Literature for peptidase S24.001: repressor LexA

Summary Alignment Tree Sequences Sequence features Distribution Structure Literature Substrates

(Topics flags: S Structure, P Specificity, I Inhibitor, K Knockout, V Review. To select only the references relevant to a single topic, click the link above. See explanation.)

    2025
  1. He,R., Zuo,Y., Li,Q., Yan,Q. and Huang,L.
    Cooperative mechanisms of LexA and HtpG in the regulation of virulence gene expression in Pseudomonas plecoglossicida
    Curr Res Microb Sci8, 100351-100351. PubMed  Europe PubMed DOI
  2. Vascon,F., De Felice,S., Gasparotto,M., Huber,S.T., Catalano,C., Chinellato,M., Mezzetti,R., Grinzato,A., Filippini,F., Maso,L., Jakobi,A.J. and Cendron,L.
    Snapshots of Pseudomonas aeruginosa SOS response reveal structural requisites for LexA autoproteolysis
    iScience28, 111726-111726. PubMed  Europe PubMed DOI
  3. 2024
  4. Chatterjee,C., Mohan,G.R., C,H.V., Biswas,B., Sundaram,V., Srivastava,A. and Matheshwaran,S.
    Anti-mutagenic agent targeting LexA to combat antimicrobial resistance in mycobacteria
    J Biol Chem107650-107650. PubMed  Europe PubMed DOI
  5. Cory,M.B., Li,A., Hurley,C.M., Carman,P.J., Pumroy,R.A., Hostetler,Z.M., Perez,R.M., Venkatesh,Y., Li,X., Gupta,K., Petersson,E.J. and Kohli,R.M.
    The LexA-RecA* structure reveals a cryptic lock-and-key mechanism for SOS activation
    Nat Struct Mol Biol31, 1522-1531. PubMed  Europe PubMed DOI
  6. Shi,X., Yan,H., Yuan,F., Li,G., Liu,J., Li,C., Yu,X., Li,Z., Zhu,Y. and Wang,W.
    LexA, an SOS response repressor, activates TGase synthesis in Streptomyces mobaraensis
    Front Microbiol15, 1397314-1397314. PubMed  Europe PubMed DOI
  7. 2023
  8. Gao,B., Liang,L., Su,L., Wen,A., Zhou,C. and Feng,Y.
    Structural basis for regulation of SOS response in bacteria
    Proc Natl Acad Sci U S A120, e2217493120-e2217493120. PubMed  Europe PubMed DOI
  9. Schuurs,Z.P., McDonald,J.P., Croft,L.V., Richard,D.J., Woodgate,R. and Gandhi,N.S.
    Integration of molecular modelling and in vitro studies to inhibit LexA proteolysis
    Front Cell Infect Microbiol13, 1051602-1051602. PubMed  Europe PubMed DOI
  10. Srivastava,A., Kumar,A., Biswas,S., Kumar,R., Srivastava,V., Rajaram,H. and Mishra,Y.
    Gamma (gamma)-radiation stress response of the cyanobacterium Anabaena sp. PCC7120: Regulatory role of LexA and photophysiological changes
    Plant Sci326, 111529-111529. PubMed  Europe PubMed DOI
  11. 2022
  12. Bastet,L., Bustos-Sanmamed,P., Catalan-Moreno,A., Caballero,C.J., Cuesta,S., Matilla-Cuenca,L., Villanueva,M., Valle,J., Lasa,I. and Toledo-Arana,A.
    Regulation of Heterogenous LexA Expression in Staphylococcus aureus by an Antisense RNA Originating from Transcriptional Read-Through upon Natural Mispairings in the sbrB Intrinsic Terminator
    Int J Mol Sci23, PubMed  Europe PubMed DOI  K
  13. Cory,M.B., Li,A., Hurley,C.M., Hostetler,Z.M., Venkatesh,Y., Jones,C.M., Petersson,E.J. and Kohli,R.M.
    Engineered RecA Constructs Reveal the Minimal SOS Activation Complex
    Biochemistry61, 2884-2896. PubMed  Europe PubMed DOI
  14. Jaramillo,A.V.C., Cory,M.B., Li,A., Kohli,R.M. and Wuest,W.M.
    Exploration of inhibitors of the bacterial LexA repressor-protease
    Bioorg Med Chem Lett65, 128702-128702. PubMed  Europe PubMed DOI
  15. Sasi,V.M., Ullrich,S., Ton,J., Fry,S.E., Johansen-Leete,J., Payne,R.J., Nitsche,C. and Jackson,C.J.
    Predicting Antiviral Resistance Mutations in SARS-CoV-2 Main Protease with Computational and Experimental Screening
    Biochemistry61, 2495-2505. PubMed  Europe PubMed DOI
  16. Van Alstine,S. and Sandler,S.J.
    Positive Charges Are Important for the SOS Constitutive Phenotype in recA730 and recA1202 Mutants of Escherichia coli K-12
    J Bacteriol204, e0008122-e0008122. PubMed  Europe PubMed DOI
  17. 2021
  18. Akkaya,O., Aparicio,T., Perez-Pantoja,D. and de Lorenzo,V.
    The faulty SOS response of Pseudomonas putida KT2440 stems from an inefficient RecA-LexA interplay
    Environ Microbiol PubMed  Europe PubMed DOI
  19. Blanchard,L. and de Groot,A.
    Coexistence of SOS-Dependent and SOS-Independent Regulation of DNA Repair Genes in Radiation-Resistant Deinococcus Bacteria
    Cells10, PubMed  Europe PubMed DOI
  20. Chatterjee,C., Majumdar,S., Deshpande,S., Pant,D. and Matheshwaran,S.
    Real-time kinetic studies of Mycobacterium tuberculosis LexA-DNA interaction
    Biosci Rep PubMed  Europe PubMed DOI
  21. Jones,E.C. and Uphoff,S.
    Single-molecule imaging of LexA degradation in Escherichia coli elucidates regulatory mechanisms and heterogeneity of the SOS response
    Nat Microbiol6, 981-990. PubMed  Europe PubMed DOI
  22. Lanyon-Hogg,T.
    Targeting the bacterial SOS response for new antimicrobial agents: drug targets, molecular mechanisms and inhibitors
    Future Med Chem13, 143-155. PubMed  Europe PubMed DOI  V
  23. Lewis,E.B., Chen,E. and Culyba,M.J.
    DNA cytosine methylation at the lexA promoter of Escherichia coli is stationary phase specific
    G3 (Bethesda) PubMed  Europe PubMed DOI
  24. Lu,Y. and Cheng,L.
    Computational analysis of LexA regulons in Proteus species
    3 Biotech11, 131-131. PubMed  Europe PubMed DOI
  25. Sheng,D.H., Wang,Y., Wu,S.G., Duan,R.X. and Li,Y.Z.
    The regulation of LexA on UV induced SOS response in Myxococcus xanthus based on transcriptome analysis
    J Microbiol Biotechnol31, PubMed  Europe PubMed DOI
  26. 2020
  27. Bellio,P., Mancini,A., Di Pietro,L., Cracchiolo,S., Franceschini,N., Reale,S., De Angelis,F., Perilli,M., Amicosante,G., Spyrakis,F., Tondi,D., Cendron,L. and Celenza,G.
    Inhibition of the transcriptional repressor LexA: withstanding drug resistance by inhibiting the bacterial mechanisms of adaptation to antimicrobials
    Life Sci241, 117116-117116. PubMed  Europe PubMed DOI  I
  28. Das,A., Mandal,S., Hemmadi,V., Ratre,V. and Biswas,M.
    Studies on the gene regulation involved in the lytic-lysogenic switch in Staphylococcus aureus temperate bacteriophage Phi11
    J Biochem PubMed  Europe PubMed DOI
  29. Hostetler,Z.M., Cory,M.B., Jones,C.M., Petersson,E.J. and Kohli,R.M.
    The kinetic and molecular basis for the interaction of LexA and activated RecA revealed by a fluorescent amino acid probe
    ACS Chem Biol15, 1127-1133. PubMed  Europe PubMed DOI
  30. Pant,A., Bag,S., Saha,B., Verma,J., Kumar,P., Banerjee,S., Kumar,B., Kumar,Y., Desigamani,A., Maiti,S., Maiti,T.K., Banerjee,S.K., Bhadra,R.K., Koley,H., Dutta,S., Nair,G.B., Ramamurthy,T. and Das,B.
    Molecular insights into the genome dynamics and interactions between core and acquired genomes of Vibrio cholerae
    Proc Natl Acad Sci U S A117, 23762-23773. PubMed  Europe PubMed DOI
  31. 2019
  32. Caveney,N.A., Pavlin,A., Caballero,G., Bahun,M., Hodnik,V., de Castro,L., Fornelos,N., Butala,M. and Strynadka,N.C.J.
    Structural insights into bacteriophage GIL01 gp7 inhibition of host LexA repressor
    Structure27, 1094-1102. PubMed  Europe PubMed DOI
  33. Chandran,A.V., Srikalaivani,R., Paul,A. and Vijayan,M.
    Biochemical characterization of Mycobacterium tuberculosis LexA and structural studies of its C-terminal segment
    Acta Crystallogr D Struct Biol75, 41-55. PubMed  Europe PubMed DOI
  34. Ojha,D. and Neelakanteshwar Patil,K.
    Molecular and functional characterization of the Listeria monocytogenes RecA protein: insights into the homologous recombination process
    Int J Biochem Cell Biol105642-105642. PubMed  Europe PubMed DOI
  35. 2018
  36. Fornelos,N., Browning,D.F., Pavlin,A., Podlesek,Z., Hodnik,V., Salas,M. and Butala,M.
    Lytic gene expression in the temperate bacteriophage GIL01 is activated by a phage-encoded LexA homologue
    Nucleic Acids Res46, 9432-9443. PubMed  Europe PubMed DOI
  37. Mo,C.Y., Culyba,M.J., Selwood,T., Kubiak,J.M., Hostetler,Z.M., Jurewicz,A.J., Keller,P.M., Pope,A.J., Quinn,A., Schneck,J., Widdowson,K.L. and Kohli,R.M.
    Inhibitors of LexA autoproteolysis and the bacterial SOS response discovered by an academic-industry partnership
    ACS Infect Dis4, 349-359. PubMed  Europe PubMed DOI  I
  38. Selwood,T., Larsen,B.J., Mo,C.Y., Culyba,M.J., Hostetler,Z.M., Kohli,R.M., Reitz,A.B. and Baugh,S.D.P.
    Advancement of the 5-amino-1-(carbamoylmethyl)-1H-1,2,3-triazole-4-carboxamide scaffold to disarm the bacterial SOS response
    Front Microbiol9, 2961-2961. PubMed  Europe PubMed DOI  I
  39. 2015
  40. Kumar,A., Kirti,A. and Rajaram,H.
    LexA protein of cyanobacterium Anabaena sp. strain PCC7120 exhibits in vitro pH-dependent and RecA-independent autoproteolytic activity
    Int J Biochem Cell Biol59C, 84-93. PubMed  Europe PubMed DOI
  41. 2014
  42. Mo,C.Y., Birdwell,L.D. and Kohli,R.M.
    Specificity determinants for autoproteolysis of LexA, a key regulator of bacterial SOS mutagenesis
    Biochemistry53, 3158-3168. PubMed  Europe PubMed DOI  P
  43. 2013
  44. Kovacic,L., Paulic,N., Leonardi,A., Hodnik,V., Anderluh,G., Podlesek,Z., Zgur-Bertok,D., Krizaj,I. and Butala,M.
    Structural insight into LexA-RecA* interaction
    Nucleic Acids Res41, 9901-9910. PubMed  Europe PubMed DOI
  45. 2012
  46. Little,J.W.
    Repressor LexA
    [ISSN:978-0-12-407742-3]3, 3484-3487. DOI
  47. 2010
  48. Chandran,A.V., Prabu,J.R., Manjunath,G.P., Patil,K.N., Muniyappa,K. and Vijayan,M.
    Crystallization and preliminary X-ray studies of the C-terminal domain of Mycobacterium tuberculosis LexA
    Acta Crystallograph Sect F Struct Biol Cryst Commun66, 1093-1095. PubMed  Europe PubMed DOI  S
  49. Zhang,A.P., Pigli,Y.Z. and Rice,P.A.
    Structure of the LexA-DNA complex and implications for SOS box measurement
    Nature466, 883-886. PubMed  Europe PubMed DOI  S
  50. 2009
  51. Butala,M., Zgur-Bertok,D. and Busby,S.J.
    The bacterial LexA transcriptional repressor
    Cell Mol Life Sci66, 82-93. PubMed  Europe PubMed DOI
  52. 2008
  53. Giese,K.C., Michalowski,C.B. and Little,J.W.
    RecA-dependent cleavage of LexA dimers
    J Mol Biol377, 148-161. PubMed  Europe PubMed DOI
  54. 2004
  55. Little,J.W.
    Repressor LexA
    [ISSN:0-12-079610-4]2, 1974-1976.  V
  56. 2003
  57. [YEAR:1-5-2003]Neher,S.B., Flynn,J.M., Sauer,R.T. and Baker,T.A.
    Latent ClpX-recognition signals ensure LexA destruction after DNA damage
    Genes Dev17, 1084-1089. PubMed  Europe PubMed DOI
  58. 2001
  59. [YEAR:7-9-2001]Luo,Y., Pfuetzner,R.A., Mosimann,S., Paetzel,M., Frey,E.A., Cherney,M., Kim,B., Little,J.W. and Strynadka,N.C.
    Crystal structure of LexA: a conformational switch for regulation of self-cleavage
    Cell106, 585-594. PubMed  Europe PubMed DOI  S
  60. [YEAR:1-3-2001]Yasuda,T., Morimatsu,K., Kato,R., Usukura,J., Takahashi,M. and Ohmori,H.
    Physical interactions between DinI and RecA nucleoprotein filament for the regulation of SOS mutagenesis
    EMBO J20, 1192-1202. PubMed  Europe PubMed DOI
  61. 1998
  62. [YEAR:20-2-1998]Konola,J.T., Guzzo,A., Gow,J.B., Walker,G.C. and Knight,K.L.
    Differential cleavage of LexA and UmuD mediated by recA pro67 mutants: Implications for common LexA and UmuD binding sites on RecA
    J Mol Biol276, 405-415. PubMed  Europe PubMed DOI
  63. [YEAR:1-6-1998]Yasuda,T., Morimatsu,K., Horii,T., Nagata,T. and Ohmori,H.
    Inhibition of Escherichia coli RecA coprotease activities by DinI
    EMBO J17, 3207-3216. PubMed  Europe PubMed DOI
  64. 1997
  65. Nastri,H.G., Guzzo,A., Lange,C.S., Walker,G.C. and Knight,K.L.
    Mutational analysis of the RecA protein L1 region identifies this area as a probable part of the co-protease substrate binding site
    Mol Microbiol25, 967-978. PubMed  Europe PubMed
  66. 1996
  67. Rehrauer,W.M., Lavery,P.E., Palmer,E.L., Singh,R.N. and Kowalczykowski,S.C.
    Interaction of Escherichia coli RecA protein with LexA repressor. I. LexA repressor cleavage is competitive with binding of a secondary DNA molecule
    J Biol Chem271, 23865-23873. PubMed  Europe PubMed DOI
  68. Shepley,D.P. and Little,J.W.
    Mutant LexA proteins with specific defects in autodigestion
    Proc Natl Acad Sci U S A93, 11528-11533. PubMed  Europe PubMed DOI
  69. 1994
  70. Little,J.W., Kim,B., Roland,K.L., Smith,M.H., Lin,L.L. and Slilaty,S.N.
    Cleavage of LexA repressor
    Methods Enzymol244, 266-284. PubMed  Europe PubMed DOI  V
  71. 1993
  72. [YEAR:18-6-1993]Kim,B. and Little,J.W.
    LexA and lambda Cl repressors as enzymes: specific cleavage in an intermolecular reaction
    Cell73, 1165-1173. PubMed  Europe PubMed DOI
  73. Little,J.W.
    LexA cleavage and other self-processing reactions
    J Bacteriol175, 4943-4950. PubMed  Europe PubMed
  74. 1992
  75. Koch,W.H., Ennis,D.G., Levine,A.S. and Woodgate,R.
    Escherichia coli umuDC mutants: DNA sequence alterations and UmuD cleavage
    Mol Gen Genet233, 443-448. PubMed  Europe PubMed
  76. [YEAR:20-11-1992]Roland,K.L., Smith,M.H., Rupley,J.A. and Little,J.W.
    In vitro analysis of mutant LexA proteins with an increased rate of specific cleavage
    J Mol Biol228, 395-408. PubMed  Europe PubMed DOI
  77. 1991
  78. Slilaty,S.N. and Vu,H.K.
    The role of electrostatic interactions in the mechanism of peptide bond hydrolysis by a Ser-Lys catalytic dyad
    Protein Eng4, 919-922. PubMed  Europe PubMed
  79. 1989
  80. [YEAR:5-12-1989]Lin,L.L. and Little,J.W.
    Autodigestion and RecA-dependent cleavage of Ind- mutant LexA proteins
    J Mol Biol210, 439-452. PubMed  Europe PubMed DOI
  81. 1987
  82. Slilaty,S.N. and Little,J.W.
    Lysine-156 and serine-119 are required for LexA repressor cleavage: a possible mechanism
    Proc Natl Acad Sci U S A84, 3987-3991. PubMed  Europe PubMed  I
  83. 1986
  84. [YEAR:4-11-1986]Slilaty,S.N., Rupley,J.A. and Little,J.W.
    Intramolecular cleavage of LexA and phage lambda repressors: dependence of kinetics on repressor concentration, pH, temperature, and solvent
    Biochemistry25, 6866-6875. PubMed  Europe PubMed
  85. 1984
  86. Little,J.W.
    Autodigestion of lexA and phage lambda repressors
    Proc Natl Acad Sci U S A81, 1375-1379. PubMed  Europe PubMed
  87. 1981
  88. Horii,T., Ogawa,T., Nakatani,T., Hase,T., Matsubara,H. and Ogawa,H.
    Regulation of SOS functions: purification of E. coli LexA protein and determination of its specific site cleaved by the RecA protein
    Cell27, 515-522. PubMed  Europe PubMed