DOI  K
  427. Zhou,X., Zhong,F., Lin,C., Hu,X., Zhang,Y., Xiong,B., Yin,X., Fu,J., He,W., Duan,J., Fu,Y., Zhou,H., McCormick,P.J., Wang,Q., Li,J. and Zhang,J.
    Structure of SARS-CoV-2 main protease in the apo state
    Sci China Life Sci64, 656-659. PubMed  Europe PubMed DOI
  428. 2020

  429. 3CL enzymatic activity
    PubMed  Europe PubMed
  430. Abdusalam,A.A.A. and Murugaiyah,V.
    Identification of Potential Inhibitors of 3CL Protease of SARS-CoV-2 From ZINC Database by Molecular Docking-Based Virtual Screening
    Front Mol Biosci7, 603037-603037. PubMed  Europe PubMed DOI  I
  431. Abel,R., Paredes Ramos,M., Chen,Q., Perez-Sanchez,H., Coluzzi,F., Rocco,M., Marchetti,P., Mura,C., Simmaco,M., Bourne,P.E., Preissner,R. and Banerjee,P.
    Computational Prediction of Potential Inhibitors of the Main Protease of SARS-CoV-2
    Front Chem8, 590263-590263. PubMed  Europe PubMed DOI
  432. Abhinand,C.S., Nair,A.S., Krishnamurthy,A., Oommen,O.V. and Sudhakaran,P.R.
    Potential protease inhibitors and their combinations to block SARS-CoV-2
    J Biomol Struct Dyn1-15. PubMed  Europe PubMed DOI  I
  433. Abian,O., Ortega-Alarcon,D., Jimenez-Alesanco,A., Ceballos-Laita,L., Vega,S., Reyburn,H.T., Rizzuti,B. and Velazquez-Campoy,A.
    Structural stability of SARS-CoV-2 3CLpro and identification of quercetin as an inhibitor by experimental screening
    Int J Biol Macromol164, 1693-1703. PubMed  Europe PubMed DOI  I
  434. Absalan,A., Doroud,D., Salehi-Vaziri,M., Kaghazian,H., Ahmadi,N., Zali,F., Pouriavali's,M.H. and Mousavi-Nasab,S.D.
    Computation screening and molecular docking of FDA approved viral protease inhibitors as a potential drug against COVID-19
    Gastroenterol Hepatol Bed Bench13, 355-360. PubMed  Europe PubMed  I
  435. Abu-Saleh,A.A.A., Awad,I.E., Yadav,A. and Poirier,R.A.
    Discovery of potent inhibitors for SARS-CoV-2's main protease by ligand-based/structure-based virtual screening, MD simulations, and binding energy calculations
    Phys Chem Chem Phys22, 23099-23106. PubMed  Europe PubMed DOI  I
  436. Achilonu,I., Iwuchukwu,E.A., Achilonu,O.J., Fernandes,M.A. and Sayed,Y.
    Targeting the SARS-CoV-2 main protease using FDA-approved Isavuconazonium, a P2-P3 alpha-ketoamide derivative and Pentagastrin: An in-silico drug discovery approach
    J Mol Graph Model101, 107730-107730. PubMed  Europe PubMed DOI  I
  437. Acosta-Elias,J. and Espinosa-Tanguma,R.
    The Folate Concentration and/or Folic Acid Metabolites in Plasma as Factor for COVID-19 Infection
    Front Pharmacol11, 1062-1062. PubMed  Europe PubMed DOI
  438. Ahamad,S., Kanipakam,H., Birla,S., Ali,M.S. and Gupta,D.
    Screening Malaria-box compounds to identify potential inhibitors against SARS-CoV-2 M(pro), using molecular docking and dynamics simulation studies
    Eur J Pharmacol173664-173664. PubMed  Europe PubMed DOI
  439. Ahmed,S., Mahtarin,R., Ahmed,S.S., Akter,S., Islam,M.S., Mamun,A.A., Islam,R., Hossain,M.N., Ali,M.A., Sultana,M.U.C., Parves,M.R., Ullah,M.O. and Halim,M.A.
    Investigating the binding affinity, interaction, and structure-activity-relationship of 76 prescription antiviral drugs targeting RdRp and Mpro of SARS-CoV-2
    J Biomol Struct Dyn1-16. PubMed  Europe PubMed DOI
  440. Ahmed,S.A., Abdelrheem,D.A., El-Mageed,H.R.A., Mohamed,H.S., Rahman,A.A., Elsayed,K.N.M. and Ahmed,S.A.
    Destabilizing the structural integrity of COVID-19 by caulerpin and its derivatives along with some antiviral drugs: An in silico approaches for a combination therapy
    Struct Chem1-22. PubMed  Europe PubMed DOI  I
  441. Ait-Ramdane-Terbouche,C., Abdeldjebar,H., Terbouche,A., Lakhdari,H., Bachari,K., Roisnel,T. and Hauchard,D.
    Crystal structure, chemical reactivity, kinetic and thermodynamic studies of new ligand derived from 4-hydroxycoumarin: Interaction with SARS-CoV-2
    J Mol Struct1222, 128918-128918. PubMed  Europe PubMed DOI
  442. Akaji,K. and Konno,H.
    Design and Evaluation of Anti-SARS-Coronavirus Agents Based on Molecular Interactions with the Viral Protease
    Molecules25, PubMed  Europe PubMed DOI  V
  443. Alajmi,M.F., Azhar,A., Owais,M., Rashid,S., Hasan,S., Hussain,A. and Rehman,M.T.
    Antiviral potential of some novel structural analogs of standard drugs repurposed for the treatment of COVID-19
    J Biomol Struct Dyn1-13. PubMed  Europe PubMed DOI  I
  444. Alexpandi,R., De Mesquita,J.F., Pandian,S.K. and Ravi,A.V.
    Quinolines-Based SARS-CoV-2 3CLpro and RdRp Inhibitors and Spike-RBD-ACE2 Inhibitor for Drug-Repurposing Against COVID-19: An in silico Analysis
    Front Microbiol11, 1796-1796. PubMed  Europe PubMed DOI  I
  445. Alnajjar,R., Mostafa,A., Kandeil,A. and Al-Karmalawy,A.A.
    Molecular docking, molecular dynamics, and in vitro studies reveal the potential of angiotensin II receptor blockers to inhibit the COVID-19 main protease
    Heliyon6, e05641-e05641. PubMed  Europe PubMed DOI  I
  446. Alsafi,M.A., Hughes,D.L. and Said,M.A.
    First COVID-19 molecular docking with a chalcone-based compound: synthesis, single-crystal structure and Hirshfeld surface analysis study
    Acta Crystallogr C Struct Chem76, 1043-1050. PubMed  Europe PubMed DOI  I
  447. Amin,S.A., Banerjee,S., Ghosh,K., Gayen,S. and Jha,T.
    Protease targeted COVID-19 drug discovery and its challenges: Insight into viral main protease (Mpro) and papain-like protease (PLpro) inhibitors
    Bioorg Med Chem115860-115860. PubMed  Europe PubMed DOI  V
  448. Ancy,I., Sivanandam,M. and Kumaradhas,P.
    Possibility of HIV-1 protease inhibitors-clinical trial drugs as repurposed drugs for SARS-CoV-2 main protease: a molecular docking, molecular dynamics and binding free energy simulation study
    J Biomol Struct Dyn1-8. PubMed  Europe PubMed DOI  I
  449. Andrianov,A.M., Kornoushenko,Y.V., Karpenko,A.D., Bosko,I.P. and Tuzikov,A.V.
    Computational discovery of small drug-like compounds as potential inhibitors of SARS-CoV-2 main protease
    J Biomol Struct Dyn1-13. PubMed  Europe PubMed DOI
  450. Aouidate,A., Ghaleb,A., Chtita,S., Aarjane,M., Ousaa,A., Maghat,H., Sbai,A., Choukrad,M., Bouachrine,M. and Lakhlifi,T.
    Identification of a novel dual-target scaffold for 3CLpro and RdRp proteins of SARS-CoV-2 using 3D-similarity search, molecular docking, molecular dynamics and ADMET evaluation
    J Biomol Struct Dyn1-14. PubMed  Europe PubMed DOI
  451. Augustin,T.L., Hajbabaie,R., Harper,M.T. and Rahman,T.
    Novel Small-Molecule Scaffolds as Candidates against the SARS Coronavirus 2 Main Protease: A Fragment-Guided in Silico Approach
    Molecules25, PubMed  Europe PubMed DOI
  452. Badavath,V.N., Kumar,A., Samanta,P.K., Maji,S., Das,A., Blum,G., Jha,A. and Sen,A.
    Determination of potential inhibitors based on isatin derivatives against SARS-CoV-2 main protease (m(pro)): a molecular docking, molecular dynamics and structure-activity relationship studies
    J Biomol Struct Dyn1-19. PubMed  Europe PubMed DOI  I
  453. Bahadur Gurung,A., Ajmal Ali,M., Lee,J., Abul Farah,M. and Mashay Al-Anazi,K.
    Structure-based virtual screening of phytochemicals and repurposing of FDA approved antiviral drugs unravels lead molecules as potential inhibitors of coronavirus 3C-like protease enzyme
    J King Saud Univ Sci32, 2845-2853. PubMed  Europe PubMed DOI
  454. Baildya,N., Ghosh,N.N. and Chattopadhyay,A.P.
    Inhibitory activity of hydroxychloroquine on COVID-19 main protease: An insight from MD-simulation studies
    J Mol Struct1219, 128595-128595. PubMed  Europe PubMed DOI
  455. Banerjee,R., Perera,L. and Tillekeratne,L.M.V.
    Potential SARS-CoV-2 main protease inhibitors
    Drug Discov Today PubMed  Europe PubMed DOI  V
  456. Banerjee,S.
    An insight into the interaction between alpha-ketoamide- based inhibitor and coronavirus main protease: A detailed in silico study
    Biophys Chem269, 106510-106510. PubMed  Europe PubMed DOI  I
  457. Bano,S., Hameed,A., Al-Rashida,M., Iftikhar,S. and Iqbal,J.
    Recent Advances towards Drug Design Targeting the Protease of 2019 novel coronavirus (2019-nCoV)
    Curr Med Chem PubMed  Europe PubMed DOI  V
  458. Barros,R.O., Junior,F.L.C.C., Pereira,W.S., Oliveira,N.M.N. and Ramos,R.M.
    Interaction of Drug Candidates with Various SARS-CoV-2 Receptors: An in Silico Study to Combat COVID-19
    J Proteome Res PubMed  Europe PubMed DOI  I
  459. Batool,F., Mughal,E.U., Zia,K., Sadiq,A., Naeem,N., Javid,A., Ul-Haq,Z. and Saeed,M.
    Synthetic flavonoids as potential antiviral agents against SARS-CoV-2 main protease
    J Biomol Struct Dyn1-12. PubMed  Europe PubMed DOI
  460. Belhassan,A., Chtita,S., Zaki,H., Lakhlifi,T. and Bouachrine,M.
    Molecular docking analysis of N-substituted Oseltamivir derivatives with the SARS-CoV-2 main protease
    Bioinformation16, 404-410. PubMed  Europe PubMed DOI
  461. Bellavite,P. and Donzelli,A.
    Hesperidin and SARS-CoV-2: New Light on the Healthy Function of Citrus Fruits
    Antioxidants (Basel)9, PubMed  Europe PubMed DOI  V
  462. Bello,M., Martinez-Munoz,A. and Balbuena-Rebolledo,I.
    Identification of saquinavir as a potent inhibitor of dimeric SARS-CoV2 main protease through MM/GBSA
    J Mol Model26, 340-340. PubMed  Europe PubMed DOI  I
  463. Bharadwaj,S., Azhar,E.I., Kamal,M.A., Bajrai,L.H., Dubey,A., Jha,K., Yadava,U., Kang,S.G. and Dwivedi,V.D.
    SARS-CoV-2 M(pro) inhibitors: identification of anti-SARS-CoV-2 M(pro) compounds from FDA approved drugs
    J Biomol Struct Dyn1-16. PubMed  Europe PubMed DOI  I
  464. Bharadwaj,S., Lee,K.E., Dwivedi,V.D. and Kang,S.G.
    Computational insights into tetracyclines as inhibitors against SARS-CoV-2 M(pro) via combinatorial molecular simulation calculations
    Life Sci257, 118080-118080. PubMed  Europe PubMed DOI  I
  465. Bhardwaj,V.K., Singh,R., Sharma,J., Rajendran,V., Purohit,R. and Kumar,S.
    Identification of bioactive molecules from tea plant as SARS-CoV-2 main protease inhibitors
    J Biomol Struct Dyn1-10. PubMed  Europe PubMed DOI  I
  466. Bolcato,G., Bissaro,M., Pavan,M., Sturlese,M. and Moro,S.
    Targeting the coronavirus SARS-CoV-2: computational insights into the mechanism of action of the protease inhibitors lopinavir, ritonavir and nelfinavir
    Sci Rep10, 20927-20927. PubMed  Europe PubMed DOI  I
  467. Boras,B., Jones,R.M., Anson,B.J., Arenson,D., Aschenbrenner,L., Bakowski,M.A., Beutler,N., Binder,J., Chen,E., Eng,H., Hammond,J., Hoffman,R., Kadar,E.P., Kania,R., Kimoto,E., Kirkpatrick,M.G., Lanyon,L., Lendy,E.K., Lillis,J.R., Luthra,S.A., Ma,C., Noell,S., Obach,R.S., O'Brien,M.N., O'Connor,R., Ogilvie,K., Owen,D., Pettersson,M., Reese,M.R., Rogers,T., Rossulek,M.I., Sathish,J.G., Steppan,C., Ticehurst,M., Updyke,L.W., Zhu,Y., Wang,J., Chatterjee,A.K., Mesecar,A.D., Anderson,A.S. and Allerton,C.
    Discovery of a Novel Inhibitor of Coronavirus 3CL Protease as a Clinical Candidate for the Potential Treatment of COVID-19
    bioRxiv PubMed  Europe PubMed DOI  I
  468. Borquaye,L.S., Gasu,E.N., Ampomah,G.B., Kyei,L.K., Amarh,M.A., Mensah,C.N., Nartey,D., Commodore,M., Adomako,A.K., Acheampong,P., Mensah,J.O., Mormor,D.B. and Aboagye,C.I.
    Alkaloids from Cryptolepis sanguinolenta as Potential Inhibitors of SARS-CoV-2 Viral Proteins: An In Silico Study
    Biomed Res Int2020, 5324560-5324560. PubMed  Europe PubMed DOI
  469. Braz,H.L.B., Silveira,J.A.M., Marinho,A.D., de Moraes,M.E.A., Moraes Filho,M.O., Monteiro,H.S.A. and Jorge,R.J.B.
    In silico study of azithromycin, chloroquine and hydroxychloroquine and their potential mechanisms of action against SARS-CoV-2 infection
    Int J Antimicrob Agents106119-106119. PubMed  Europe PubMed DOI
  470. Brown,A.S., Ackerley,D.F. and Calcott,M.J.
    High-Throughput Screening for Inhibitors of the SARS-CoV-2 Protease Using a FRET-Biosensor
    Molecules25, PubMed  Europe PubMed DOI
  471. Bzowka,M., Mitusinska,K., Raczynska,A., Samol,A., Tuszynski,J.A. and Gora,A.
    Structural and evolutionary analysis indicate that the SARS-CoV-2 Mpro is a challenging target for small-molecule inhibitor design
    Int J Mol Sci21, PubMed  Europe PubMed DOI  I
  472. C,S., S,D.K., Ragunathan,V., Tiwari,P., A,S. and P,B.D.
    Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease
    J Biomol Struct Dyn1-27. PubMed  Europe PubMed DOI
  473. Campos,D.M.O., Oliveira,C.B.S., Andrade,J.M.A. and Oliveira,J.I.N.
    Fighting COVID-19
    Braz J Biol PubMed  Europe PubMed DOI  I
  474. Cannalire,R., Cerchia,C., Beccari,A.R., Di Leva,F.S. and Summa,V.
    Targeting SARS-CoV-2 Proteases and Polymerase for COVID-19 Treatment: State of the Art and Future Opportunities
    J Med Chem PubMed  Europe PubMed DOI
  475. Capasso,C., Nocentini,A. and Supuran,C.T.
    Protease inhibitors targeting the main protease and papain-like protease of coronaviruses
    Expert Opin Ther Pat1-16. PubMed  Europe PubMed DOI  V
  476. Carli,M., Sormani,G., Rodriguez,A. and Laio,A.
    Candidate Binding Sites for Allosteric Inhibition of the SARS-CoV-2 Main Protease from the Analysis of Large-Scale Molecular Dynamics Simulations
    J Phys Chem Lett65-72. PubMed  Europe PubMed DOI
  477. Caruso,F., Singh,M., Belli,S., Berinato,M. and Rossi,M.
    Interrelated Mechanism by Which the Methide Quinone Celastrol, Obtained from the Roots of Tripterygium wilfordii, Inhibits Main Protease 3CL(pro) of COVID-19 and Acts as Superoxide Radical Scavenger
    Int J Mol Sci21, PubMed  Europe PubMed DOI  I
  478. Cavasotto,C. and Di Filippo,J.
    In silico Drug Repurposing for COVID-19: Targeting SARS-CoV-2 Proteins through Docking and Consensus Ranking
    Mol Inform PubMed  Europe PubMed DOI
  479. Chakraborti,S., Bheemireddy,S. and Srinivasan,N.
    Repurposing drugs against the main protease of SARS-CoV-2: mechanism-based insights supported by available laboratory and clinical data
    Mol Omics PubMed  Europe PubMed DOI
  480. Chatterjee,S., Maity,A., Chowdhury,S., Islam,M.A., Muttinini,R.K. and Sen,D.
    In silico analysis and identification of promising hits against 2019 novel coronavirus 3C-like main protease enzyme
    J Biomol Struct Dyn1-14. PubMed  Europe PubMed DOI  T
  481. Chellapandi,P. and Saranya,S.
    Genomics insights of SARS-CoV-2 (COVID-19) into target-based drug discovery
    Med Chem Res1-15. PubMed  Europe PubMed DOI  V
  482. Chen,Y.W., Yiu,C.B. and Wong,K.Y.
    Prediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CL (pro)) structure: virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates
    F1000Res9, 129-129. PubMed  Europe PubMed DOI  S  I
  483. Cherrak,S.A., Merzouk,H. and Mokhtari-Soulimane,N.
    Potential bioactive glycosylated flavonoids as SARS-CoV-2 main protease inhibitors: A molecular docking and simulation studies
    PLoS ONE15, e0240653-e0240653. PubMed  Europe PubMed DOI
  484. Chitranshi,N., Gupta,V.K., Rajput,R., Godinez,A., Pushpitha,K., Shen,T., Mirzaei,M., You,Y., Basavarajappa,D., Gupta,V. and Graham,S.L.
    Evolving geographic diversity in SARS-CoV2 and in silico analysis of replicating enzyme 3CL(pro) targeting repurposed drug candidates
    J Transl Med18, 278-278. PubMed  Europe PubMed DOI
  485. Choudhary,M.I., Shaikh,M., Tul-Wahab,A. and Ur-Rahman,A.
    In silico identification of potential inhibitors of key SARS-CoV-2 3CL hydrolase (Mpro) via molecular docking, MMGBSA predictive binding energy calculations, and molecular dynamics simulation
    PLoS ONE15, e0235030-e0235030. PubMed  Europe PubMed DOI
  486. Chowdhury,K.H., Chowdhury,M.R., Mahmud,S., Tareq,A.M., Hanif,N.B., Banu,N., Reza,A.S.M.A., Emran,T.B. and Simal-Gandara,J.
    Drug Repurposing Approach against Novel Coronavirus Disease (COVID-19) through Virtual Screening Targeting SARS-CoV-2 Main Protease
    Biology (Basel)10, PubMed  Europe PubMed DOI
  487. Chowdhury,P.
    In silico investigation of phytoconstituents from Indian medicinal herb 'Tinospora cordifolia (giloy)' against SARS-CoV-2 (COVID-19) by molecular dynamics approach
    J Biomol Struct Dyn1-18. PubMed  Europe PubMed DOI
  488. Chowdhury,T., Roymahapatra,G. and Mandal,S.M.
    In Silico Identification of a Potent Arsenic Based Approved Drug Darinaparsin against SARS-CoV-2: Inhibitor of RNA Dependent RNA polymerase (RdRp) and Essential Proteases
    Infect Disord Drug Targets PubMed  Europe PubMed DOI
  489. Chunduru,K., Sankhe,R., Begum,F., Sodum,N., Kumar,N., Kishore,A., Shenoy,R.R., Rao,C.M. and Saravu,K.
    In silico study to evaluate the antiviral activity of novel structures against 3C-like protease of Novel Coronavirus (COVID-19) and SARS-CoV
    Med Chem PubMed  Europe PubMed DOI
  490. Cross,T.J., Takahashi,G.R., Diessner,E.M., Crosby,M.G., Farahmand,V., Zhuang,S., Butts,C.T. and Martin,R.W.
    Sequence Characterization and Molecular Modeling of Clinically Relevant Variants of the SARS-CoV-2 Main Protease
    Biochemistry59, 3741-3756. PubMed  Europe PubMed DOI
  491. Cui,W., Yang,K. and Yang,H.
    Recent Progress in the Drug Development Targeting SARS-CoV-2 Main Protease as Treatment for COVID-19
    Front Mol Biosci7, 616341-616341. PubMed  Europe PubMed DOI  V
  492. da Silva,F.M.A., da Silva,K.P.A., de Oliveira,L.P.M., Costa,E.V., Koolen,H.H., Pinheiro,M.L.B., de Souza,A.Q.L. and de Souza,A.D.L.
    Flavonoid glycosides and their putative human metabolites as potential inhibitors of the SARS-CoV-2 main protease (Mpro) and RNA-dependent RNA polymerase (RdRp)
    Mem Inst Oswaldo Cruz115, e200207-e200207. PubMed  Europe PubMed DOI
  493. Dahab,M.A., Hegazy,M.M. and Abbass,H.S.
    Hordatines as a Potential Inhibitor of COVID-19 Main Protease and RNA Polymerase: An In-Silico Approach
    Nat Prod Bioprospect PubMed  Europe PubMed DOI
  494. Dai,W., Zhang,B., Su,H., Li,J., Zhao,Y., Xie,X., Jin,Z., Liu,F., Li,C., Li,Y., Bai,F., Wang,H., Cheng,X., Cen,X., Hu,S., Yang,X., Wang,J., Liu,X., Xiao,G., Jiang,H., Rao,Z., Zhang,L.K., Xu,Y., Yang,H. and Liu,H.
    Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease
    Science PubMed  Europe PubMed DOI  I
  495. Das,P., Majumder,R., Mandal,M. and Basak,P.
    In-Silico approach for identification of effective and stable inhibitors for COVID-19 main protease (M(pro)) from flavonoid based phytochemical constituents of Calendula officinalis
    J Biomol Struct Dyn1-16. PubMed  Europe PubMed DOI
  496. de Vries,M., Mohamed,A.S., Prescott,R.A., Valero-Jimenez,A.M., Desvignes,L., O'Connor,R., Steppan,C., Anderson,A.S., Binder,J. and Dittmann,M.
    Comparative study of a 3CL (pro) inhibitor and remdesivir against both major SARS-CoV-2 clades in human airway models
    bioRxiv PubMed  Europe PubMed DOI  I
  497. Deeks,H.M., Walters,R.K., Barnoud,J., Glowacki,D.R. and Mulholland,A.J.
    Interactive Molecular Dynamics in Virtual Reality Is an Effective Tool for Flexible Substrate and Inhibitor Docking to the SARS-CoV-2 Main Protease
    J Chem Inf Model PubMed  Europe PubMed DOI
  498. Dominguez-Villa,F.X., Duran-Iturbide,N.A. and Avila-Zarraga,J.G.
    Synthesis, molecular docking, and in silico ADME/Tox profiling studies of new 1-aryl-5-(3-azidopropyl)indol-4-ones: Potential inhibitors of SARS CoV-2 main protease
    Bioorg Chem104497-104497. PubMed  Europe PubMed DOI
  499. Dong,S., Sun,J., Mao,Z., Wang,L., Lu,Y.L. and Li,J.
    A guideline for homology modeling of the proteins from newly discovered betacoronavirus, 2019 novel coronavirus (2019-nCoV)
    J Med Virol PubMed  Europe PubMed DOI
  500. Douangamath,A., Fearon,D., Gehrtz,P., Krojer,T., Lukacik,P., Owen,C.D., Resnick,E., Strain-Damerell,C., Aimon,A., Abranyi-Balogh,P., Brandao-Neto,J., Carbery,A., Davison,G., Dias,A., Downes,T.D., Dunnett,L., Fairhead,M., Firth,J.D., Jones,S.P., Keeley,A., Keseru,G.M., Klein,H.F., Martin,M.P., Noble,M.E.M., O'Brien,P., Powell,A., Reddi,R.N., Skyner,R., Snee,M., Waring,M.J., Wild,C., London,N., von Delft,F. and Walsh,M.A.
    Crystallographic and electrophilic fragment screening of the SARS-CoV-2 main protease
    Nat Commun11, 5047-5047. PubMed  Europe PubMed DOI
  501. Drayman,N., Jones,K.A., Azizi,S.A., Froggatt,H.M., Tan,K., Maltseva,N.I., Chen,S., Nicolaescu,V., Dvorkin,S., Furlong,K., Kathayat,R.S., Firpo,M.R., Mastrodomenico,V., Bruce,E.A., Schmidt,M.M., Jedrzejczak,R., Munoz-Alia,M.A., Schuster,B., Nair,V., Botten,J.W., Brooke,C.B., Baker,S.C., Mounce,B.C., Heaton,N.S., Dickinson,B.C., Jaochimiak,A., Randall,G. and Tay,S.
    Drug repurposing screen identifies masitinib as a 3CLpro inhibitor that blocks replication of SARS-CoV-2 in vitro
    bioRxiv PubMed  Europe PubMed DOI
  502. Dubey,R. and Dubey,K.
    Molecular Docking Studies of Bioactive Nicotiflorin against 6W63 Novel Coronavirus 2019 (COVID-19)
    Comb Chem High Throughput Screen PubMed  Europe PubMed DOI
  503. Durojaiye,A.B., Clarke,J.D., Stamatiades,G.A. and Wang,C.
    Repurposing cefuroxime for treatment of COVID-19: a scoping review of in silico studies
    J Biomol Struct Dyn1-8. PubMed  Europe PubMed DOI
  504. Elmezayen,A.D., Al-Obaidi,A., Sahin,A.T. and Yelekci,K.
    Drug repurposing for coronavirus (COVID-19): in silico screening of known drugs against coronavirus 3CL hydrolase and protease enzymes
    J Biomol Struct Dyn1-13. PubMed  Europe PubMed DOI
  505. Elzupir,A.O.
    Inhibition of SARS-CoV-2 main protease 3CL(pro) by means of alpha-ketoamide and pyridone-containing pharmaceuticals using in silico molecular docking
    J Mol Struct1222, 128878-128878. PubMed  Europe PubMed DOI  I
  506. Elzupir,A.O.
    Caffeine and caffeine-containing pharmaceuticals as promising inhibitors for 3-chymotrypsin-like protease of SARS-CoV-2
    J Biomol Struct Dyn1-8. PubMed  Europe PubMed DOI  I
  507. Enmozhi,S.K., Raja,K., Sebastine,I. and Joseph,J.
    Andrographolide as a potential inhibitor of SARS-CoV-2 main protease: an in silico approach
    J Biomol Struct Dyn1-7. PubMed  Europe PubMed DOI  I
  508. Fadaka,A.O., Aruleba,R.T., Sibuyi,N.R.S., Klein,A., Madiehe,A.M. and Meyer,M.
    Inhibitory potential of repurposed drugs against the SARS-CoV-2 main protease: a computational-aided approach
    J Biomol Struct Dyn1-13. PubMed  Europe PubMed DOI  I
  509. Fakhar,Z., Faramarzi,B., Pacifico,S. and Faramarzi,S.
    Anthocyanin derivatives as potent inhibitors of SARS-CoV-2 main protease: An in-silico perspective of therapeutic targets against COVID-19 pandemic
    J Biomol Struct Dyn1-13. PubMed  Europe PubMed DOI  T
  510. Feitosa,E.L., Junior,F.T.D.S., Nery Neto,J.A.O., Matos,L.F.L., Moura,M.H.S., Rosales,T.O. and De Freitas,G.B.L.
    COVID-19: Rational discovery of the therapeutic potential of Melatonin as a SARS-CoV-2 main Protease Inhibitor
    Int J Med Sci17, 2133-2146. PubMed  Europe PubMed DOI  I
  511. Ferraz,W.R., Gomes,R.A., Novaes,S. and Goulart Trossini,G.H.
    Ligand and structure-based virtual screening applied to the SARS-CoV-2 main protease: an in silico repurposing study
    Future Med Chem PubMed  Europe PubMed DOI
  512. Ferreira,J.C. and Rabeh,W.M.
    Biochemical and biophysical characterization of the main protease, 3-chymotrypsin-like protease (3CLpro) from the novel coronavirus SARS-CoV 2
    Sci Rep10, 22200-22200. PubMed  Europe PubMed DOI
  513. Fintelman-Rodrigues,N., Sacramento,C.Q., Ribeiro Lima,C., Souza da Silva,F., Ferreira,A.C., Mattos,M., de Freitas,C.S., Cardoso Soares,V., da Silva Gomes Dias,S., Temerozo,J.R., Miranda,M.D., Matos,A.R., Bozza,F.A., Carels,N., Alves,C.R., Siqueira,M.M., Bozza,P.T. and Souza,T.M.L.
    Atazanavir, alone or in combination with ritonavir, inhibits SARS-CoV-2 replication and pro-inflammatory cytokine production
    Antimicrob Agents Chemother PubMed  Europe PubMed DOI  I
  514. Fiorucci,D., Milletti,E., Orofino,F., Brizzi,A., Mugnaini,C. and Corelli,F.
    Computational drug repurposing for the identification of SARS-CoV-2 main protease inhibitors
    J Biomol Struct Dyn1-7. PubMed  Europe PubMed DOI  I
  515. Forrestall,K.L., Burley,D.E., Cash,M.K., Pottie,I.R. and Darvesh,S.
    2-Pyridone natural products as inhibitors of SARS-CoV-2 main protease
    Chem Biol Interact109348-109348. PubMed  Europe PubMed DOI
  516. Froggatt,H.M., Heaton,B.E. and Heaton,N.S.
    Development of a fluorescence based, high-throughput SARS-CoV-2 3CL(pro) reporter assay
    J Virol PubMed  Europe PubMed DOI
  517. Fu,L., Ye,F., Feng,Y., Yu,F., Wang,Q., Wu,Y., Zhao,C., Sun,H., Huang,B., Niu,P., Song,H., Shi,Y., Li,X., Tan,W., Qi,J. and Gao,G.F.
    Both Boceprevir and GC376 efficaciously inhibit SARS-CoV-2 by targeting its main protease
    Nat Commun11, 4417-4417. PubMed  Europe PubMed DOI  I
  518. Gahlawat,A., Kumar,N., Kumar,R., Sandhu,H., Singh,I.P., Singh,S., Sjostedt,A. and Garg,P.
    Structure-Based Virtual Screening to Discover Potential Lead Molecules for the SARS-CoV-2 Main Protease
    J Chem Inf Model PubMed  Europe PubMed DOI  T
  519. Gao,J., Zhang,L., Liu,X., Li,F., Ma,R., Zhu,Z., Zhang,J., Wu,J., Shi,Y., Pan,Y., Ge,Y. and Ruan,K.
    Repurposing Low-Molecular-Weight Drugs against the Main Protease of Severe Acute Respiratory Syndrome Coronavirus 2
    J Phys Chem Lett11, 7267-7272. PubMed  Europe PubMed DOI
  520. Gao,K., Nguyen,D.D., Chen,J., Wang,R. and Wei,G.W.
    Repositioning of 8565 Existing Drugs for COVID-19
    J Phys Chem Lett11, 5373-5382. PubMed  Europe PubMed DOI
  521. Gao,L.Q., Xu,J. and Chen,S.D.
    In Silico Screening of Potential Chinese Herbal Medicine Against COVID-19 by Targeting SARS-CoV-2 3CLpro and Angiotensin Converting Enzyme II Using Molecular Docking
    Chin J Integr Med26, 527-532. PubMed  Europe PubMed DOI
  522. Garza-Lopez,R.A., Kozak,J.J. and Gray,H.B.
    Copper(II) Inhibition of the SARS-CoV-2 Main Protease
    ChemRxiv PubMed  Europe PubMed DOI
  523. Gaudencio,S.P. and Pereira,F.
    A Computer-Aided Drug Design Approach to Predict Marine Drug-Like Leads for SARS-CoV-2 Main Protease Inhibition
    Mar Drugs18, PubMed  Europe PubMed DOI
  524. Gentile,D., Patamia,V., Scala,A., Sciortino,M.T., Piperno,A. and Rescifina,A.
    Putative inhibitors of SARS-CoV-2 main protease from a library of marine natural products: a virtual screening and molecular modeling study
    Mar Drugs18, PubMed  Europe PubMed DOI  I
  525. Ghahremanpour,M.M., Tirado-Rives,J., Deshmukh,M., Ippolito,J.A., Zhang,C.H., de Vaca,I.C., Liosi,M.E., Anderson,K.S. and Jorgensen,W.L.
    Identification of 14 Known Drugs as Inhibitors of the Main Protease of SARS-CoV-2
    bioRxiv PubMed  Europe PubMed DOI  I
  526. Ghahremanpour,M.M., Tirado-Rives,J., Deshmukh,M., Ippolito,J.A., Zhang,C.H., Cabeza de Vaca,I., Liosi,M.E., Anderson,K.S. and Jorgensen,W.L.
    Identification of 14 Known Drugs as Inhibitors of the Main Protease of SARS-CoV-2
    ACS Med Chem Lett11, 2526-2533. PubMed  Europe PubMed DOI  I
  527. Ghanbari,R., Teimoori,A., Sadeghi,A., Mohamadkhani,A., Rezasoltani,S., Asadi,E., Jouyban,A. and Sumner,S.C.
    Existing antiviral options against SARS-CoV-2 replication in COVID-19 patients
    Future Microbiol15, 1747-1758. PubMed  Europe PubMed DOI  V
  528. Ghosh,R., Chakraborty,A., Biswas,A. and Chowdhuri,S.
    Depicting the inhibitory potential of polyphenols from Isatis indigotica root against the main protease of SARS CoV-2 using computational approaches
    J Biomol Struct Dyn1-12. PubMed  Europe PubMed DOI  I
  529. Ghosh,R., Chakraborty,A., Biswas,A. and Chowdhuri,S.
    Potential therapeutic use of corticosteroids as SARS CoV-2 main protease inhibitors: a computational study
    J Biomol Struct Dyn1-14. PubMed  Europe PubMed DOI
  530. Ghosh,R., Chakraborty,A., Biswas,A. and Chowdhuri,S.
    Identification of polyphenols from Broussonetia papyrifera as SARS CoV-2 main protease inhibitors using in silico docking and molecular dynamics simulation approaches
    J Biomol Struct Dyn1-14. PubMed  Europe PubMed DOI  I
  531. Ghosh,R., Chakraborty,A., Biswas,A. and Chowdhuri,S.
    Computer aided identification of potential SARS CoV-2 main protease inhibitors from diterpenoids and biflavonoids of Torreya nucifera leaves
    J Biomol Struct Dyn1-16. PubMed  Europe PubMed DOI  I
  532. Gil-Moles,M., Basu,U., Bussing,R., Hoffmeister,H., Turck,S., Varchmin,A. and Ott,I.
    Gold Metallodrugs to Target Coronavirus Proteins: Inhibitory Effects on the Spike-ACE2 Interaction and on PLpro Protease Activity by Auranofin and Gold Organometallics
    Chemistry PubMed  Europe PubMed DOI  I
  533. Gioia,M., Ciaccio,C., Calligari,P., De Simone,G., Sbardella,D., Tundo,G., Fasciglione,G.F., di Masi,A., Di Pierro,D., Bocedi,A., Ascenzi,P. and Coletta,M.
    Role of proteolytic enzymes in the COVID-19 infection and promising therapeutic approaches
    Biochem Pharmacol182, 114225-114225. PubMed  Europe PubMed DOI  V
  534. Gogoi,N., Chowdhury,P., Goswami,A.K., Das,A., Chetia,D. and Gogoi,B.
    Computational guided identification of a citrus flavonoid as potential inhibitor of SARS-CoV-2 main protease
    Mol Divers PubMed  Europe PubMed DOI
  535. Goris,T., Perez-Valero,A., Martinez,I., Yi,D., Fernandez-Calleja,L., San Leon,D., Bornscheuer,U.T., Magadan-Corp, Lombo,F. and Nogales,J.
    Repositioning microbial biotechnology against COVID-19: the case of microbial production of flavonoids
    Microb Biotechnol PubMed  Europe PubMed DOI  V
  536. Goyal,B. and Goyal,D.
    Targeting the dimerization of the main protease of coronaviruses: a potential broad-spectrum therapeutic strategy
    ACS Comb Sci22, 297-305. PubMed  Europe PubMed DOI  I
  537. Griffin,J.W.D.
    SARS-CoV and SARS-CoV-2 main protease residue interaction networks change when bound to inhibitor N3
    J Struct Biol211, 107575-107575. PubMed  Europe PubMed DOI  I
  538. Grottesi,A., Besker,N., Emerson,A., Manelfi,C., Beccari,A.R., Frigerio,F., Lindahl,E., Cerchia,C. and Talarico,C.
    Computational Studies of SARS-CoV-2 3CLpro: Insights from MD Simulations
    Int J Mol Sci21, PubMed  Europe PubMed DOI
  539. Gul,S., Ozcan,O., Asar,S., Okyar,A., Baris,I. and Kavakli,I.H.
    In silico identification of widely used and well-tolerated drugs as potential SARS-CoV-2 3C-like protease and viral RNA-dependent RNA polymerase inhibitors for direct use in clinical trials
    J Biomol Struct Dyn1-20. PubMed  Europe PubMed DOI
  540. Gupta,A., Rani,C., Pant,P., Vijayan,V., Vikram,N., Kaur,P., Singh,T.P., Sharma,S. and Sharma,P.
    Structure-Based Virtual Screening and Biochemical Validation to Discover a Potential Inhibitor of the SARS-CoV-2 Main Protease
    ACS Omega5, 33151-33161. PubMed  Europe PubMed DOI
  541. Gupta,A. and Zhou,H.X.
    Profiling SARS-CoV-2 Main Protease (M(PRO)) Binding to Repurposed Drugs Using Molecular Dynamics Simulations in Classical and Neural Network-Trained Force Fields
    ACS Comb Sci PubMed  Europe PubMed DOI  I
  542. Gurard-Levin,Z.A., Liu,C., Jekle,A., Jaisinghani,R., Ren,S., VanDyck,K., Jochmans,D., Leyssen,P., Neyts,J., Blatt,L.M., Beigelman,L., Symons,J.A., Raboisson,P., Scholle,M.D. and Deval,J.
    Evaluation of SARS-CoV-2 3C-like protease inhibitors using self-assembled monolayer desorption ionization mass spectrometry
    Antiviral Res182, 104924-104924. PubMed  Europe PubMed DOI  I
  543. Gurung,A.B., Ali,M.A., Lee,J., Abul Farah,M. and Al-Anazi,K.M.
    In silico screening of FDA approved drugs reveals ergotamine and dihydroergotamine as potential coronavirus main protease enzyme inhibitors
    Saudi J Biol Sci27, 2674-2682. PubMed  Europe PubMed DOI  I
  544. Gyebi,G.A., Ogunro,O.B., Adegunloye,A.P., Ogunyemi,O.M. and Afolabi,S.O.
    Potential inhibitors of coronavirus 3-chymotrypsin-like protease (3CL(pro)): an in silico screening of alkaloids and terpenoids from African medicinal plants
    J Biomol Struct Dyn1-19. PubMed  Europe PubMed DOI  I
  545. Hage-Melim,L.I.D.S., Federico,L.B., de Oliveira,N.K.S., Francisco,V.C.C., Correia,L.C., de Lima,H.B., Gomes,S.Q., Barcelos,M.P., Francischini,I.A.G. and da Silva,C.H.T.P.
    Virtual screening, ADME/Tox predictions and the drug repurposing concept for future use of old drugs against the COVID-19
    Life Sci256, 117963-117963. PubMed  Europe PubMed DOI
  546. Hakmi,M., Bouricha,E.M., Kandoussi,I., Harti,J.E. and Ibrahimi,A.
    Repurposing of known anti-virals as potential inhibitors for SARS-CoV-2 main protease using molecular docking analysis
    Bioinformation16, 301-306. PubMed  Europe PubMed DOI  I
  547. Hassan,H.A., Abdelmohsen,U.R., Aly,O.M., Desoukey,S.Y., Mohamed,K.M. and Kamel,M.S.
    Potential of Ficus microcarpa metabolites against SARS-CoV-2 main protease supported by docking studies
    Nat Prod Res1-5. PubMed  Europe PubMed DOI  I
  548. Hatada,R., Okuwaki,K., Mochizuki,Y., Handa,Y., Fukuzawa,K., Komeiji,Y., Okiyama,Y. and Tanaka,S.
    Fragment Molecular Orbital Based Interaction Analyses on COVID-19 Main Protease - Inhibitor N3 Complex (PDB ID: 6LU7)
    J Chem Inf Model PubMed  Europe PubMed DOI  I
  549. Havranek,B. and Islam,S.M.
    An in silico approach for identification of novel inhibitors as potential therapeutics targeting COVID-19 main protease
    J Biomol Struct Dyn1-12. PubMed  Europe PubMed DOI
  550. He,J., Hu,L., Huang,X., Wang,C., Zhang,Z., Wang,Y., Zhang,D. and Ye,W.
    Potential of coronavirus 3C-like protease inhibitors for the development of new anti-SARS-CoV-2 drugs: Insights from structures of protease and inhibitors
    Int J Antimicrob Agents106055-106055. PubMed  Europe PubMed DOI
  551. Hoffman,R.L., Kania,R.S., Brothers,M.A., Davies,J.F., Ferre,R.A., Gajiwala,K.S., He,M., Hogan,R.J., Kozminski,K., Li,L.Y., Lockner,J.W., Lou,J., Marra,M.T., Mitchell,L.J., Jr., Murray,B.W., Nieman,J.A., Noell,S., Planken,S.P., Rowe,T., Ryan,K., Smith,G.J., III, Solowiej,J.E., Steppan,C.M. and Taggart,B.
    Discovery of Ketone-Based Covalent Inhibitors of Coronavirus 3CL Proteases for the Potential Therapeutic Treatment of COVID-19
    J Med Chem PubMed  Europe PubMed DOI  I
  552. Hosseini,F.S. and Amanlou,M.
    Anti-HCV and anti-malaria agent, potential candidates to repurpose for coronavirus infection: Virtual screening, molecular docking, and molecular dynamics simulation study
    Life Sci258, 118205-118205. PubMed  Europe PubMed DOI  I
  553. Hu,Y., Ma,C., Szeto,T., Hurst,B., Tarbet,B. and Wang,J.
    Boceprevir, calpain inhibitors II and XII, and GC-376 have broad-spectrum antiviral activity against coronaviruses in cell culture
    bioRxiv PubMed  Europe PubMed DOI  I
  554. Hung,H.C., Ke,Y.Y., Huang,S.Y., Huang,P.N., Kung,Y.A., Chang,T.Y., Yen,K.J., Peng,T.T., Chang,S.E., Huang,C.T., Tsai,Y.R., Wu,S.H., Lee,S.J., Lin,J.H., Liu,B.S., Sung,W.C., Shih,S.R., Chen,C.T. and Hsu,J.T.
    Discovery of M Protease inhibitors encoded by SARS-CoV-2
    Antimicrob Agents Chemother PubMed  Europe PubMed DOI  I
  555. Hussien,M.A. and Abdelaziz,A.E.M.
    Molecular docking suggests repurposing of brincidofovir as a potential drug targeting SARS-CoV-2 ACE2 receptor and main protease
    Netw Model Anal Health Inform Bioinform9, 56-56. PubMed  Europe PubMed DOI
  556. Huynh,T., Wang,H. and Luan,B.
    Structure-based lead optimization of herbal medicine rutin for inhibiting SARS-CoV-2's main protease
    Phys Chem Chem Phys22, 25335-25343. PubMed  Europe PubMed DOI
  557. Ibrahim,M.A.A., Abdeljawaad,K.A.A., Abdelrahman,A.H.M. and Hegazy,M.F.
    Natural-like products as potential SARS-CoV-2 M(pro) inhibitors: in-silico drug discovery
    J Biomol Struct Dyn1-13. PubMed  Europe PubMed DOI
  558. Ibrahim,M.A.A., Abdelrahman,A.H.M. and Hegazy,M.F.
    In-silico drug repurposing and molecular dynamics puzzled out potential SARS-CoV-2 main protease inhibitors
    J Biomol Struct Dyn1-12. PubMed  Europe PubMed DOI
  559. Ibrahim,M.A.A., Abdelrahman,A.H.M., Hussien,T.A., Badr,E.A.A., Mohamed,T.A., El-Seedi,H.R., Pare,P.W., Efferth,T. and Hegazy,M.F.
    In silico drug discovery of major metabolites from spices as SARS-CoV-2 main protease inhibitors
    Comput Biol Med126, 104046-104046. PubMed  Europe PubMed DOI  I
  560. Iftikhar,H., Ali,H.N., Farooq,S., Naveed,H. and Shahzad-Ul-Hussan,S.
    Identification of potential inhibitors of three key enzymes of SARS-CoV2 using computational approach
    Comput Biol Med122, 103848-103848. PubMed  Europe PubMed DOI
  561. Indu,P., Rameshkumar,M.R., Arunagirinathan,N., Al-Dhabi,N.A., Valan Arasu,M. and Ignacimuthu,S.
    Raltegravir, Indinavir, Tipranavir, Dolutegravir, and Etravirine against main protease and RNA-dependent RNA polymerase of SARS-CoV-2: A molecular docking and drug repurposing approach
    J Infect Public Health PubMed  Europe PubMed DOI  I
  562. Ionescu,M.I.
    An Overview of the Crystallized Structures of the SARS-CoV-2
    Protein J PubMed  Europe PubMed DOI
  563. Islam,R., Parves,R., Paul,A.S., Uddin,N., Rahman,M.S., Mamun,A.A., Hossain,M.N., Ali,M.A. and Halim,M.A.
    A molecular modeling approach to identify effective antiviral phytochemicals against the main protease of SARS-CoV-2
    J Biomol Struct Dyn1-20. PubMed  Europe PubMed DOI  I
  564. Ivanov,J., Polshakov,D., Kato-Weinstein,J., Zhou,Q., Li,Y., Granet,R., Garner,L., Deng,Y., Liu,C., Albaiu,D., Wilson,J. and Aultman,C.
    Quantitative Structure-Activity Relationship Machine Learning Models and their Applications for Identifying Viral 3CLpro- and RdRp-Targeting Compounds as Potential Therapeutics for COVID-19 and Related Viral Infections
    ACS Omega5, 27344-27358. PubMed  Europe PubMed DOI
  565. J,A., Francis,D., C S,S., K G,A., C,S. and Variyar,E.J.
    Repurposing simeprevir, calpain inhibitor IV and a cathepsin F inhibitor against SARS-CoV-2 and insights into their interactions with M(pro)
    J Biomol Struct Dyn1-12. PubMed  Europe PubMed DOI  I
  566. Jain,R. and Mujwar,S.
    Repurposing metocurine as main protease inhibitor to develop novel antiviral therapy for COVID-19
    Struct Chem1-13. PubMed  Europe PubMed DOI
  567. Jairajpuri,M.A. and Ansari,S.
    Using serpins cysteine protease cross-specificity to possibly trap SARS-CoV-2 Mpro with reactive center loop chimera
    Clin Sci (Lond)134, 2235-2241. PubMed  Europe PubMed DOI
  568. Jang,M., Park,Y.I., Cha,Y.E., Park,R., Namkoong,S., Lee,J.I. and Park,J.
    Tea Polyphenols EGCG and Theaflavin Inhibit the Activity of SARS-CoV-2 3CL-Protease In Vitro
    Evid Based Complement Alternat Med2020, 5630838-5630838. PubMed  Europe PubMed DOI
  569. Jenepha Mary,S.J., Pradhan,S. and James,C.
    Molecular structure, NBO analysis of the hydrogen-bonded interactions, spectroscopic (FT-IR, FT-Raman), drug likeness and molecular docking of the novel anti COVID-2 molecule (2E)-N-methyl-2-[(4-oxo-4H-chromen-3-yl)methylidene]-hydrazinecarbothioamide (Dimer) - quantum chemical approach
    Spectrochim Acta A Mol Biomol Spectrosc251, 119388-119388. PubMed  Europe PubMed DOI  I
  570. Jimenez-Alberto,A., Ribas-Aparicio,R.M., Aparicio-Ozores,G. and Castelan-Vega,J.A.
    Virtual screening of approved drugs as potential SARS-CoV-2 main protease inhibitors
    Comput Biol Chem88, 107325-107325. PubMed  Europe PubMed DOI
  571. Jin,Z., Du,X., Xu,Y., Deng,Y., Liu,M., Zhao,Y., Zhang,B., Li,X., Zhang,L., Peng,C., Duan,Y., Yu,J., Wang,L., Yang,K., Liu,F., Jiang,R., Yang,X., You,T., Liu,X., Yang,X., Bai,F., Liu,H., Liu,X., Guddat,L.W., Xu,W., Xiao,G., Qin,C., Shi,Z., Jiang,H., Rao,Z. and Yang,H.
    Structure of M(pro) from COVID-19 virus and discovery of its inhibitors
    Nature PubMed  Europe PubMed DOI  S  I
  572. Jin,Z., Zhao,Y., Sun,Y., Zhang,B., Wang,H., Wu,Y., Zhu,Y., Zhu,C., Hu,T., Du,X., Duan,Y., Yu,J., Yang,X., Yang,X., Yang,K., Liu,X., Guddat,L.W., Xiao,G., Zhang,L., Yang,H. and Rao,Z.
    Structural basis for the inhibition of SARS-CoV-2 main protease by antineoplastic drug carmofur
    Nat Struct Mol Biol PubMed  Europe PubMed DOI  S  I
  573. Jin,Z., Wang,H., Duan,Y. and Yang,H.
    The main protease and RNA-dependent RNA polymerase are two prime targets for SARS-CoV-2
    Biochem Biophys Res Commun PubMed  Europe PubMed DOI  V
  574. Jo,S., Kim,S., Kim,D.Y., Kim,M.S. and Shin,D.H.
    Flavonoids with inhibitory activity against SARS-CoV-2 3CLpro
    J Enzyme Inhib Med Chem35, 1539-1544. PubMed  Europe PubMed DOI
  575. Joshi,R.S., Jagdale,S.S., Bansode,S.B., Shankar,S.S., Tellis,M.B., Pandya,V.K., Chugh,A., Giri,A.P. and Kulkarni,M.J.
    Discovery of potential multi-target-directed ligands by targeting host-specific SARS-CoV-2 structurally conserved main protease
    J Biomol Struct Dyn1-16. PubMed  Europe PubMed DOI  I
  576. Joshi,T., Sharma,P., Joshi,T., Pundir,H., Mathpal,S. and Chandra,S.
    Structure-based screening of novel lichen compounds against SARS Coronavirus main protease (Mpro) as potentials inhibitors of COVID-19
    Mol Divers PubMed  Europe PubMed DOI
  577. Jukic,M., Janezic,D. and Bren,U.
    Ensemble Docking Coupled to Linear Interaction Energy Calculations for Identification of Coronavirus Main Protease (3CL(pro)) Non-Covalent Small-Molecule Inhibitors
    Molecules25, PubMed  Europe PubMed DOI
  578. Kallingal,A., Thachan Kundil,V., Ayyolath,A., Karlapudi,A.P., Muringayil Joseph,T. and E,J.V.
    Molecular modeling study of tectoquinone and acteoside from Tectona grandis linn: a new SARS-CoV-2 main protease inhibitor against COVID-19
    J Biomol Struct Dyn1-12. PubMed  Europe PubMed DOI
  579. Kanhed,A.M., Patel,D.V., Teli,D.M., Patel,N.R., Chhabria,M.T. and Yadav,M.R.
    Identification of potential Mpro inhibitors for the treatment of COVID-19 by using systematic virtual screening approach
    Mol Divers PubMed  Europe PubMed DOI
  580. Kar,P., Kumar,V., Vellingiri,B., Sen,A., Jaishee,N., Anandraj,A., Malhotra,H., Bhattacharyya,S., Mukhopadhyay,S., Kinoshita,M., Govindasamy,V., Roy,A., Naidoo,D. and Subramaniam,M.D.
    Anisotine and amarogentin as promising inhibitory candidates against SARS-CoV-2 proteins: a computational investigation
    J Biomol Struct Dyn1-11. PubMed  Europe PubMed DOI
  581. Karampela,I. and Dalamaga,M.
    Could Respiratory Fluoroquinolones, Levofloxacin and Moxifloxacin, Prove to be Beneficial as an Adjunct Treatment in COVID-19?
    Arch Med Res PubMed  Europe PubMed DOI
  582. Keretsu,S., Bhujbal,S.P. and Cho,S.J.
    Rational approach toward COVID-19 main protease inhibitors via molecular docking, molecular dynamics simulation and free energy calculation
    Sci Rep10, 17716-17716. PubMed  Europe PubMed DOI  I
  583. Khalifa,I., Nawaz,A., Sobhy,R., Althwab,S.A. and Barakat,H.
    Polyacylated anthocyanins constructively network with catalytic dyad residues of 3CL(pro) of 2019-nCoV than monomeric anthocyanins: A structural-relationship activity study with 10 anthocyanins using in-silico approaches
    J Mol Graph Model100, 107690-107690. PubMed  Europe PubMed DOI
  584. Khalifa,I., Zhu,W., Mohammed,H.H.H., Dutta,K. and Li,C.
    Tannins inhibit SARS-CoV-2 through binding with catalytic dyad residues of 3CL(pro) : An in silico approach with 19 structural different hydrolysable tannins
    J Food Biocheme13432-e13432. PubMed  Europe PubMed DOI
  585. Khan,M.A., Mahmud,S., Alam,A.S.M.R., Rahman,M.E., Ahmed,F. and Rahmatullah,M.
    Comparative molecular investigation of the potential inhibitors against SARS-CoV-2 main protease: a molecular docking study
    J Biomol Struct Dyn1-7. PubMed  Europe PubMed DOI  I
  586. Khan,M.I., Khan,Z.A., Baig,M.H., Ahmad,I., Farouk,A.E., Song,Y.G. and Dong,J.J.
    Comparative genome analysis of novel coronavirus (SARS-CoV-2) from different geographical locations and the effect of mutations on major target proteins: An in silico insight
    PLoS ONE15, e0238344-e0238344. PubMed  Europe PubMed DOI
  587. Khan,P.M., Kumar,V. and Roy,K.
    In silico modeling of small molecule carboxamides as inhibitors of SARS-CoV 3CL protease: An approach towards combating COVID-19
    Comb Chem High Throughput Screen PubMed  Europe PubMed DOI
  588. Khan,S., Fakhar,Z., Hussain,A., Ahmad,A., Jairajpuri,D.S., Alajmi,M.F. and Hassan,M.I.
    Structure-based identification of potential SARS-CoV-2 main protease inhibitors
    J Biomol Struct Dyn1-14. PubMed  Europe PubMed DOI
  589. Khan,S.A., Zia,K., Ashraf,S., Uddin,R. and Ul-Haq,Z.
    Identification of chymotrypsin-like protease inhibitors of SARS-CoV-2 via integrated computational approach
    J Biomol Struct Dyn1-13. PubMed  Europe PubMed DOI  I
  590. Khanal,P., Patil,B.M., Chand,J. and Naaz,Y.
    Anthraquinone Derivatives as an Immune Booster and their Therapeutic Option Against COVID-19
    Nat Prod Bioprospect PubMed  Europe PubMed DOI
  591. Khandelwal,R., Nayarisseri,A., Madhavi,M., Selvaraj,C., Panwar,U., Sharma,K., Hussain,T. and Singh,S.K.
    Shape-based Machine Learning Models for the potential Novel COVID-19 protease inhibitors assisted by Molecular Dynamics Simulation
    Curr Top Med Chem PubMed  Europe PubMed DOI
  592. Khubber,S., Hashemifesharaki,R., Mohammadi,M. and Gharibzahedi,S.M.T.
    Garlic (Allium sativum L.): a potential unique therapeutic food rich in organosulfur and flavonoid compounds to fight with COVID-19
    Nutr J19, 124-124. PubMed  Europe PubMed DOI  I
  593. Klein,T., Nar,H., Schnapp,G., Hucke,O. and Hardman,T.C.
    Action of dipeptidyl peptidase-4 inhibitors on SARS-CoV-2 main protease
    ChemMedChem PubMed  Europe PubMed DOI  I
  594. Kneller,D.W., Galanie,S., Phillips,G., O'Neill,H.M., Coates,L. and Kovalevsky,A.
    Malleability of the SARS-CoV-2 3CL M(pro) Active-Site Cavity Facilitates Binding of Clinical Antivirals
    Structure PubMed  Europe PubMed DOI  I
  595. Kneller,D.W., Phillips,G., O'Neill,H.M., Tan,K., Joachimiak,A., Coates,L. and Kovalevsky,A.
    Room-temperature X-ray crystallography reveals the oxidation and reactivity of cysteine residues in SARS-CoV-2 3CL M(pro): insights into enzyme mechanism and drug design
    IUCrJ7, PubMed  Europe PubMed DOI
  596. Kneller,D.W., Phillips,G., Weiss,K.L., Pant,S., Zhang,Q., O'Neill,H.M., Coates,L. and Kovalevsky,A.
    Unusual zwitterionic catalytic site of SARS-CoV-2 main protease revealed by neutron crystallography
    J Biol Chem PubMed  Europe PubMed DOI
  597. Kodchakorn,K., Poovorawan,Y., Suwannakarn,K. and Kongtawelert,P.
    Molecular modelling investigation for drugs and nutraceuticals against protease of SARS-CoV-2
    J Mol Graph Model101, 107717-107717. PubMed  Europe PubMed DOI
  598. Konwar,M. and Sarma,D.
    Advances in Developing Small Molecule SARS 3CL(pro) Inhibitors as Potential Remedy for Corona Virus Infection
    Tetrahedron131761-131761. PubMed  Europe PubMed DOI  V
  599. Koudelka,T., Boger,J., Henkel,A., Schonherr,R., Krantz,S., Fuchs,S., Rodriguez,E., Redecke,L. and Tholey,A.
    N-Terminomics for the Identification of in vitro Substrates and Cleavage Site Specificity of the SARS-CoV-2 Main Protease
    Proteomicse2000246-e2000246. PubMed  Europe PubMed DOI
  600. Koulgi,S., Jani,V., Uppuladinne,M., Sonavane,U., Nath,A.K., Darbari,H. and Joshi,R.
    Drug repurposing studies targeting SARS-CoV-2: an ensemble docking approach on drug target 3C-like protease (3CL(pro))
    J Biomol Struct Dyn1-21. PubMed  Europe PubMed DOI
  601. Kouznetsova,V.L., Huang,D.Z. and Tsigelny,I.F.
    Potential SARS-CoV-2 protease Mpro inhibitors: Repurposing FDA-approved drugs
    Phys Biol PubMed  Europe PubMed DOI  I
  602. Krishnamurthy,P.T.
    Coronavirus Disease 2019: Virology and Drug Targets
    Infect Disord Drug Targets PubMed  Europe PubMed DOI  V
  603. Kumar,A., Kumar,D., Kumar,R., Singh,P., Chandra,R. and Kumari,K.
    DFT and docking studies of designed conjugates of noscapines & repurposing drugs: promising inhibitors of main protease of SARS-CoV-2 and falcipan-2
    J Biomol Struct Dyn1-21. PubMed  Europe PubMed DOI
  604. Kumar,P., Bhardwaj,T., Kumar,A., Gehi,B.R., Kapuganti,S.K., Garg,N., Nath,G. and Giri,R.
    Reprofiling of approved drugs against SARS-CoV-2 main protease: an in-silico study
    J Biomol Struct Dyn1-15. PubMed  Europe PubMed DOI  I
  605. Kumar,R., Kumar,V. and Lee,K.W.
    A computational drug repurposing approach in identifying the cephalosporin antibiotic and anti-hepatitis C drug derivatives for COVID-19 treatment
    Comput Biol Med130, 104186-104186. PubMed  Europe PubMed DOI  I
  606. Kumar,S., Sharma,P.P., Shankar,U., Kumar,D., Joshi,S.K., Pena,L., Durvasula,R., Kumar,A., Kempaiah,P., Poonam and Rathi,B.
    Discovery of New Hydroxyethylamine Analogs against 3CL(pro) Protein Target of SARS-CoV-2: Molecular Docking, Molecular Dynamics Simulation, and Structure-Activity Relationship Studies
    J Chem Inf Model PubMed  Europe PubMed DOI  I
  607. Kumar,V. and Roy,K.
    Development of a simple, interpretable and easily transferable QSAR model for quick screening antiviral databases in search of novel 3C-like protease (3CLpro) enzyme inhibitors against SARS-CoV diseases
    SAR QSAR Environ Res31, 511-526. PubMed  Europe PubMed DOI
  608. Kumar,V., Dhanjal,J.K., Kaul,S.C., Wadhwa,R. and Sundar,D.
    Withanone and caffeic acid phenethyl ester are predicted to interact with main protease (M(pro)) of SARS-CoV-2 and inhibit its activity
    J Biomol Struct Dyn1-17. PubMed  Europe PubMed DOI  I
  609. Kumari,A., Rajput,V.S., Nagpal,P., Kukrety,H., Grover,S. and Grover,A.
    Dual inhibition of SARS-CoV-2 spike and main protease through a repurposed drug, rutin
    J Biomol Struct Dyn1-13. PubMed  Europe PubMed DOI  I
  610. Ladoux,A., Azoulay,S. and Dani,C.
    [SARS-CoV-2 protease: an excellent target to develop drugs against COVID-19]
    Med Sci (Paris)36, 555-558. PubMed  Europe PubMed DOI
  611. Lee,J., Worrall,L.J., Vuckovic,M., Rosell,F.I., Gentile,F., Ton,A.T., Caveney,N.A., Ban,F., Cherkasov,A., Paetzel,M. and Strynadka,N.C.J.
    Crystallographic structure of wild-type SARS-CoV-2 main protease acyl-enzyme intermediate with physiological C-terminal autoprocessing site
    Nat Commun11, 5877-5877. PubMed  Europe PubMed DOI
  612. Li,J., Zhou,X., Zhang,Y., Zhong,F., Lin,C., McCormick,P.J., Jiang,F., Luo,J., Zhou,H., Wang,Q., Fu,Y., Duan,J. and Zhang,J.
    Crystal structure of SARS-CoV-2 main protease in complex with the natural product inhibitor shikonin illuminates a unique binding mode
    Sci Bull (Beijing) PubMed  Europe PubMed DOI  I
  613. Li,Q. and Kang,C.
    Progress in Developing Inhibitors of SARS-CoV-2 3C-Like Protease
    Microorganisms8, PubMed  Europe PubMed DOI  V
  614. Li,Z., Li,X., Huang,Y.Y., Wu,Y., Liu,R., Zhou,L., Lin,Y., Wu,D., Zhang,L., Liu,H., Xu,X., Yu,K., Zhang,Y., Cui,J., Zhan,C.G., Wang,X. and Luo,H.B.
    Identify potent SARS-CoV-2 main protease inhibitors via accelerated free energy perturbation-based virtual screening of existing drugs
    Proc Natl Acad Sci U S A PubMed  Europe PubMed DOI
  615. Liang,J., Karagiannis,C., Pitsillou,E., Darmawan,K.K., Ng,K., Hung,A. and Karagiannis,T.C.
    Site mapping and small molecule blind docking reveal a possible target site on the SARS-CoV-2 main protease dimer interface
    Comput Biol Chem89, 107372-107372. PubMed  Europe PubMed DOI  I
  616. Liu,S., Zheng,Q. and Wang,Z.
    Potential covalent drugs targeting the main protease of the SARS-CoV-2 coronavirus
    Bioinformatics36, 3295-3298. PubMed  Europe PubMed DOI  I
  617. Llanes,A., Cruz,H., Nguyen,V.D., Larionov,O.V. and Fernandez,P.L.
    A Computational Approach to Explore the Interaction of Semisynthetic Nitrogenous Heterocyclic Compounds with the SARS-CoV-2 Main Protease
    Biomolecules11, PubMed  Europe PubMed DOI
  618. Lobo-Galo,N., Terrazas-Lopez,M., Martinez-Martinez,A. and Diaz-Sanchez,A.G.
    FDA-approved thiol-reacting drugs that potentially bind into the SARS-CoV-2 main protease, essential for viral replication
    J Biomol Struct Dyn1-9. PubMed  Europe PubMed DOI  I
  619. Ma,C., Sacco,M.D., Hurst,B., Townsend,J.A., Hu,Y., Szeto,T., Zhang,X., Tarbet,B., Marty,M.T., Chen,Y. and Wang,J.
    Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease
    Cell Res PubMed  Europe PubMed DOI  I
  620. Ma,C., Hu,Y., Townsend,J.A., Lagarias,P.I., Marty,M.T., Kolocouris,A. and Wang,J.
    Ebselen, disulfiram, carmofur, PX-12, tideglusib, and shikonin are non-specific promiscuous SARS-CoV-2 main protease inhibitors
    bioRxiv PubMed  Europe PubMed DOI  I
  621. Macchiagodena,M., Pagliai,M. and Procacci,P.
    Identification of potential binders of the main protease 3CL(pro) of the COVID-19 via structure-based ligand design and molecular modeling
    Chem Phys Lett137489-137489. PubMed  Europe PubMed DOI  I
  622. Mahdi,M., Motyan,J.A., Szojka,Z.I., Golda,M., Miczi,M. and Tozser,J.
    Analysis of the efficacy of HIV protease inhibitors against SARS-CoV-2's main protease
    Virol J17, 190-190. PubMed  Europe PubMed DOI  I
  623. Mahdian,S., Ebrahim-Habibi,A. and Zarrabi,M.
    Drug repurposing using computational methods to identify therapeutic options for COVID-19
    J Diabetes Metab Disord1-9. PubMed  Europe PubMed DOI  I
  624. Mahmud,S., Uddin,M.A.R., Zaman,M., Sujon,K.M., Rahman,M.E., Shehab,M.N., Islam,A., Alom,M.W., Amin,A., Akash,A.S. and Saleh,M.A.
    Molecular docking and dynamics study of natural compound for potential inhibition of main protease of SARS-CoV-2
    J Biomol Struct Dyn1-9. PubMed  Europe PubMed DOI  I
  625. Maiti,S., Banerjee,A., Nazmeen,A., Kanwar,M. and Das,S.
    Active-site Molecular docking of Nigellidine with nucleocapsid- NSP2-MPro of COVID-19 and to human IL1R-IL6R and strong antioxidant role of Nigella-sativa in experimental rats
    J Drug Target1-23. PubMed  Europe PubMed DOI
  626. Majumder,R. and Mandal,M.
    Screening of plant-based natural compounds as a potential COVID-19 main protease inhibitor: an in silico docking and molecular dynamics simulation approach
    J Biomol Struct Dyn1-16. PubMed  Europe PubMed DOI  I
  627. Mandour,Y.M., Zlotos,D.P. and Alaraby Salem,M.
    A multi-stage virtual screening of FDA-approved drugs reveals potential inhibitors of SARS-CoV-2 main protease
    J Biomol Struct Dyn1-12. PubMed  Europe PubMed DOI
  628. Marciniec,K., Beberok,A., Pecak,P., Boryczka,S. and Wrzesniok,D.
    Ciprofloxacin and moxifloxacin could interact with SARS-CoV-2 protease: preliminary in silico analysis
    Pharmacol Rep PubMed  Europe PubMed DOI  I
  629. Marinho,E.M., Batista de Andrade Neto,J., Silva,J., Rocha da Silva,C., Cavalcanti,B.C., Marinho,E.S. and Nobre Junior,H.V.
    Virtual screening based on molecular docking of possible inhibitors of Covid-19 main protease
    Microb Pathog104365-104365. PubMed  Europe PubMed DOI
  630. Martinez-Fleta,P., Alfranca,A., Gonzalez-Alvaro,I., Casasnovas,J.M., Fernandez-Soto,D., Esteso,G., Caceres-Martell,Y., Gardeta,S., Lopez-Sanz,C., Prat,S., Mateu-Albero,T., Gabrie,L., Lopez-Granados,E., Sanchez-Madrid,F., Reyburn,H.T., Rodriguez Frade,J.M. and Vales-Gomez,M.
    SARS-CoV-2 Cysteine-like Protease Antibodies Can Be Detected in Serum and Saliva of COVID-19-Seropositive Individuals
    J Immunol PubMed  Europe PubMed DOI
  631. Martorana,A., Gentile,C. and Lauria,A.
    In Silico Insights into the SARS CoV-2 Main Protease Suggest NADH Endogenous Defences in the Control of the Pandemic Coronavirus Infection
    Viruses12, PubMed  Europe PubMed DOI
  632. Mathpal,S., Joshi,T., Sharma,P., Joshi,T., Pundir,H., Pande,V. and Chandra,S.
    A dynamic simulation study of FDA drug from zinc database against COVID-19 main protease receptor
    J Biomol Struct Dyn1-17. PubMed  Europe PubMed DOI
  633. Matin,M.M., Uzzaman,M., Chowdhury,S.A. and Bhuiyan,M.M.H.
    In vitro antimicrobial, physicochemical, pharmacokinetics and molecular docking studies of benzoyl uridine esters against SARS-CoV-2 main protease
    J Biomol Struct Dyn1-13. PubMed  Europe PubMed DOI
  634. Maurya,A.K. and Mishra,N.
    In silico validation of coumarin derivatives as potential inhibitors against Main Protease, NSP10/NSP16-Methyltransferase, Phosphatase and Endoribonuclease of SARS CoV-2
    J Biomol Struct Dyn1-16. PubMed  Europe PubMed DOI
  635. Mazzini,S., Musso,L., Dallavalle,S. and Artali,R.
    Putative SARS-CoV-2 M(pro) Inhibitors from an In-House Library of Natural and Nature-Inspired Products: A Virtual Screening and Molecular Docking Study
    Molecules25, PubMed  Europe PubMed DOI
  636. Mellott,D., Tseng,C.T., Drelich,A., Fajtova,P., Chenna,B.C., Kostomiris,D., Hsu,J.C., Zhu,J., Taylor,Z., Tat,V., Katzfuss,A., Li,L., Giardini,M.A., Skinner,D., Hirata,K., Beck,S., Carlin,A.F., Clark,A.E., Berreta,L., Maneval,D., Frueh,F., Hurst,B.L., Wang,H., Kocurek,K.I., Raushel,F.M., O'Donoghue,A., Siqueira-Neto,J.L., Meek,T.D. and McKerrow,J.H.
    A cysteine protease inhibitor blocks SARS-CoV-2 infection of human and monkey cells
    bioRxiv PubMed  Europe PubMed DOI  I
  637. Menendez,C.A., Bylehn,F., Perez-Lemus,G.R., Alvarado,W. and de Pablo,J.J.
    Molecular characterization of ebselen binding activity to SARS-CoV-2 main protease
    Sci Adv6, PubMed  Europe PubMed DOI  I
  638. Mengist,H.M., Fan,X. and Jin,T.
    Designing of improved drugs for COVID-19: crystal structure of SARS-CoV-2 main protease M(pro)
    Signal Transduct Target Ther5, 67-67. PubMed  Europe PubMed DOI  S  I
  639. Mengist,H.M., Mekonnen,D., Mohammed,A., Shi,R. and Jin,T.
    Potency, Safety, and Pharmacokinetic Profiles of Potential Inhibitors Targeting SARS-CoV-2 Main Protease
    Front Pharmacol11, 630500-630500. PubMed  Europe PubMed DOI  V
  640. Meyer-Almes,F.J.
    Repurposing approved drugs as potential inhibitors of 3CL-protease of SARS-CoV-2: Virtual screening and structure based drug design
    Comput Biol Chem88, 107351-107351. PubMed  Europe PubMed DOI
  641. Miczi,M., Golda,M., Kunkli,B., Nagy,T., Tozser,J. and Motyan,J.A.
    Identification of Host Cellular Protein Substrates of SARS-COV-2 Main Protease
    Int J Mol Sci21, PubMed  Europe PubMed DOI
  642. Mishra,C.B., Pandey,P., Sharma,R.D., Malik,M.Z., Mongre,R.K., Lynn,A.M., Prasad,R., Jeon,R. and Prakash,A.
    Identifying the natural polyphenol catechin as a multi-targeted agent against SARS-CoV-2 for the plausible therapy of COVID-19: an integrated computational approach
    Brief Bioinform PubMed  Europe PubMed DOI
  643. Mishra,S.S., Ranjan,S., Sharma,C.S., Singh,H.P., Kalra,S. and Kumar,N.
    Computational investigation of potential inhibitors of novel coronavirus 2019 through structure-based virtual screening, molecular dynamics and density functional theory studies
    J Biomol Struct Dyn1-13. PubMed  Europe PubMed DOI
  644. Mittal,L., Kumari,A., Srivastava,M., Singh,M. and Asthana,S.
    Identification of potential molecules against COVID-19 main protease through structure-guided virtual screening approach
    J Biomol Struct Dyn1-19. PubMed  Europe PubMed DOI  I
  645. Moghadasi,S.A., Becker,J.T., Belica,C., Wick,C., Brown,W.L. and Harris,R.S.
    Gain-of-function assay for SARS-CoV-2 M (pro) inhibition in living cells
    bioRxiv PubMed  Europe PubMed DOI
  646. Mohamed,K., Yazdanpanah,N., Saghazadeh,A. and Rezaei,N.
    Computational drug discovery and repurposing for the treatment of COVID-19: A systematic review
    Bioorg Chem104490-104490. PubMed  Europe PubMed DOI  V  I
  647. Mohammad,T., Shamsi,A., Anwar,S., Hussain,A., Rehman,M.T., Alajmi,M.F., Islam,A. and Hassan,M.I.
    Identification of high-affinity inhibitors of SARS-CoV-2 main protease: Towards the development of effective COVID-19 therapy
    Virus Res198102-198102. PubMed  Europe PubMed DOI
  648. Mondal,D. and Warshel,A.
    Exploring the Mechanism of Covalent Inhibition: Simulating the Binding Free Energy of alpha-Ketoamide Inhibitors of the Main Protease of SARS-CoV-2
    Biochemistry59, 4601-4608. PubMed  Europe PubMed DOI
  649. Mondal,M., Sarkar,C., Jamaddar,S., Khalipha,A.B.R., Islam,M.T., Mahafzah,A. and Mubarak,M.S.
    Evaluation of the Binding Affinity of Anti-Viral Drugs against Main Protease of SARS-CoV-2 through a Molecular Docking Study
    Infect Disord Drug Targets PubMed  Europe PubMed DOI  I
  650. Mostafa,A., Kandeil,A., Elshaier,M.M., Kutkat,O., Moatasim,Y., Rashad,A.A., Shehata,M., Gomaa,M.R., Mahrous,N., Mahmoud,S.H., GabAllah,M., Abbas,H., Taweel,A.E., Kayed,A.E., Kamel,M.N., Sayes,M.E., Mahmoud,D.B., El-Shesheny,R., Kayali,G. and Ali,M.A.
    FDA-Approved Drugs with Potent In Vitro Antiviral Activity against Severe Acute Respiratory Syndrome Coronavirus 2
    Pharmaceuticals (Basel)13, PubMed  Europe PubMed DOI
  651. Mouffouk,C., Mouffouk,S., Mouffouk,S., Hambaba,L. and Haba,H.
    Flavonols as potential antiviral drugs targeting SARS-CoV-2 proteases (3CL(pro) and PL(pro)), spike protein, RNA-dependent RNA polymerase (RdRp) and angiotensin-converting enzyme II receptor (ACE2)
    Eur J Pharmacol891, 173759-173759. PubMed  Europe PubMed DOI
  652. Moustaqil,M., Ollivier,E., Chiu,H.P., Van Tol,S., Rudolffi-Soto,P., Stevens,C., Bhumkar,A., Hunter,D.J.B., Freiberg,A.N., Jacques,D., Lee,B., Sierecki,E. and Gambin,Y.
    SARS-CoV-2 proteases PLpro and 3CLpro cleave IRF3 and critical modulators of inflammatory pathways (NLRP12 and TAB1): implications for disease presentation across species
    Emerg Microbes Infect1-27. PubMed  Europe PubMed DOI
  653. Mu,C., Sheng,Y., Wang,Q., Amin,A., Li,X. and Xie,Y.
    Potential compound from herbal food of rhizoma polygonati for treatment of COVID-19 analyzed by network pharmacology and molecular docking technology
    J Funct Foods104149-104149. PubMed  Europe PubMed DOI
  654. Mukherjee,S., Dasgupta,S., Adhikary,T., Adhikari,U. and Panja,S.S.
    Structural insight to hydroxychloroquine-3C-like proteinase complexation from SARS-CoV-2: inhibitor modelling study through molecular docking and MD-simulation study
    J Biomol Struct Dyn1-13. PubMed  Europe PubMed DOI
  655. Murugan,N.A., Kumar,S., Jeyakanthan,J. and Srivastava,V.
    Searching for target-specific and multi-targeting organics for Covid-19 in the Drugbank database with a double scoring approach
    Sci Rep10, 19125-19125. PubMed  Europe PubMed DOI  I
  656. Naidoo,D., Roy,A., Kar,P., Mutanda,T. and Anandraj,A.
    Cyanobacterial metabolites as promising drug leads against the M(pro) and PL(pro) of SARS-CoV-2: an in silico analysis
    J Biomol Struct Dyn1-13. PubMed  Europe PubMed DOI
  657. Nandi,S., Kumar,M., Saxena,M. and Saxena,A.K.
    The Antiviral and Antimalarial Drug Repurposing in Quest of Chemotherapeutics to Combat COVID-19 Utilizing Structure-Based Molecular Docking
    Comb Chem High Throughput Screen PubMed  Europe PubMed DOI  I
  658. Narkhede,R.R., Pise,A.V., Cheke,R.S. and Shinde,S.D.
    Recognition of Natural Products as Potential Inhibitors of COVID-19 Main Protease (Mpro): In-Silico Evidences
    Nat Prod Bioprospect PubMed  Europe PubMed DOI
  659. Odhar,H.A.
    Views on Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease by Dai et al. (2020)
    Bioinformation16, 435-437. PubMed  Europe PubMed DOI
  660. Odhar,H.A., Ahjel,S.W., Albeer,A.A.M.A., Hashim,A.F., Rayshan,A.M. and Humadi,S.S.
    Molecular docking and dynamics simulation of FDA approved drugs with the main protease from 2019 novel coronavirus
    Bioinformation16, 236-244. PubMed  Europe PubMed DOI
  661. Ogidigo,J.O., Iwuchukwu,E.A., Ibeji,C.U., Okpalefe,O. and Soliman,M.E.S.
    Natural phyto, compounds as possible noncovalent inhibitors against SARS-CoV2 protease: computational approach
    J Biomol Struct Dyn1-18. PubMed  Europe PubMed DOI
  662. Olubiyi,O.O., Olagunju,M., Keutmann,M., Loschwitz,J. and Strodel,B.
    High Throughput Virtual Screening to Discover Inhibitors of the Main Protease of the Coronavirus SARS-CoV-2
    Molecules25, PubMed  Europe PubMed DOI
  663. Ortega,J.T., Serrano,M.L., Pujol,F.H. and Rangel,H.R.
    Unrevealing sequence and structural features of novel coronavirus using in silico approaches: the main protease as molecular target
    EXCLI J19, 400-409. PubMed  Europe PubMed DOI
  664. Oso,B.J., Adeoye,A.O. and Olaoye,I.F.
    Pharmacoinformatics and hypothetical studies on allicin, curcumin, and gingerol as potential candidates against COVID-19-associated proteases
    J Biomol Struct Dyn1-12. PubMed  Europe PubMed DOI  I
  665. Padhi,S., Masi,M., Chourasia,R., Rajashekar,Y., Rai,A.K. and Evidente,A.
    ADMET profile and virtual screening of plant and microbial natural metabolites as SARS-CoV-2 S1 glycoprotein receptor binding domain and main protease inhibitors
    Eur J Pharmacol173648-173648. PubMed  Europe PubMed DOI
  666. Paul,A.S., Islam,R., Parves,M.R., Mamun,A.A., Shahriar,I., Hossain,M.I., Hossain,M.N., Ali,M.A. and Halim,M.A.
    Cysteine focused covalent inhibitors against the main protease of SARS-CoV-2
    J Biomol Struct Dyn1-20. PubMed  Europe PubMed DOI  I
  667. Paula,F.R., Fernandes,M.S., da Silva,F.S., Freitas,A.C.S.G., de Melo,E.B. and Trossini,G.H.G.
    Insights on 3D Structures of Potential Drug-Targeting Proteins of SARS-CoV-2: Application of Cavity Search and Molecular Docking
    Mol Inform PubMed  Europe PubMed DOI  I
  668. Pavlova,A., Lynch,D.L., Daidone,I., Zanetti-Polzi,L., Smith,M.D., Chipot,C., Kneller,D.W., Kovalevsky,A., Coates,L., Golosov,A.A., Dickson,C.J., Velez-Vega,C., Duca,J.S., Vermaas,J.V., Pang,Y.T., Acharya,A., Parks,J.M., Smith,J.C. and Gumbart,J.C.
    Inhibitor binding influences the protonation states of histidines in SARS-CoV-2 main protease
    bioRxiv PubMed  Europe PubMed DOI  I
  669. Pitsillou,E., Liang,J., Karagiannis,C., Ververis,K., Darmawan,K.K., Ng,K., Hung,A. and Karagiannis,T.C.
    Interaction of small molecules with the SARS-CoV-2 main protease in silico and in vitro validation of potential lead compounds using an enzyme-linked immunosorbent assay
    Comput Biol Chem89, 107408-107408. PubMed  Europe PubMed DOI  I
  670. Poater,A.
    Michael Acceptors Tuned by the Pivotal Aromaticity of Histidine to Block COVID-19 Activity
    J Phys Chem Lett11, 6262-6265. PubMed  Europe PubMed DOI  I
  671. Poochi,S.P., Easwaran,M., Balasubramanian,B., Anbuselvam,M., Meyyazhagan,A., Park,S., Bhotla,H.K., Anbuselvam,J., Arumugam,V.A., Keshavarao,S., Kanniyappan,G.V., Pappusamy,M. and Kaul,T.
    Employing bioactive compounds derived from Ipomoea obscura (L.) to evaluate potential inhibitor for SARS-CoV-2 main protease and ACE2 protein
    Food Front PubMed  Europe PubMed DOI
  672. Pormohammad,A., Monych,N.K. and Turner,R.J.
    Zinc and SARSCoV2: A molecular modeling study of Zn interactions with RNAdependent RNApolymerase and 3Clike proteinase enzymes
    Int J Mol Med PubMed  Europe PubMed DOI
  673. Qiao,Z., Zhang,H., Ji,H.F. and Chen,Q.
    Computational View toward the Inhibition of SARS-CoV-2 Spike Glycoprotein and the 3CL Protease
    Computation (Basel)8, PubMed  Europe PubMed DOI
  674. Qu,H., Zheng,Y., Wang,Y., Li,H., Liu,X., Xiong,X., Zhang,L., Gu,J., Yang,G., Zhu,Z., Zheng,H. and Ouyang,Q.
    The potential effects of clinical antidiabetic agents on SARS-CoV-2
    J Diabetes PubMed  Europe PubMed DOI  I
  675. Rafi,M.O., Bhattacharje,G., Al-Khafaji,K., Taskin-Tok,T., Alfasane,M.A., Das,A.K., Parvez,M.A.K. and Rahman,M.S.
    Combination of QSAR, molecular docking, molecular dynamic simulation and MM-PBSA: analogues of lopinavir and favipiravir as potential drug candidates against COVID-19
    J Biomol Struct Dyn1-20. PubMed  Europe PubMed DOI  I
  676. Ragavan Rameshkumar,M., Indu,P., Arunagirinathan,N., Venkatadri,B., El-Serehy,H.A. and Ahmad,A.
    Computational selection of flavonoid compounds as inhibitors against SARS-CoV-2 main protease, RNA-dependent RNA polymerase and spike proteins: A molecular docking study
    Saudi J Biol Sci PubMed  Europe PubMed DOI  I
  677. Rajagopal,K., Varakumar,P., Aparna,B., Byran,G. and Jupudi,S.
    Identification of some novel oxazine substituted 9-anilinoacridines as SARS-CoV-2 inhibitors for COVID-19 by molecular docking, free energy calculation and molecular dynamics studies
    J Biomol Struct Dyn1-12. PubMed  Europe PubMed DOI  I
  678. Rajagopal,K., Varakumar,P., Baliwada,A. and Byran,G.
    Activity of phytochemical constituents of Curcuma longa (turmeric) and Andrographis paniculata against coronavirus (COVID-19): an in silico approach
    Futur J Pharm Sci6, 104-104. PubMed  Europe PubMed DOI  I
  679. Rakib,A., Paul,A., Chy,M.N.U., Sami,S.A., Baral,S.K., Majumder,M., Tareq,A.M., Amin,M.N., Shahriar,A., Uddin,M.Z., Dutta,M., Tallei,T.E., Emran,T.B. and Simal-Gandara,J.
    Biochemical and Computational Approach of Selected Phytocompounds from Tinospora crispa in the Management of COVID-19
    Molecules25, PubMed  Europe PubMed DOI
  680. Rao,P., Shukla,A., Parmar,P., Rawal,R.M., Patel,B., Saraf,M. and Goswami,D.
    Reckoning a fungal metabolite, Pyranonigrin A as a potential Main protease (M(pro)) inhibitor of novel SARS-CoV-2 virus identified using docking and molecular dynamics simulation
    Biophys Chem264, 106425-106425. PubMed  Europe PubMed DOI  T
  681. Rehman,M.T., Alajmi,M.F. and Hussain,A.
    Natural Compounds as Inhibitors of SARS-CoV-2 Main Protease (3CLpro): A Molecular Docking and Simulation Approach to Combat COVID-19
    Curr Pharm Des PubMed  Europe PubMed DOI  I
  682. Robinson,C.V., El-Baba,T.J., Lutomski,C.A., Kantsadi,A.L., Malla,T.R., John,T., Mikhailov,V., Bolla,J.R., Schofield,C.J., Zitzmann,N. and Vakonakis,I.
    Allosteric inhibition of the SARS-CoV-2 main protease - insights from mass spectrometry-based assays
    Angew Chem Int Ed Engl PubMed  Europe PubMed DOI
  683. Sabbah,D.A., Hajjo,R., Bardaweel,S.K. and Zhong,H.A.
    An Updated Review on SARS-CoV-2 Main Proteinase (MPro): Protein Structure and Small-Molecule Inhibitors
    Curr Top Med Chem PubMed  Europe PubMed DOI  V
  684. Sacco,M.D., Ma,C., Lagarias,P., Gao,A., Townsend,J.A., Meng,X., Dube,P., Zhang,X., Hu,Y., Kitamura,N., Hurst,B., Tarbet,B., Marty,M.T., Kolocouris,A., Xiang,Y., Chen,Y. and Wang,J.
    Structure and inhibition of the SARS-CoV-2 main protease reveals strategy for developing dual inhibitors against M(pro) and cathepsin L
    Sci Adv PubMed  Europe PubMed DOI  I
  685. Sacco,M.D., Ma,C., Lagarias,P., Gao,A., Townsend,J.A., Meng,X., Dube,P., Zhang,X., Hu,Y., Kitamura,N., Hurst,B., Tarbet,B., Marty,M.T., Kolocouris,A., Xiang,Y., Chen,Y. and Wang,J.
    Structure and inhibition of the SARS-CoV-2 main protease reveals strategy for developing dual inhibitors against M(pro) and cathepsin L
    bioRxiv PubMed  Europe PubMed DOI  I
  686. Sachdeva,C., Wadhwa,A., Kumari,A., Hussain,F., Jha,P. and Kaushik,N.K.
    In silico Potential of Approved Antimalarial Drugs for Repurposing Against COVID-19
    OMICS PubMed  Europe PubMed DOI  I
  687. Sahu,S.N., Mishra,B., Sahu,R. and Pattanayak,S.K.
    Molecular dynamics simulation perception study of the binding affinity performance for main protease of SARS-CoV-2
    J Biomol Struct Dyn1-16. PubMed  Europe PubMed DOI
  688. Sargolzaei,M.
    Effect of nelfinavir stereoisomers on coronavirus main protease: Molecular docking, molecular dynamics simulation and MM/GBSA study
    J Mol Graph Model103, 107803-107803. PubMed  Europe PubMed DOI  I
  689. Sarkar,I. and Sen,A.
    In silico screening predicts common cold drug Dextromethorphan along with Prednisolone and Dexamethasone can be effective against novel Coronavirus disease (COVID-19)
    J Biomol Struct Dyn1-5. PubMed  Europe PubMed DOI
  690. Sayed,A.M., Alhadrami,H.A., El-Gendy,A.O., Shamikh,Y.I., Belbahri,L., Hassan,H.M., Abdelmohsen,U.R. and Rateb,M.E.
    Microbial Natural Products as Potential Inhibitors of SARS-CoV-2 Main Protease (M(pro))
    Microorganisms8, PubMed  Europe PubMed DOI
  691. Sencanski,M., Perovic,V., Pajovic,S.B., Adzic,M., Paessler,S. and Glisic,S.
    Drug Repurposing for Candidate SARS-CoV-2 Main Protease Inhibitors by a Novel In Silico Method
    Molecules25, PubMed  Europe PubMed DOI
  692. Sepay,N., Sepay,N., Al Hoque,A., Mondal,R., Halder,U.C. and Muddassir,M.
    In silico fight against novel coronavirus by finding chromone derivatives as inhibitor of coronavirus main proteases enzyme
    Struct Chem1-10. PubMed  Europe PubMed DOI  I
  693. Shahid,M. and Shahzad-Ul-Hussan,S.
    Structural insights of key enzymes into therapeutic intervention against SARS-CoV-2
    J Struct Biol213, 107690-107690. PubMed  Europe PubMed DOI  V
  694. Sharma,A., Goyal,S., Yadav,A.K., Kumar,P. and Gupta,L.
    In-silico screening of plant-derived antivirals against main protease, 3CL(pro) and endoribonuclease, NSP15 proteins of SARS-CoV-2
    J Biomol Struct Dyn1-15. PubMed  Europe PubMed DOI  I
  695. Sharma,A., Vora,J., Patel,D., Sinha,S., Jha,P.C. and Shrivastava,N.
    Identification of natural inhibitors against prime targets of SARS-CoV-2 using molecular docking, molecular dynamics simulation and MM-PBSA approaches
    J Biomol Struct Dyn1-16. PubMed  Europe PubMed DOI  I
  696. Sharma,M., Prasher,P., Mehta,M., Zacconi,F.C., Singh,Y., Kapoor,D.N., Dureja,H., Pardhi,D.M., Tambuwala,M.M., Gupta,G., Chellappan,D.K., Dua,K. and Satija,S.
    Probing 3CL protease: Rationally designed chemical moieties for COVID-19
    Drug Dev Res81, 911-918. PubMed  Europe PubMed DOI
  697. Sharma,P., Joshi,T., Mathpal,S., Joshi,T., Pundir,H., Chandra,S. and Tamta,S.
    Identification of natural inhibitors against Mpro of SARS-CoV-2 by molecular docking, molecular dynamics simulation, and MM/PBSA methods
    J Biomol Struct Dyn1-12. PubMed  Europe PubMed DOI
  698. Sharma,P. and Shanavas,A.
    Natural derivatives with dual binding potential against SARS-CoV-2 main protease and human ACE2 possess low oral bioavailability: a brief computational analysis
    J Biomol Struct Dyn1-12. PubMed  Europe PubMed DOI
  699. Sharma,S. and Deep,S.
    In-silico drug repurposing for targeting SARS-CoV-2 main protease (M(pro))
    J Biomol Struct Dyn1-8. PubMed  Europe PubMed DOI  I
  700. Sheik Amamuddy,O., Verkhivker,G.M. and Tastan Bishop,O.
    Impact of Early Pandemic Stage Mutations on Molecular Dynamics of SARS-CoV-2 M(pro)
    J Chem Inf Model60, 5080-5102. PubMed  Europe PubMed DOI
  701. Shitrit,A., Zaidman,D., Kalid,O., Bloch,I., Doron,D., Yarnizky,T., Buch,I., Segev,I., Ben-Zeev,E., Segev,E. and Kobiler,O.
    Conserved interactions required for inhibition of the main protease of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
    Sci Rep10, 20808-20808. PubMed  Europe PubMed DOI
  702. Shree,P., Mishra,P., Selvaraj,C., Singh,S.K., Chaube,R., Garg,N. and Tripathi,Y.B.
    Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants - Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi) - a molecular docking study
    J Biomol Struct Dyn1-14. PubMed  Europe PubMed DOI
  703. Sies,H. and Parnham,M.J.
    Potential therapeutic use of ebselen for COVID-19 and other respiratory viral infections
    Free Radic Biol Med156, 107-112. PubMed  Europe PubMed DOI  I
  704. Silva Arouche,T.D., Reis,A.F., Martins,A.Y., Costa,S., Carvalho Junior,R.N. and Neto,J.C.
    Interactions Between Remdesivir, Ribavirin, Favipiravir, Galidesivir, Hydroxychloroquine and Chloroquine with Fragment Molecular of the COVID-19 Main Protease with Inhibitor N3 Complex (PDB ID:6LU7) Using Molecular Docking
    J Nanosci Nanotechnol20, 7311-7323. PubMed  Europe PubMed DOI
  705. Stoddard,S.V., Stoddard,S.D., Oelkers,B.K., Fitts,K., Whalum,K., Whalum,K., Hemphill,A.D., Manikonda,J., Martinez,L.M., Riley,E.G., Roof,C.M., Sarwar,N., Thomas,D.M., Ulmer,E., Wallace,F.E., Pandey,P. and Roy,S.
    Optimization Rules for SARS-CoV-2 M(pro) Antivirals: Ensemble Docking and Exploration of the Coronavirus Protease Active Site
    Viruses12, PubMed  Europe PubMed DOI
  706. Suarez,D. and Diaz,N.
    SARS-CoV-2 Main Protease: A Molecular Dynamics Study
    J Chem Inf Model60, 5815-5831. PubMed  Europe PubMed DOI
  707. Sudeep,H.V., Gouthamchandra,K. and Shyamprasad,K.
    Molecular docking analysis of Withaferin A from Withania somnifera with the Glucose regulated protein 78 (GRP78) receptor and the SARS-CoV-2 main protease
    Bioinformation16, 411-417. PubMed  Europe PubMed DOI  I
  708. Swiderek,K. and Moliner,V.
    Revealing the molecular mechanisms of proteolysis of SARS-CoV-2 M(pro) by QM/MM computational methods
    Chem Sci11, 10626-10630. PubMed  Europe PubMed DOI
  709. Sztain,T., Amaro,R. and McCammon,J.A.
    Elucidation of cryptic and allosteric pockets within the SARS-CoV-2 protease
    bioRxiv PubMed  Europe PubMed DOI
  710. Tejera,E., Munteanu,C.R., Lopez-Cortes,A., Cabrera-Andrade,A. and Perez-Castillo,Y.
    Drugs Repurposing Using QSAR, Docking and Molecular Dynamics for Possible Inhibitors of the SARS-CoV-2 M(pro) Protease
    Molecules25, PubMed  Europe PubMed DOI
  711. Ton,A.T., Gentile,F., Hsing,M., Ban,F. and Cherkasov,A.
    Rapid identification of potential inhibitors of SARS-CoV-2 main protease by deep docking of 1.3 billion compounds
    Mol Inform39, e2000028-e2000028. PubMed  Europe PubMed DOI
  712. Tripathi,M.K., Singh,P., Sharma,S., Singh,T.P., Ethayathulla,A.S. and Kaur,P.
    Identification of bioactive molecule from Withania somnifera (Ashwagandha) as SARS-CoV-2 main protease inhibitor
    J Biomol Struct Dyn1-14. PubMed  Europe PubMed DOI
  713. Tripathi,P.K., Upadhyay,S., Singh,M., Raghavendhar,S., Bhardwaj,M., Sharma,P. and Patel,A.K.
    Screening and evaluation of approved drugs as inhibitors of main protease of SARS-CoV-2
    Int J Biol Macromol164, 2622-2631. PubMed  Europe PubMed DOI  I
  714. Tsuji,M.
    Potential anti-SARS-CoV-2 drug candidates identified through virtual screening of the ChEMBL database for compounds that target the main coronavirus protease
    FEBS Open Bio10, 995-1004. PubMed  Europe PubMed DOI  I
  715. Tutunchi,H., Naeini,F., Ostadrahimi,A. and Hosseinzadeh-Attar,M.J.
    Naringenin, a flavanone with antiviral and anti-inflammatory effects: A promising treatment strategy against COVID-19
    Phytother Res34, 3137-3147. PubMed  Europe PubMed DOI  I
  716. Udrea,A.M., Avram,S., Nistorescu,S., Pascu,M.L. and Romanitan,M.O.
    Laser irradiated phenothiazines: New potential treatment for COVID-19 explored by molecular docking
    J Photochem Photobiol B211, 111997-111997. PubMed  Europe PubMed DOI  I
  717. Ullrich,S. and Nitsche,C.
    The SARS-CoV-2 main protease as drug target
    Bioorg Med Chem Lett30, 127377-127377. PubMed  Europe PubMed DOI
  718. Umadevi,P., Manivannan,S., Fayad,A.M. and Shelvy,S.
    In silico analysis of phytochemicals as potential inhibitors of proteases involved in SARS-CoV-2 infection
    J Biomol Struct Dyn1-9. PubMed  Europe PubMed DOI  I
  719. Uniyal,A., Mahapatra,M.K., Tiwari,V., Sandhir,R. and Kumar,R.
    Targeting SARS-CoV-2 main protease: structure based virtual screening, in silico ADMET studies and molecular dynamics simulation for identification of potential inhibitors
    J Biomol Struct Dyn1-17. PubMed  Europe PubMed DOI
  720. Upadhyay,S., Tripathi,P.K., Singh,M., Raghavendhar,S., Bhardwaj,M. and Patel,A.K.
    Evaluation of medicinal herbs as a potential therapeutic option against SARS-CoV-2 targeting its main protease
    Phytother Res34, 3411-3419. PubMed  Europe PubMed DOI
  721. van de Plassche,M.A.T., Barniol-Xicota,M. and Verhelst,S.
    Peptidyl Acyloxymethyl Ketones as Activity-Based Probes for the Main Protease of SARS-CoV-2
    Chembiochem21, 3383-3388. PubMed  Europe PubMed DOI
  722. Vardhan,S. and Sahoo,S.K.
    In silico ADMET and molecular docking study on searching potential inhibitors from limonoids and triterpenoids for COVID-19
    Comput Biol Med124, 103936-103936. PubMed  Europe PubMed DOI
  723. Verma,N., Henderson,J.A. and Shen,J.
    Proton-Coupled Conformational Activation of SARS Coronavirus Main Proteases and Opportunity for Designing Small-Molecule Broad-Spectrum Targeted Covalent Inhibitors
    J Am Chem Soc142, 21883-21890. PubMed  Europe PubMed DOI
  724. Vijayakumar,B.G., Ramesh,D., Joji,A., Jayachandra Prakasan,J. and Kannan,T.
    In silico pharmacokinetic and molecular docking studies of natural flavonoids and synthetic indole chalcones against essential proteins of SARS-CoV-2
    Eur J Pharmacol886, 173448-173448. PubMed  Europe PubMed DOI  I
  725. Vijayaraj,R., Altaff,K., Rosita,A.S., Ramadevi,S. and Revathy,J.
    Bioactive compounds from marine resources against novel corona virus (2019-nCoV): in silico study for corona viral drug
    Nat Prod Res1-5. PubMed  Europe PubMed DOI  I
  726. Vuong,W., Khan,M.B., Fischer,C., Arutyunova,E., Lamer,T., Shields,J., Saffran,H.A., McKay,R.T., van Belkum,M.J., Joyce,M.A., Young,H.S., Tyrrell,D.L., Vederas,J.C. and Lemieux,M.J.
    Author Correction: Feline coronavirus drug inhibits the main protease of SARS-CoV-2 and blocks virus replication
    Nat Commun11, 5409-5409. PubMed  Europe PubMed DOI
  727. Vuong,W., Khan,M.B., Fischer,C., Arutyunova,E., Lamer,T., Shields,J., Saffran,H.A., McKay,R.T., van Belkum,M.J., Joyce,M.A., Young,H.S., Tyrrell,D.L., Vederas,J.C. and Lemieux,M.J.
    Feline coronavirus drug inhibits the main protease of SARS-CoV-2 and blocks virus replication
    Nat Commun11, 4282-4282. PubMed  Europe PubMed DOI  I
  728. Wan,H., Aravamuthan,V. and Pearlstein,R.A.
    Probing the Dynamic Structure-Function and Structure-Free Energy Relationships of the Coronavirus Main Protease with Biodynamics Theory
    ACS Pharmacol Transl Sci3, 1111-1143. PubMed  Europe PubMed DOI
  729. Wang,Q., Zhao,Y., Chen,X. and Hong,A.
    Virtual screening of approved clinic drugs with main protease (3CL(pro)) reveals potential inhibitory effects on SARS-CoV-2
    J Biomol Struct Dyn1-11. PubMed  Europe PubMed DOI  I
  730. Wang,S.C., Chen,Y., Wang,Y.C., Wang,W.J., Yang,C.S., Tsai,C.L., Hou,M.H., Chen,H.F., Shen,Y.C. and Hung,M.C.
    Tannic acid suppresses SARS-CoV-2 as a dual inhibitor of the viral main protease and the cellular TMPRSS2 protease
    Am J Cancer Res10, 4538-4546. PubMed  Europe PubMed
  731. Wang,Y.C., Yang,W.H., Yang,C.S., Hou,M.H., Tsai,C.L., Chou,Y.Z., Hung,M.C. and Chen,Y.
    Structural basis of SARS-CoV-2 main protease inhibition by a broad-spectrum anti-coronaviral drug
    Am J Cancer Res10, 2535-2545. PubMed  Europe PubMed  I
  732. Wu,Y., Chang,K.Y., Lou,L., Edwards,L.G., Doma,B.K. and Xie,Z.R.
    In silico identification of drug candidates against COVID-19
    Inform Med Unlocked21, 100461-100461. PubMed  Europe PubMed DOI
  733. Xing,Y., Hua,Y.R., Shang,J., Ge,W.H. and Liao,J.
    Traditional Chinese medicine network pharmacology study on exploring the mechanism of Xuebijing Injection in the treatment of coronavirus disease 2019
    Chin J Nat Med18, 941-951. PubMed  Europe PubMed DOI  I
  734. Yadav,R., Imran,M., Dhamija,P., Chaurasia,D.K. and Handu,S.
    Virtual screening, ADMET prediction and dynamics simulation of potential compounds targeting the main protease of SARS-CoV-2
    J Biomol Struct Dyn1-16. PubMed  Europe PubMed DOI
  735. Yoshino,R., Yasuo,N. and Sekijima,M.
    Identification of key interactions between SARS-CoV-2 main protease and inhibitor drug candidates
    Sci Rep10, 12493-12493. PubMed  Europe PubMed DOI
  736. Zhang,L., Lin,D., Sun,X., Curth,U., Drosten,C., Sauerhering,L., Becker,S., Rox,K. and Hilgenfeld,R.
    Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved alpha-ketoamide inhibitors
    Science368, 409-412. PubMed  Europe PubMed DOI  S  I
  737. Zhao,X., Liu,R., Miao,Z., Ye,N. and Lu,W.
    A Study of Potential SARS-CoV-2 Antiviral Drugs and Preliminary Research of Their Molecular Mechanism, Based on Anti-SARS-CoV Drug Screening and Molecular Dynamics Simulation
    J Comput Biol27, e1699-e1713. PubMed  Europe PubMed DOI  I
  738. Zheng,L., Zhang,L., Huang,J., Nandakumar,K.S., Liu,S. and Cheng,K.
    Potential treatment methods targeting 2019-nCoV infection
    Eur J Med Chem205, 112687-112687. PubMed  Europe PubMed DOI  V  I
  739. Zhu,G., Zhu,C., Zhu,Y. and Sun,F.
    Minireview of progress in the structural study of SARS-CoV-2 proteins
    Curr Res Microb Sci1, 53-61. PubMed  Europe PubMed DOI  V