Literature for peptidase S14.001: peptidase Clp (type 1)

Summary Gene structure Alignment Tree Sequences Sequence features Distribution Structure Literature Substrates

(Topics flags: A Assay, S Structure, T Target, K Knockout, P Specificity, V Review, I Inhibitor, U Therapeutic. To select only the references relevant to a single topic, click the link above. See explanation.)

    2025
  1. Dendene,S., Xue,S., Mohammedi,R., Vieillard,A., Nicoud,Q., Valette,O., Frascella,A., Bonnardel,A., Le Bars,R., Bourge,M., Mergaert,P., Brilli,M., Alunni,B. and Biondi,E.G.
    Sinorhizobium meliloti FcrX coordinates cell cycle and division during free-living growth and symbiosis by a ClpXP-dependent mechanism
    Proc Natl Acad Sci U S A122, e2412367122-e2412367122. PubMed  Europe PubMed DOI
  2. Ishikawa,F., Uchida,C., Ohnishi,R., Imai,T. and Tanabe,G.
    Degradation of Nonribosomal Peptide Synthetase Megasynthetases SrfAA and SrfAB by Acyldepsipeptide-Activated ClpP in Bacillus Subtilis
    Chembiocheme2500135-e2500135. PubMed  Europe PubMed DOI
  3. Jadhav,P., Roy,S., Butzin,X.Y. and Butzin,N.C.
    Engineering a New SsrA-Based Degradation Tag (LAA-LAA) and a Bacterial Synthetic Oscillator
    ACS Synth Biol PubMed  Europe PubMed DOI
  4. Li,S., Lv,H., Zhou,Y., Wang,J., Deng,X., Ma,H., Kong,L., Zhang,Y. and Zhang,Q.
    Anti-infective therapy of inhibiting Staphylococcus aureus ClpP by protocatechuic aldehyde
    Int Immunopharmacol157, 114802-114802. PubMed  Europe PubMed DOI  I
  5. Noskova,Y., Nedashkovskaya,O. and Balabanova,L.
    Production, Purification, and Biochemical Characterization of a Novel ATP-Dependent Caseinolytic Protease from the Marine Bacterium Cobetia amphilecti KMM 296
    Microorganisms13, PubMed  Europe PubMed DOI
  6. Wang,Y., Wang,L., Guo,D., Liu,X., Xu,Y., Wang,R., Sun,Y., Liu,Q., Guan,J., Liu,D., Wang,B., Zhao,Y. and Yan,M.
    Targeting ClpP: Unlocking a novel therapeutic approach of isochlorogenic acid A for methicillin-resistant Staphylococcus aureus-infected osteomyelitis
    Microbiol Res292, 128042-128042. PubMed  Europe PubMed DOI  I
  7. Zhang,T., Wu,W., Zhao,Y., Ding,Z., Wei,B., Yang,T., Li,J., Wang,P., Lan,L., Gan,J. and Yang,C.G.
    Structure-Guided Development of ClpP Agonists with Potent Therapeutic Activities against Staphylococcus aureus Infection
    J Med Chem PubMed  Europe PubMed DOI  I
  8. 2024
  9. Bonjorno,A.F., Pavan,A.R., Fernandes,G.F.S., Scarim,C.B., Castagnolo,D. and Dos Santos,J.L.
    BacPROTACs targeting Clp protease: a promising strategy for anti-mycobacterial drug discovery
    Front Chem12, 1358539-1358539. PubMed  Europe PubMed DOI
  10. Ghanbarpour,A., Sauer,R.T. and Davis,J.H.
    A proteolytic AAA+ machine poised to unfold protein substrates
    Nat Commun15, 9681-9681. PubMed  Europe PubMed DOI
  11. Ishikawa,F., Homma,M., Tanabe,G. and Uchihashi,T.
    [Protein degradation in bacteria: focus on the ClpP protease]
    Nihon Saikingaku Zasshi79, 1-13. PubMed  Europe PubMed DOI
  12. Ishikawa,F., Uchida,C. and Tanabe,G.
    Proteolytic Regulation in the Biosynthesis of Natural Product Via a ClpP Protease System
    ACS Chem Biol19, 1794-1802. PubMed  Europe PubMed DOI
  13. Ishikawa,F., Homma,M., Tanabe,G. and Uchihashi,T.
    Protein degradation by a component of the chaperonin-linked protease ClpP
    Genes Cells29, 695-709-709. PubMed  Europe PubMed DOI  V
  14. Kumari,S., Ali,A. and Kumar,M.
    Nucleotide-induced ClpC oligomerization and its non-preferential association with ClpP isoforms of pathogenic Leptospira
    Int J Biol Macromol266, 131371-131371. PubMed  Europe PubMed DOI
  15. Lin,F., Mabanglo,M.F., Zhou,J.L., Binepal,G., Barghash,M.M., Wong,K.S., Gray-Owen,S.D., Batey,R.A. and Houry,W.A.
    Structure-Based Design and Development of Phosphine Oxides as a Novel Chemotype for Antibiotics that Dysregulate Bacterial ClpP Proteases
    J Med Chem67, 15131-15147. PubMed  Europe PubMed DOI
  16. Shih,T.T., Sauer,R.T. and Baker,T.A.
    How the double-ring ClpAP protease motor grips the substrate to unfold and degrade stable proteins
    J Biol Chem107861-107861. PubMed  Europe PubMed DOI
  17. Sieber,S.A., Gronauer,T.F., Eck,L.K. and Ludwig,C.
    A Photocrosslinking Probe to Capture the Substrates of Caseinolytic Protease P
    Angew Chem Int Ed Engle202409220-e202409220. PubMed  Europe PubMed DOI
  18. Wan,T., Cao,Y., Lai,Y., Pan,Z., Li,Y. and Zhuo,L.
    Functional investigation of the two ClpPs and three ClpXs in Myxococcus xanthus DK1622
    mSpheree0036324-e0036324. PubMed  Europe PubMed DOI
  19. 2023
  20. Azadmanesh,J., Seleem,M.A., Struble,L., Wood,N.A., Fisher,D.J., Lovelace,J.J., Artigues,A., Fenton,A.W., Borgstahl,G.E.O., Ouellette,S.P. and Conda-Sheridan,M.
    The structure of caseinolytic protease subunit ClpP2 reveals a functional model of the caseinolytic protease system from Chlamydia trachomatis
    J Biol Chem299, 102762-102762. PubMed  Europe PubMed DOI
  21. Brugger,C., Schwartz,J., Novick,S., Tong,S., Hoskins,J.R., Majdalani,N., Kim,R., Filipovski,M., Wickner,S., Gottesman,S., Griffin,P.R. and Deaconescu,A.M.
    Structure of phosphorylated-like RssB, the adaptor delivering sigma(s) to the ClpXP proteolytic machinery, reveals an interface switch for activation
    J Biol Chem299, 105440-105440. PubMed  Europe PubMed DOI
  22. Dayananda,A., Dennison,T.S.H., Fonseka,H.Y.Y., Avestan,M.S., Wang,Q., Tehver,R. and Stan,G.
    Allosteric communication in the gating mechanism for controlled protein degradation by the bacterial ClpP peptidase
    J Chem Phys158, 125101-125101. PubMed  Europe PubMed DOI
  23. Ghanbarpour,A., Cohen,S.E., Fei,X., Kinman,L.F., Bell,T.A., Zhang,J.J., Baker,T.A., Davis,J.H. and Sauer,R.T.
    A closed translocation channel in the substrate-free AAA+ ClpXP protease diminishes rogue degradation
    Nat Commun14, 7281-7281. PubMed  Europe PubMed DOI
  24. Jin,M., Zhu,S., Tang,Y., Kong,X., Wang,X., Li,Y., Jiang,S., Wei,L., Hu,C., Wang,B. and Song,W.
    Ayanin, a natural flavonoid inhibitor of Caseinolytic protease, is a promising therapeutic agent to combat methicillin-resistant Staphylococcus aureus infections
    Biochem Pharmacol217, 115814-115814. PubMed  Europe PubMed DOI  I
  25. Petkov,R., Camp,A.H., Isaacson,R.L. and Torpey,J.H.
    Targeting bacterial degradation machinery as an antibacterial strategy
    Biochem J480, 1719-1731. PubMed  Europe PubMed DOI  V
  26. Schmitz,K.R., Handy,E.L., Compton,C.L., Gupta,S., Bishai,W.R., Sauer,R.T. and Sello,J.K.
    Acyldepsipeptide antibiotics and a bioactive fragment thereof differentially perturb Mycobacterium tuberculosis ClpXP1P2 activity in vitro
    ACS Chem Biol18, 724-733. PubMed  Europe PubMed DOI
  27. Song,H., Choi,E. and Lee,E.J.
    Membrane-Bound Protease FtsH Protects PhoP from the Proteolysis by Cytoplasmic ClpAP Protease in Salmonella Typhimurium
    J Microbiol Biotechnol33, 1130-1140. PubMed  Europe PubMed DOI
  28. Xu,L., Henriksen,C., Mebus,V., Guerillot,R., Petersen,A., Jacques,N., Jiang,J.H., Derks,R.J.E., Sanchez-Lopez,E., Giera,M., Leeten,K., Stinear,T.P., Oury,C., Howden,B.P., Peleg,A.Y. and Frees,D.
    A Clinically Selected Staphylococcus aureus clpP Mutant Survives Daptomycin Treatment by Reducing Binding of the Antibiotic and Adapting a Rod-Shaped Morphology
    Antimicrob Agents Chemother67, e0032823-e0032823. PubMed  Europe PubMed DOI
  29. Xu,X., Zhang,L., Yang,T., Qiu,Z., Bai,L. and Luo,Y.
    Targeting caseinolytic protease P and its AAA1 chaperone for tuberculosis treatment
    Drug Discov Today28, 103508-103508. PubMed  Europe PubMed DOI  V
  30. 2022
  31. Burslem,G.M.
    BacPROTACs to basics: Targeted protein degradation in bacteria
    Cell185, 2203-2205. PubMed  Europe PubMed DOI
  32. Fatima,N.I., Fazili,K.M. and Bhat,N.H.
    Proteolysis dependent cell cycle regulation in Caulobacter crescentus
    Cell Div17, 3-3. PubMed  Europe PubMed DOI
  33. Gurung,V. and Biswas,I.
    ClpX/P-Dependent Degradation of Novel Substrates in Streptococcus mutans
    J Bacteriol204, e0059421-e0059421. PubMed  Europe PubMed DOI
  34. Kim,L., Lee,B.G., Kim,M., Kim,M.K., Kwon,D.H., Kim,H., Brotz-Oesterhelt,H., Roh,S.H. and Song,H.K.
    Structural insights into ClpP protease side exit pore-opening by a pH drop coupled with substrate hydrolysis
    EMBO J41, e109755-e109755. PubMed  Europe PubMed DOI
  35. Mabanglo,M.F. and Houry,W.A.
    Recent structural insights into the mechanism of ClpP protease regulation by AAA+ chaperones and small molecules
    J Biol Chem298, 101781-101781. PubMed  Europe PubMed DOI  V
  36. Mahmoud,S.A., Aldikacti,B. and Chien,P.
    ATP hydrolysis tunes specificity of a AAA+ protease
    Cell Rep40, 111405-111405. PubMed  Europe PubMed DOI
  37. Morreale,F.E., Kleine,S., Leodolter,J., Junker,S., Hoi,D.M., Ovchinnikov,S., Okun,A., Kley,J., Kurzbauer,R., Junk,L., Guha,S., Podlesainski,D., Kazmaier,U., Boehmelt,G., Weinstabl,H., Rumpel,K., Schmiedel,V.M., Hartl,M., Haselbach,D., Meinhart,A., Kaiser,M. and Clausen,T.
    BacPROTACs mediate targeted protein degradation in bacteria
    Cell185, 2338-2353. PubMed  Europe PubMed DOI
  38. Wei,B., Zhang,T., Wang,P., Pan,Y., Li,J., Chen,W., Zhang,M., Ji,Q., Wu,W., Lan,L., Gan,J. and Yang,C.G.
    Anti-infective therapy using species-specific activators of Staphylococcus aureus ClpP
    Nat Commun13, 6909-6909. PubMed  Europe PubMed DOI
  39. 2021
  40. Bishop,C.E., Shadid,T.M., Lavey,N.P., Kempher,M.L., Ballard,J.D. and Duerfeldt,A.S.
    Identification of ClpP Dual Isoform Disruption as an Anti-sporulation Strategy for Clostridioides difficile
    J BacteriolJB0041121-JB0041121. PubMed  Europe PubMed DOI
  41. Feng,Y., Nouri,K. and Schimmer,A.D.
    Mitochondrial ATP-Dependent Proteases-Biological Function and Potential Anti-Cancer Targets
    Cancers (Basel)13, PubMed  Europe PubMed DOI
  42. Kang,Z.H., Liu,Y.T., Gou,Y., Deng,Q.R., Hu,Z.Y. and Li,G.R.
    Progress and prospect of single-molecular ClpX ATPase researching system-a mini-review
    Gene774, 145420-145420. PubMed  Europe PubMed DOI
  43. Rizzolo,K., Yu,A.Y.H., Ologbenla,A., Kim,S.R., Zhu,H., Ishimori,K., Thibault,G., Leung,E., Zhang,Y.W., Teng,M., Haniszewski,M., Miah,N., Phanse,S., Minic,Z., Lee,S., Caballero,J.D., Babu,M., Tsai,F.T.F., Saio,T. and Houry,W.A.
    Functional cooperativity between the trigger factor chaperone and the ClpXP proteolytic complex
    Nat Commun12, 281-281. PubMed  Europe PubMed DOI
  44. Rizzolo,K., Yu,A.Y.H., Ologbenla,A., Kim,S.R., Zhu,H., Ishimori,K., Thibault,G., Leung,E., Zhang,Y.W., Teng,M., Haniszewski,M., Miah,N., Phanse,S., Minic,Z., Lee,S., Caballero,J.D., Babu,M., Tsai,F.T.F., Saio,T. and Houry,W.A.
    Author Correction: Functional cooperativity between the trigger factor chaperone and the ClpXP proteolytic complex
    Nat Commun12, 2753-2753. PubMed  Europe PubMed DOI
  45. Yeom,J. and Groisman,E.A.
    Low cytoplasmic magnesium increases the specificity of the Lon and ClpAP proteases
    J Bacteriol203, e0014321-e0014321. PubMed  Europe PubMed DOI
  46. Zou,L., Evans,C.R., Do,V.D., Losefsky,Q.P., Ngo,D.Q. and McGillivray,S.M.
    Loss of the ClpXP Protease Leads to Decreased Resistance to Cell-Envelope Targeting Antimicrobials in Bacillus anthracis Sterne
    Front Microbiol12, 719548-719548. PubMed  Europe PubMed DOI
  47. 2020
  48. Binepal,G., Mabanglo,M.F., Goodreid,J.D., Leung,E., Barghash,M.M., Wong,K.S., Lin,F., Cossette,M., Bansagi,J., Song,B., Balasco Serrao,V.H., Pai,E.F., Batey,R.A., Gray-Owen,S.D. and Houry,W.A.
    Development of Antibiotics That Dysregulate the Neisserial ClpP Protease
    ACS Infect Dis6, 3224-3236. PubMed  Europe PubMed DOI
  49. Eyermann,B., Meixner,M., Brotz-Oesterhelt,H., Antes,I. and Sieber,S.A.
    Acyldepsipeptide probes facilitate specific detection of caseinolytic protease P independent of its oligomeric and activity state
    Chembiochem21, 235-240. PubMed  Europe PubMed DOI
  50. Fei,X., Bell,T.A., Jenni,S., Stinson,B.M., Baker,T.A., Harrison,S.C. and Sauer,R.T.
    Structures of the ATP-fueled ClpXP proteolytic machine bound to protein substrate
    elife9, PubMed  Europe PubMed DOI  S
  51. Fei,X., Bell,T.A., Barkow,S.R., Baker,T.A. and Sauer,R.T.
    Structural basis of ClpXP recognition and unfolding of ssrA-tagged substrates
    elife9, PubMed  Europe PubMed DOI
  52. Ju,Y., He,L., Zhou,Y., Yang,T., Sun,K., Song,R., Yang,Y., Li,C., Sang,Z., Bao,R. and Luo,Y.
    Discovery of novel peptidomimetic boronate ClpP inhibitors with noncanonical enzyme mechanism as potent virulence blockers in vitro and in vivo
    J Med Chem63, 3104-3119. PubMed  Europe PubMed DOI  I
  53. Kim,S., Zuromski,K.L., Bell,T.A., Sauer,R.T. and Baker,T.A.
    ClpAP proteolysis does not require rotation of the ClpA unfoldase relative to ClpP
    elife9, PubMed  Europe PubMed DOI
  54. Kotamarthi,H.C., Sauer,R.T. and Baker,T.A.
    The non-dominant AAA+ ring in the ClpAP protease functions as an anti-stalling motor to accelerate protein unfolding and translocation
    Cell Rep30, 2644-2654. PubMed  Europe PubMed DOI
  55. LaBreck,C.J., Trebino,C.E., Ferreira,C.N., Morrison,J.J., DiBiasio,E.C., Conti,J. and Camberg,J.L.
    Degradation of MinD oscillator complexes by Escherichia coli ClpXP
    J Biol Chem PubMed  Europe PubMed DOI
  56. Lakshmanan,A., Jin,Z., Nety,S.P., Sawyer,D.P., Lee-Gosselin,A., Malounda,D., Swift,M.B., Maresca,D. and Shapiro,M.G.
    Acoustic biosensors for ultrasound imaging of enzyme activity
    Nat Chem Biol PubMed  Europe PubMed DOI
  57. Li,Y., Corro,J.H., Palmer,C.D. and Ojha,A.K.
    Progression from remodeling to hibernation of ribosomes in zinc-starved mycobacteria
    Proc Natl Acad Sci U S A117, 19528-19537. PubMed  Europe PubMed DOI
  58. Lopez,K.E., Rizo,A.N., Tse,E., Lin,J., Scull,N.W., Thwin,A.C., Lucius,A.L., Shorter,J. and Southworth,D.R.
    Conformational plasticity of the ClpAP AAA+ protease couples protein unfolding and proteolysis
    Nat Struct Mol Biol27, 406-416. PubMed  Europe PubMed DOI  S
  59. Malik,I.T., Pereira,R., Vielberg,M.T., Mayer,C., Straetener,J., Thomy,D., Famulla,K., Castro,H., Sass,P., Groll,M. and Brotz-Oesterhelt,H.
    Functional characterisation of ClpP mutations conferring resistance to acyldepsipeptide antibiotics in Firmicutes
    Chembiochem PubMed  Europe PubMed DOI
  60. Mellergaard,M., Hogh,R.I., Lund,A., Aldana,B.I., Guerillot,R., Moller,S.H., Hayes,A.S., Panagiotopoulou,N., Frimand,Z., Jepsen,S.D., Hansen,C.H.F., Andresen,L., Larsen,A.R., Peleg,A.Y., Stinear,T.P., Howden,B.P., Waagepetersen,H.S., Frees,D. and Skov,S.
    Staphylococcus aureus induces cell-surface expression of immune stimulatory NKG2D ligands on human monocytes
    J Biol Chem PubMed  Europe PubMed DOI
  61. Micevski,D., Zeth,K., Mulhern,T.D., Schuenemann,V.J., Zammit,J.E., Truscott,K.N. and Dougan,D.A.
    Insight into the RssB-mediated recognition and delivery of sigma(s) to the AAA+ protease, ClpXP
    Biomolecules10, PubMed  Europe PubMed DOI
  62. Saunders,R.A., Stinson,B.M., Baker,T.A. and Sauer,R.T.
    Multistep substrate binding and engagement by the AAA+ ClpXP protease
    Proc Natl Acad Sci U S A117, 28005-28013. PubMed  Europe PubMed DOI
  63. Schelin,J., Cohn,M.T., Frisk,B. and Frees,D.
    A Functional ClpXP Protease is Required for Induction of the Accessory Toxin Genes, tst, sed, and sec
    Toxins (Basel)12, PubMed  Europe PubMed DOI
  64. Sen,A., Zhou,Y. and Imlay,J.A.
    During oxidative stress the Clp proteins of Escherichia coli ensure that iron pools remain sufficient to reactivate oxidized metalloenzymes
    J Bacteriol202, e00235-20-e00235-20. PubMed  Europe PubMed DOI
  65. Sha,Z., Chilakala,S., Crabill,G., Cheng,I., Xu,Y., Fishovitz,J. and Lee,I.
    A proteolytic site-directed affinity label to inhibit the human ATP-dependent protease caseinolytic complex XP
    Chembiochem21, 2049-2059. PubMed  Europe PubMed DOI  I
  66. Silber,N., Pan,S., Schakermann,S., Mayer,C., Brotz-Oesterhelt,H. and Sass,P.
    Cell Division Protein FtsZ Is Unfolded for N-Terminal Degradation by Antibiotic-Activated ClpP
    MBio11, PubMed  Europe PubMed DOI
  67. Tremblay,C.Y., Vass,R.H., Vachet,R.W. and Chien,P.
    The Cleavage Profile of Protein Substrates by ClpXP Reveals Deliberate Starts and Pauses
    Biochemistry59, 4294-4301. PubMed  Europe PubMed DOI
  68. Tsai,F.T. and Hill,C.P.
    Same structure, different mechanisms?
    elife9, PubMed  Europe PubMed DOI  S
  69. Zheng,D., Xu,Y., Yuan,G., Wu,X. and Li,Q.
    Bacterial ClpP Protease Is a Potential Target for Methyl Gallate
    Front Microbiol11, 598692-598692. PubMed  Europe PubMed DOI
  70. 2019
  71. Felix,J., Weinhaupl,K., Chipot,C., Dehez,F., Hessel,A., Gauto,D.F., Morlot,C., Abian,O., Gutsche,I., Velazquez-Campoy,A., Schanda,P. and Fraga,H.
    Mechanism of the allosteric activation of the ClpP protease machinery by substrates and active-site inhibitors
    Sci Adv5, eaaw3818-eaaw3818. PubMed  Europe PubMed DOI  I
  72. Fetzer,C., Korotkov,V.S. and Sieber,S.A.
    Hydantoin analogs inhibit the fully assembled ClpXP protease without affecting the individual peptidase and chaperone domains
    Org Biomol Chem17, 7124-7127. PubMed  Europe PubMed DOI  I
  73. Fux,A., Korotkov,V.S., Schneider,M., Antes,I. and Sieber,S.A.
    Chemical cross-linking enables drafting ClpXP proximity maps and taking snapshots of in situ interaction networks
    Cell Chem Biol26, 48-59. PubMed  Europe PubMed DOI
  74. Gatsogiannis,C., Balogh,D., Merino,F., Sieber,S.A. and Raunser,S.
    Cryo-EM structure of the ClpXP protein degradation machinery
    Nat Struct Mol Biol26, 946-954. PubMed  Europe PubMed DOI  S
  75. Griffith,E.C., Zhao,Y., Singh,A.P., Conlon,B.P., Tangallapally,R., Shadrick,W.R., Liu,J., Wallace,M.J., Yang,L., Elmore,J.M., Li,Y., Zheng,Z., Miller,D.J., Cheramie,M.N., Lee,R.B., LaFleur,M.D., Lewis,K. and Lee,R.E.
    Ureadepsipeptides as ClpP Activators
    ACS Infect Dis5, 1915-1925. PubMed  Europe PubMed DOI
  76. Lakemeyer,M., Bertosin,E., Moller,F., Balogh,D., Strasser,R., Dietz,H. and Sieber,S.A.
    Tailored peptide phenyl esters block ClpXP proteolysis by an unusual breakdown into a heptamer-hexamer assembly
    Angew Chem Int Ed Engl58, 7127-7132. PubMed  Europe PubMed DOI  I
  77. Lavey,N.P., Shadid,T., Ballard,J.D. and Duerfeldt,A.S.
    Clostridium difficile ClpP homologues are capable of uncoupled activity and exhibit different levels of susceptibility to acyldepsipeptide modulation
    ACS Infect Dis5, 79-89. PubMed  Europe PubMed DOI
  78. Mabanglo,M.F., Leung,E., Vahidi,S., Seraphim,T.V., Eger,B.T., Bryson,S., Bhandari,V., Zhou,J.L., Mao,Y.Q., Rizzolo,K., Barghash,M.M., Goodreid,J.D., Phanse,S., Babu,M., Barbosa,L.R.S., Ramos,C.H.I., Batey,R.A., Kay,L.E., Pai,E.F. and Houry,W.A.
    ClpP protease activation results from the reorganization of the electrostatic interaction networks at the entrance pores
    Commun Biol2, 410-410. PubMed  Europe PubMed DOI
  79. Montandon,C., Dougan,D.A. and van Wijk,K.J.
    N-Degron specificity of chloroplast ClpS1 in plants
    FEBS Lett593, 962-970. PubMed  Europe PubMed DOI  P
  80. Moreno-Cinos,C., Sassetti,E., Salado,I.G., Witt,G., Benramdane,S., Reinhardt,L., Cruz,C.D., Joossens,J., Van der Veken,P., Brotz-Oesterhelt,H., Tammela,P., Winterhalter,M., Gribbon,P., Windshugel,B. and Augustyns,K.
    alpha-Amino diphenyl phosphonates as novel inhibitors of Escherichia coli ClpP protease
    J Med Chem62, 774-797. PubMed  Europe PubMed DOI  I
  81. Moreno-Cinos,C., Goossens,K., Salado,I.G., Van der Veken,P., De Winter,H. and Augustyns,K.
    ClpP Protease, a promising antimicrobial target
    Int J Mol Sci20, PubMed  Europe PubMed DOI
  82. Mroue,N., Arya,A., Brown Gandt,A., Russell,C., Han,A., Gavrish,E. and LaFleur,M.
    Pharmacodynamics of ClpP activating antibiotic combinations against Gram-positive pathogens
    Antimicrob Agents Chemother64, e01554-19-e01554-19. PubMed  Europe PubMed DOI
  83. Pan,S., Malik,I.T., Thomy,D., Henrichfreise,B. and Sass,P.
    The functional ClpXP protease of Chlamydia trachomatis requires distinct clpP genes from separate genetic loci
    Sci Rep9, 14129-14129. PubMed  Europe PubMed DOI
  84. Sivertsson,E.M., Jackson,S.E. and Itzhaki,L.S.
    The AAA+ protease ClpXP can easily degrade a 31 and a 52-knotted protein
    Sci Rep9, 2421-2421. PubMed  Europe PubMed DOI
  85. Tan,J., Grouleff,J.J., Jitkova,Y., Diaz,D.B., Griffith,E.C., Shao,W., Bogdanchikova,A.F., Poda,G., Schimmer,A.D., Lee,R.E. and Yudin,A.K.
    De novo design of boron-based peptidomimetics as potent inhibitors of human ClpP in the presence of human ClpX
    J Med Chem62, 6377-6390. PubMed  Europe PubMed DOI  I
  86. Wang,H. and Bowman,G.R.
    SpbR overproduction reveals the importance of proteolytic degradation for cell pole development and chromosome segregation in Caulobacter crescentus
    Mol Microbiol111, 1700-1714. PubMed  Europe PubMed DOI
  87. 2018
  88. Abeywansha,T., Chai,Q., Zhang,X., Wang,Z. and Wei,Y.
    Accessibility from the cytoplasm is critical for ssrA tag-mediated degradation of integral membrane proteins by ClpXP protease
    Biochemistry57, 5602-5608. PubMed  Europe PubMed DOI
  89. Dubiel,A., Wegrzyn,K., Kupinski,A.P. and Konieczny,I.
    ClpAP protease is a universal factor that activates the parDE toxin-antitoxin system from a broad host range RK2 plasmid
    Sci Rep8, 15287-15287. PubMed  Europe PubMed DOI
  90. Eom,G.E. and Kim,S.
    Identification of nucleophilic probes for protease-mediated transpeptidation
    Molecules23, PubMed  Europe PubMed DOI
  91. Moreno,J.C., Martinez-Jaime,S., Schwartzmann,J., Karcher,D., Tillich,M., Graf,A. and Bock,R.
    Temporal proteomics of inducible RNAi lines of Clp protease subunits identifies putative protease substrates
    Plant Physiol176, 1485-1508. PubMed  Europe PubMed DOI
  92. Olivares,A.O., Baker,T.A. and Sauer,R.T.
    Mechanical protein unfolding and degradation
    Annu Rev Physiol80, 413-429. PubMed  Europe PubMed DOI
  93. Wood,N.A., Chung,K., Blocker,A., Rodrigues de Almeida,N., Conda-Sheridan,M., Fisher,D.J. and Ouellette,S.P.
    Initial characterization of the two ClpP paralogs of Chlamydia trachomatis suggests unique functionality for each
    J Bacteriol201, e00635-18-e00635-18. PubMed  Europe PubMed DOI
  94. 2017
  95. Balogh,D., Dahmen,M., Stahl,M., Poreba,M., Gersch,M., Drag,M. and Sieber,S.A.
    Insights into ClpXP proteolysis: heterooligomerization and partial deactivation enhance chaperone affinity and substrate turnover in Listeria monocytogenes
    Chem Sci8, 1592-1600. PubMed  Europe PubMed DOI
  96. Cordova,J.C., Olivares,A.O. and Lang,M.J.
    Mechanically watching the ClpXP proteolytic machinery
    Methods Mol Biol1486, 317-341. PubMed  Europe PubMed DOI  A
  97. Diaz-Saez,L., Pankov,G. and Hunter,W.N.
    Open and compressed conformations of Francisella tularensis ClpP
    Proteins85, 188-194. PubMed  Europe PubMed DOI  S  T
  98. Hall,B.M., Breidenstein,E.B., de la Fuente-Nunez,C., Reffuveille,F., Mawla,G.D., Hancock,R.E. and Baker,T.A.
    Two isoforms of Clp peptidase in Pseudomonas aeruginosa control distinct aspects of cellular physiology
    J Bacteriol199, e00568-16-e00568-16. PubMed  Europe PubMed DOI
  99. Malik,I.T. and Brotz-Oesterhelt,H.
    Conformational control of the bacterial Clp protease by natural product antibiotics
    Nat Prod Rep34, 815-831. PubMed  Europe PubMed DOI
  100. San Martin,A., Rodriguez-Aliaga,P., Molina,J.A., Martin,A., Bustamante,C. and Baez,M.
    Knots can impair protein degradation by ATP-dependent proteases
    Proc Natl Acad Sci U S A114, 9864-9869. PubMed  Europe PubMed DOI
  101. Stahl,M. and Sieber,S.A.
    An amino acid domino effect orchestrates ClpP's conformational states
    Curr Opin Chem Biol40, 102-110. PubMed  Europe PubMed DOI
  102. Stahlhut,S.G., Alqarzaee,A.A., Jensen,C., Fisker,N.S., Pereira,A.R., Pinho,M.G., Thomas,V.C. and Frees,D.
    The ClpXP protease is dispensable for degradation of unfolded proteins in Staphylococcus aureus
    Sci Rep7, 11739-11739. PubMed  Europe PubMed DOI
  103. Vass,R.H., Nascembeni,J. and Chien,P.
    The essential role of ClpXP in Caulobacter crescentus requires species constrained substrate specificity
    Front Mol Biosci4, 28-28. PubMed  Europe PubMed DOI
  104. Ye,F., Li,J. and Yang,C.-G.
    The development of small-molecule modulators for ClpP protease activity
    Mol Biosyst13, 23-31. DOI
  105. 2016
  106. Amor,A.J., Schmitz,K.R., Sello,J.K., Baker,T.A. and Sauer,R.T.
    Highly dynamic interactions maintain kinetic stability of the ClpXP protease during the ATP-fueled mechanical cycle
    ACS Chem Biol11, 1552-1560. PubMed  Europe PubMed DOI
  107. Buczek,M.S., Cardenas Arevalo,A.L. and Janakiraman,A.
    ClpXP and ClpAP control the Escherichia coli division protein ZapC by proteolysis
    Microbiology (Reading)162, 909-920. PubMed  Europe PubMed DOI
  108. Gersch,M., Stahl,M., Poreba,M., Dahmen,M., Dziedzic,A., Drag,M. and Sieber,S.A.
    Barrel-shaped ClpP proteases display attenuated cleavage specificities
    ACS Chem Biol11, 389-399. PubMed  Europe PubMed DOI  P
  109. Gibellini,L., DeBiasi,S., Nasi,M., Iannone,A., Cossarizza,A. and Pinti,M.
    Mitochondrial proteases as emerging pharmacological targets
    Curr Pharm Des22, 2679-2688. PubMed  Europe PubMed  T
  110. Goodreid,J.D., Janetzko,J., Santa Maria JP Jr, Wong,K.S., Leung,E., Eger,B.T., Bryson,S., Pai,E.F., Gray-Owen,S.D., Walker,S., Houry,W.A. and Batey,R.A.
    Development and characterization of potent cyclic acyldepsipeptide analogues with increased antimicrobial activity
    J Med Chem59, 624-646. PubMed  Europe PubMed DOI  S
  111. Lavey,N.P., Coker,J.A., Ruben,E.A. and Duerfeldt,A.S.
    Sclerotiamide: the first non-peptide-based natural product activator of bacterial caseinolytic protease P
    J Nat Prod79, 1193-1197. PubMed  Europe PubMed DOI
  112. Liu,J., Francis,L.I., Jonas,K., Laub,M.T. and Chien,P.
    ClpAP is an auxiliary protease for DnaA degradation in Caulobacter crescentus
    Mol Microbiol102, 1075-1085. PubMed  Europe PubMed DOI
  113. Ni,T., Ye,F., Liu,X., Zhang,J., Liu,H., Li,J., Zhang,Y., Sun,Y., Wang,M., Luo,C., Jiang,H., Lan,L., Gan,J., Zhang,A., Zhou,H. and Yang,C.G.
    Characterization of gain-of-function mutant provides new insights into ClpP structure
    ACS Chem Biol11, 1964-1972. PubMed  Europe PubMed DOI  S
  114. Rodriguez-Aliaga,P., Ramirez,L., Kim,F., Bustamante,C. and Martin,A.
    Substrate-translocating loops regulate mechanochemical coupling and power production in AAA+ protease ClpXP
    Nat Struct Mol Biol23, 974-981. PubMed  Europe PubMed DOI
  115. Trentini,D.B., Suskiewicz,M.J., Heuck,A., Kurzbauer,R., Deszcz,L., Mechtler,K. and Clausen,T.
    Arginine phosphorylation marks proteins for degradation by a Clp protease
    Nature539, 48-53. PubMed  Europe PubMed DOI
  116. Wrighton,K.H.
    Cellular microbiology: tagging proteins for the Clp protease
    Nat Rev Microbiol14, 728-729. PubMed  Europe PubMed DOI
  117. Yang,N. and Lan,L.
    Pseudomonas aeruginosa Lon and ClpXP proteases: roles in linking carbon catabolite repression system with quorum-sensing system
    Curr Genet62, 1-6. PubMed  Europe PubMed DOI
  118. Ye,F., Li,J. and Yang,C.G.
    The development of small-molecule modulators for ClpP protease activity
    Mol Biosyst13, 23-31. PubMed  Europe PubMed DOI  V
  119. Zhao,B.B., Li,X.H., Zeng,Y.L. and Lu,Y.J.
    ClpP-deletion impairs the virulence of Legionella pneumophila and the optimal translocation of effector proteins
    BMC Microbiol16, 174-174. PubMed  Europe PubMed DOI  K
  120. 2015
  121. Carney,D.W., Schmitz,K.R., Scruse,A.C., Sauer,R.T. and Sello,J.K.
    Examination of a structural model of peptidomimicry by cyclic acyldepsipeptide antibiotics in their interaction with the ClpP peptidase
    Chembiochem16, 1875-1879. PubMed  Europe PubMed DOI
  122. Dahmen,M., Vielberg,M.T., Groll,M. and Sieber,S.A.
    Structure and mechanism of the caseinolytic protease ClpP1/2 heterocomplex from Listeria monocytogenes
    Angew Chem Int Ed Engl54, 3598-3602. PubMed  Europe PubMed DOI  S
  123. Gersch,M., Famulla,K., Dahmen,M., Gobl,C., Malik,I., Richter,K., Korotkov,V.S., Sass,P., Rubsamen-Schaeff,H., Madl,T., Brotz-Oesterhelt,H. and Sieber,S.A.
    AAA+ chaperones and acyldepsipeptides activate the ClpP protease via conformational control
    Nat Commun6, 6320-6320. PubMed  Europe PubMed DOI
  124. Hackl,M.W., Lakemeyer,M., Dahmen,M., Glaser,M., Pahl,A., Lorenz-Baath,K., Menzel,T., Sievers,S., Bottcher,T., Antes,I., Waldmann,H. and Sieber,S.A.
    Phenyl esters are potent inhibitors of caseinolytic protease P and reveal a stereogenic switch for deoligomerization
    J Am Chem Soc137, 8475-8483. PubMed  Europe PubMed DOI  I
  125. Iosefson,O., Nager,A.R., Baker,T.A. and Sauer,R.T.
    Coordinated gripping of substrate by subunits of a AAA+ proteolytic machine
    Nat Chem Biol11, 201-206. PubMed  Europe PubMed DOI
  126. Lau,J., Hernandez-Alicea,L., Vass,R.H. and Chien,P.
    A phosphosignaling adaptor primes the AAA+ protease ClpXP to drive cell cycle-regulated proteolysis
    Mol Cell59, 104-116. PubMed  Europe PubMed DOI
  127. Micevski,D., Zammit,J.E., Truscott,K.N. and Dougan,D.A.
    Anti-adaptors use distinct modes of binding to inhibit the RssB-dependent turnover of RpoS (sigma(S)) by ClpXP
    Front Mol Biosci2, 15- PubMed  Europe PubMed DOI
  128. Mikhailov,V.A., Stahlberg,F., Clarke,A.K. and Robinson,C.V.
    Dual stoichiometry and subunit organization in the ClpP1/P2 protease from the cyanobacterium Synechococcus elongatus
    J Struct Biol192, 519-527. PubMed  Europe PubMed DOI
  129. Olivares,A.O., Baker,T.A. and Sauer,R.T.
    Mechanistic insights into bacterial AAA+ proteases and protein-remodelling machines
    Nat Rev Microbiol14, 33-44. PubMed  Europe PubMed DOI
  130. Pahl,A., Lakemeyer,M., Vielberg,M.T., Hackl,M.W., Vomacka,J., Korotkov,V.S., Stein,M.L., Fetzer,C., Lorenz-Baath,K., Richter,K., Waldmann,H., Groll,M. and Sieber,S.A.
    Reversible inhibitors arrest ClpP in a defined conformational state that can be revoked by ClpX association
    Angew Chem Int Ed Engl54, 15892-15896. PubMed  Europe PubMed DOI
  131. Song,C., Sundqvist,G., Malm,E., de Bruijn,I., Kumar,A., van de Mortel,J., Bulone,V. and Raaijmakers,J.M.
    Lipopeptide biosynthesis in Pseudomonas fluorescens is regulated by the protease complex ClpAP
    BMC Microbiol15, 29-29. PubMed  Europe PubMed DOI
  132. Zavilgelsky,G.B., Kotova,V.Y., Melkina,O.E., Balabanov,V.P. and Mindlin,S.Z.
    [Proteolytic control of the antirestriction activity of Tn2l, Tn5053, Tn5045 Tn501 TN402 non-conjugative transposons]
    Mol Biol (Mosk)49, 334-341. PubMed  Europe PubMed
  133. 2014

  134. [Antirestriction activity of the mercury resistance nonconjugative transposon Tn5053 is controlled by the protease ClpXP]
    Genetika50, 1033-1039. PubMed  Europe PubMed
  135. Baek,K.T., Grundling,A., Mogensen,R.G., Thogersen,L., Petersen,A., Paulander,W. and Frees,D.
    beta-Lactam resistance in methicillin-resistant Staphylococcus aureus USA300 is increased by inactivation of the ClpXP protease
    Antimicrob Agents Chemother58, 4593-4603. PubMed  Europe PubMed DOI
  136. Brotz-Oesterhelt,H. and Sass,P.
    Bacterial caseinolytic proteases as novel targets for antibacterial treatment
    Int J Med Microbiol304, 23-30. PubMed  Europe PubMed DOI  V
  137. Brzozowska,I. and Zielenkiewicz,U.
    The ClpXP protease is responsible for the degradation of the Epsilon antidote to the Zeta toxin of the streptococcal pSM19035 plasmid
    J Biol Chem289, 7514-7523. PubMed  Europe PubMed DOI
  138. Camberg,J.L., Viola,M.G., Rea,L., Hoskins,J.R. and Wickner,S.
    Location of dual sites in E. coli FtsZ important for degradation by ClpXP; one at the C-terminus and one in the disordered linker
    PLoS ONE9, e94964-e94964. PubMed  Europe PubMed DOI
  139. Carney,D.W., Schmitz,K.R., Truong,J.V., Sauer,R.T. and Sello,J.K.
    Restriction of the conformational dynamics of the cyclic acyldepsipeptide antibiotics improves their antibacterial activity
    J Am Chem Soc136, 1922-1929. PubMed  Europe PubMed DOI
  140. Coffino,P., Too,P.H. and Erales,J.
    Slippery substrates impair ATP-dependent protease function by slowing unfolding
    J Biol Chem289, 3826-3826. PubMed  Europe PubMed DOI
  141. Colombo,C.V., Ceccarelli,E.A. and Rosano,G.L.
    Characterization of the accessory protein ClpT1 from Arabidopsis thaliana: oligomerization status and interaction with Hsp100 chaperones
    BMC Plant Biol14, 228-228. PubMed  Europe PubMed DOI
  142. Cordova,J.C., Olivares,A.O., Shin,Y., Stinson,B.M., Calmat,S., Schmitz,K.R., Aubin-Tam,M.E., Baker,T.A., Lang,M.J. and Sauer,R.T.
    Stochastic but highly coordinated protein unfolding and translocation by the ClpXP proteolytic machine
    Cell158, 647-658. PubMed  Europe PubMed DOI
  143. Gersch,M., Kolb,R., Alte,F., Groll,M. and Sieber,S.A.
    Disruption of oligomerization and dehydroalanine formation as mechanisms for ClpP protease inhibition
    J Am Chem Soc136, 1360-1366. PubMed  Europe PubMed DOI  I
  144. Liu,K., Ologbenla,A. and Houry,W.A.
    Dynamics of the ClpP serine protease: a model for self-compartmentalized proteases
    Crit Rev Biochem Mol Biol49, 400-412. PubMed  Europe PubMed DOI
  145. Nyquist,K. and Martin,A.
    Marching to the beat of the ring: polypeptide translocation by AAA+ proteases
    Trends Biochem Sci39, 53-60. PubMed  Europe PubMed DOI
  146. Olivares,A.O., Nager,A.R., Iosefson,O., Sauer,R.T. and Baker,T.A.
    Mechanochemical basis of protein degradation by a double-ring AAA+ machine
    Nat Struct Mol Biol21, 871-875. PubMed  Europe PubMed DOI
  147. Parish,T.
    Targeting mycobacterial proteolytic complexes with natural products
    Chem Biol21, 437-438. PubMed  Europe PubMed DOI
  148. Russell,R. and Matouschek,A.
    Chance, Destiny, and the Inner Workings of ClpXP
    Cell158, 479-480. PubMed  Europe PubMed DOI
  149. Williams,B., Bhat,N., Chien,P. and Shapiro,L.
    ClpXP and ClpAP proteolytic activity on divisome substrates is differentially regulated following the Caulobacter asymmetric cell division
    Mol Microbiol93, 853-866. PubMed  Europe PubMed DOI
  150. 2013
  151. Alexopoulos,J., Ahsan,B., Homchaudhuri,L., Husain,N., Cheng,Y.Q. and Ortega,J.
    Structural determinants stabilizing the axial channel of ClpP for substrate translocation
    Mol Microbiol90, 167-180. PubMed  Europe PubMed DOI
  152. Bhat,N.H., Vass,R.H., Stoddard,P.R., Shin,D.K. and Chien,P.
    Identification of ClpP substrates in Caulobacter crescentus reveals a role for regulated proteolysis in bacterial development
    Mol Microbiol88, 1083-1092. PubMed  Europe PubMed DOI
  153. Feng,J., Michalik,S., Varming,A.N., Andersen,J.H., Albrecht,D., Jelsbak,L., Krieger,S., Ohlsen,K., Hecker,M., Gerth,U., Ingmer,H. and Frees,D.
    Trapping and proteomic identification of cellular substrates of the ClpP protease in Staphylococcus aureus
    J Proteome Res12, 547-558. PubMed  Europe PubMed DOI
  154. Fischer,F., Weil,A., Hamann,A. and Osiewacz,H.D.
    Human CLPP reverts the longevity phenotype of a fungal ClpP deletion strain
    Nat Commun4, 1397-1397. PubMed  Europe PubMed DOI
  155. Frees,D., Brondsted,L. and Ingmer,H.
    Bacterial proteases and virulence
    Subcell Biochem66, 161-192. PubMed  Europe PubMed DOI
  156. Gersch,M., Gut,F., Korotkov,V.S., Lehmann,J., Bottcher,T., Rusch,M., Hedberg,C., Waldmann,H., Klebe,G. and Sieber,S.A.
    The mechanism of caseinolytic protease (ClpP) inhibition
    Angew Chem Int Ed Engl52, 3009-3014. PubMed  Europe PubMed DOI  I
  157. Gur,E., Ottofueling,R. and Dougan,D.A.
    Machines of destruction - AAA+ proteases and the adaptors that control them
    Subcell Biochem66, 3-33. PubMed  Europe PubMed DOI
  158. Kraut,D.A.
    Slippery substrates impair ATP-dependent protease function by slowing unfolding
    J Biol Chem288, 34729-34735. PubMed  Europe PubMed DOI
  159. Lee,J.O., Kim,J.Y., Rhee,D.K. and Pyo,S.
    Streptococcus pneumoniae ClpP protease induces apoptosis via caspase-independent pathway in human neuroblastoma cells: cytoplasmic relocalization of p53
    Toxicon70, 142-152. PubMed  Europe PubMed DOI
  160. Li,T. and Lucius,A.L.
    Examination of the polypeptide substrate specificity for Escherichia coli ClpA
    Biochemistry52, 4941-4954. PubMed  Europe PubMed DOI  P
  161. Maurizi,M.R. and Stan,G.
    ClpX shifts into high gear to unfold stable proteins
    Cell155, 502-504. PubMed  Europe PubMed DOI
  162. Miller,J.M., Lin,J., Li,T. and Lucius,A.L.
    E. coli ClpA catalyzed polypeptide translocation is allosterically controlled by the protease ClpP
    J Mol Biol425, 2795-2812. PubMed  Europe PubMed DOI
  163. Schiefer,A., Vollmer,J., Lammer,C., Specht,S., Lentz,C., Ruebsamen-Schaeff,H., Brotz-Oesterhelt,H., Hoerauf,A. and Pfarr,K.
    The ClpP peptidase of Wolbachia endobacteria is a novel target for drug development against filarial infections
    J Antimicrob Chemother68, 1790-1800. PubMed  Europe PubMed DOI
  164. Sen,M., Maillard,R.A., Nyquist,K., Rodriguez-Aliaga,P., Presse,S., Martin,A. and Bustamante,C.
    The ClpXP protease unfolds substrates using a constant rate of pulling but different gears
    Cell155, 636-646. PubMed  Europe PubMed DOI
  165. Sowole,M.A., Alexopoulos,J.A., Cheng,Y.Q., Ortega,J. and Konermann,L.
    Activation of ClpP protease by ADEP antibiotics: insights from hydrogen exchange mass spectrometry
    J Mol Biol425, 4508-4519. PubMed  Europe PubMed DOI
  166. Stinson,B.M., Nager,A.R., Glynn,S.E., Schmitz,K.R., Baker,T.A. and Sauer,R.T.
    Nucleotide binding and conformational switching in the hexameric ring of a AAA+ machine
    Cell153, 628-639. PubMed  Europe PubMed DOI
  167. Too,P.H., Erales,J., Simen,J.D., Marjanovic,A. and Coffino,P.
    Slippery substrates impair function of a bacterial protease ATPase by unbalancing translocation versus exit
    J Biol Chem288, 13243-13257. PubMed  Europe PubMed DOI
  168. Vass,R.H. and Chien,P.
    Critical clamp loader processing by an essential AAA+ protease in Caulobacter crescentus
    Proc Natl Acad Sci U S A110, 18138-18143. PubMed  Europe PubMed DOI
  169. Ye,F., Zhang,J., Liu,H., Hilgenfeld,R., Zhang,R., Kong,X., Li,L., Lu,J., Zhang,X., Li,D., Jiang,H., Yang,C.G. and Luo,C.
    Helix unfolding/refolding characterizes the functional dynamics of Staphylococcus aureus CLP protease
    J Biol Chem288, 17643-17653. PubMed  Europe PubMed DOI  S
  170. Zeiler,E., List,A., Alte,F., Gersch,M., Wachtel,R., Poreba,M., Drag,M., Groll,M. and Sieber,S.A.
    Structural and functional insights into caseinolytic proteases reveal an unprecedented regulation principle of their catalytic triad
    Proc Natl Acad Sci U S A110, 11302-11307. PubMed  Europe PubMed DOI  S
  171. 2012
  172. Alexopoulos,J.A., Guarne,A. and Ortega,J.
    ClpP: a structurally dynamic protease regulated by AAA+ proteins
    J Struct Biol179, 202-210. PubMed  Europe PubMed DOI  S
  173. Baker,T.A. and Sauer,R.T.
    ClpXP, an ATP-powered unfolding and protein-degradation machine
    Biochim Biophys Acta1823, 15-28. PubMed  Europe PubMed DOI
  174. Derrien,B., Majeran,W., Effantin,G., Ebenezer,J., Friso,G., van Wijk,K.J., Steven,A.C., Maurizi,M.R. and Vallon,O.
    The purification of the Chlamydomonas reinhardtii chloroplast ClpP complex: additional subunits and structural features
    Plant Mol Biol80, 189-202. PubMed  Europe PubMed DOI
  175. Frees,D., Andersen,J.H., Hemmingsen,L., Koskenniemi,K., Baek,K.T., Muhammed,M.K., Gudeta,D.D., Nyman,T.A., Sukura,A., Varmanen,P. and Savijoki,K.
    New insights into Staphylococcus aureus stress tolerance and virulence regulation from an analysis of the role of the ClpP protease in the strains Newman, COL, and SA564
    J Proteome Res11, 95-108. PubMed  Europe PubMed DOI
  176. Gersch,M., List,A., Groll,M. and Sieber,S.A.
    Insights into structural network responsible for oligomerization and activity of bacterial virulence regulator caseinolytic protease P (ClpP) protein
    J Biol Chem287, 9484-9494. PubMed  Europe PubMed DOI  S
  177. Glynn,S.E., Nager,A.R., Baker,T.A. and Sauer,R.T.
    Dynamic and static components power unfolding in topologically closed rings of a AAA+ proteolytic machine
    Nat Struct Mol Biol19, 616-622. PubMed  Europe PubMed DOI
  178. Maurizi,M.R.
    Endopeptidase Clp
    [ISSN:978-0-12-407742-3]3, 3593-3599. DOI
  179. McGillivray,S.M., Tran,D.N., Ramadoss,N.S., Alumasa,J.N., Okumura,C.Y., Sakoulas,G., Vaughn,M.M., Zhang,D.X., Keiler,K.C. and Nizet,V.
    Pharmacological inhibition of the ClpXP protease increases bacterial susceptibility to host cathelicidin antimicrobial peptides and cell envelope-active antibiotics
    Antimicrob Agents Chemother56, 1854-1861. PubMed  Europe PubMed DOI  I
  180. 2011
  181. Alegre-Cebollada,J., Kosuri,P. and Fernandez,J.M.
    Protease power strokes force proteins to unfold
    Cell145, 339-340. PubMed  Europe PubMed DOI
  182. Aubin-Tam,M.E., Olivares,A.O., Sauer,R.T., Baker,T.A. and Lang,M.J.
    Single-molecule protein unfolding and translocation by an ATP-fueled proteolytic machine
    Cell145, 257-267. PubMed  Europe PubMed DOI
  183. Cohn,M.T., Kjelgaard,P., Frees,D., Penades,J.R. and Ingmer,H.
    Clp-dependent proteolysis of the LexA N-terminal domain in Staphylococcus aureus
    Microbiology (Reading)157, 677-684. PubMed  Europe PubMed DOI
  184. Dougan,D.A.
    Chemical activators of ClpP: turning Jekyll into Hyde
    Chem Biol18, 1072-1074. PubMed  Europe PubMed DOI
  185. Einsfeldt,K., Severo Junior,J.B., Correa Argondizzo,A.P., Medeiros,M.A., Alves,T.L., Almeida,R.V. and Larentis,A.L.
    Cloning and expression of protease ClpP from Streptococcus pneumoniae in Escherichia coli: study of the influence of kanamycin and IPTG concentration on cell growth, recombinant protein production and plasmid stability
    Vaccine29, 7136-7143. PubMed  Europe PubMed DOI
  186. Geiger,S.R., Bottcher,T., Sieber,S.A. and Cramer,P.
    A conformational switch underlies ClpP protease function
    Angew Chem Int Ed Engl50, 5749-5752. PubMed  Europe PubMed DOI
  187. Gominet,M., Seghezzi,N. and Mazodier,P.
    Acyl depsipeptide (ADEP) resistance in Streptomyces
    Microbiology (Reading)157, 2226-2234. PubMed  Europe PubMed DOI
  188. Lee,B.G., Kim,M.K. and Song,H.K.
    Structural insights into the conformational diversity of ClpP from Bacillus subtilis
    Mol Cells32, 589-595. PubMed  Europe PubMed DOI
  189. Leung,E., Datti,A., Cossette,M., Goodreid,J., McCaw,S.E., Mah,M., Nakhamchik,A., Ogata,K., El Bakkouri,M., Cheng,Y.Q., Wodak,S.J., Eger,B.T., Pai,E.F., Liu,J., Gray-Owen,S., Batey,R.A. and Houry,W.A.
    Activators of cylindrical proteases as antimicrobials: identification and development of small molecule activators of ClpP protease
    Chem Biol18, 1167-1178. PubMed  Europe PubMed DOI
  190. Maillard,R.A., Chistol,G., Sen,M., Righini,M., Tan,J., Kaiser,C.M., Hodges,C., Martin,A. and Bustamante,C.
    ClpX(P) generates mechanical force to unfold and translocate its protein substrates
    Cell145, 459-469. PubMed  Europe PubMed DOI
  191. Nager,A.R., Baker,T.A. and Sauer,R.T.
    Stepwise unfolding of a beta barrel protein by the AAA+ ClpXP protease
    J Mol Biol413, 4-16. PubMed  Europe PubMed DOI
  192. Religa,T.L., Ruschak,A.M., Rosenzweig,R. and Kay,L.E.
    Site-directed methyl group labeling as an NMR probe of structure and dynamics in supramolecular protein systems: applications to the proteasome and to the ClpP protease
    J Am Chem Soc133, 9063-9068. PubMed  Europe PubMed DOI
  193. Roman-Hernandez,G., Hou,J.Y., Grant,R.A., Sauer,R.T. and Baker,T.A.
    The ClpS adaptor mediates staged delivery of N-end rule substrates to the AAA+ ClpAP protease
    Mol Cell43, 217-228. PubMed  Europe PubMed DOI
  194. Sass,P., Josten,M., Famulla,K., Schiffer,G., Sahl,H.G., Hamoen,L. and Brotz-Oesterhelt,H.
    Antibiotic acyldepsipeptides activate ClpP peptidase to degrade the cell division protein FtsZ
    Proc Natl Acad Sci U S A108, 17474-17479. PubMed  Europe PubMed DOI
  195. Sauer,R.T. and Baker,T.A.
    AAA+ Proteases: ATP-fueled machines of protein destruction
    Annu Rev Biochem80, 587-612. PubMed  Europe PubMed DOI
  196. Wang,F., Mei,Z., Qi,Y., Yan,C., Hu,Q., Wang,J. and Shi,Y.
    Structure and mechanism of the hexameric MecA-ClpC molecular machine
    Nature471, 331-335. PubMed  Europe PubMed DOI
  197. Zeiler,E., Braun,N., Bottcher,T., Kastenmuller,A., Weinkauf,S. and Sieber,S.A.
    Vibralactone as a tool to study the activity and structure of the ClpP1P2 complex from Listeria monocytogenes
    Angew Chem Int Ed Engl50, 11001-11004. PubMed  Europe PubMed DOI  I
  198. Zhang,J., Ye,F., Lan,L., Jiang,H., Luo,C. and Yang,C.G.
    Structural switching of Staphylococcus aureus Clp protease: a key to understanding protease dynamics
    J Biol Chem286, 37590-37601. PubMed  Europe PubMed DOI
  199. 2010
  200. Chattoraj,P., Banerjee,A., Biswas,S. and Biswas,I.
    ClpP of Streptococcus mutans differentially regulates expression of genomic islands, mutacin production, and antibiotic tolerance
    J Bacteriol192, 1312-1323. PubMed  Europe PubMed DOI
  201. Effantin,G., Maurizi,M.R. and Steven,A.C.
    Binding of the ClpA unfoldase opens the axial gate of ClpP peptidase
    J Biol Chem285, 14834-14840. PubMed  Europe PubMed DOI
  202. Kimber,M.S., Yu,A.Y., Borg,M., Leung,E., Chan,H.S. and Houry,W.A.
    Structural and theoretical studies indicate that the cylindrical protease ClpP samples extended and compact conformations
    Structure18, 798-808. PubMed  Europe PubMed DOI  S
  203. Knott,K., Fishovitz,J., Thorpe,S.B., Lee,I. and Santos,W.L.
    N-Terminal peptidic boronic acids selectively inhibit human ClpXP
    Org Biomol Chem8, 3451-3456. PubMed  Europe PubMed DOI  I
  204. Lee,B.G., Park,E.Y., Lee,K.E., Jeon,H., Sung,K.H., Paulsen,H., Rubsamen-Schaeff,H., Brotz-Oesterhelt,H. and Song,H.K.
    Structures of ClpP in complex with acyldepsipeptide antibiotics reveal its activation mechanism
    Nat Struct Mol Biol17, 471-478. PubMed  Europe PubMed DOI  S
  205. Lee,M.E., Baker,T.A. and Sauer,R.T.
    Control of substrate gating and translocation into ClpP by channel residues and ClpX binding
    J Mol Biol399, 707-718. PubMed  Europe PubMed DOI
  206. Li,D.H., Chung,Y.S., Gloyd,M., Joseph,E., Ghirlando,R., Wright,G.D., Cheng,Y.Q., Maurizi,M.R., Guarne,A. and Ortega,J.
    Acyldepsipeptide antibiotics induce the formation of a structured axial channel in ClpP: a model for the ClpX/ClpA-bound state of ClpP
    Chem Biol17, 959-969. PubMed  Europe PubMed DOI
  207. Li,X.H., Zeng,Y.L., Gao,Y., Zheng,X.C., Zhang,Q.F., Zhou,S.N. and Lu,Y.J.
    The ClpP protease homologue is required for the transmission traits and cell division of the pathogen Legionella pneumophila
    BMC Microbiol10, 54-54. PubMed  Europe PubMed DOI
  208. 2009
  209. Al Mamun,A.A. and Humayun,M.Z.
    Spontaneous mutagenesis is elevated in protease-defective cells
    Mol Microbiol71, 629-639. PubMed  Europe PubMed DOI
  210. Barkow,S.R., Levchenko,I., Baker,T.A. and Sauer,R.T.
    Polypeptide translocation by the AAA+ ClpXP protease machine
    Chem Biol16, 605-612. PubMed  Europe PubMed DOI
  211. Bewley,M.C., Graziano,V., Griffin,K. and Flanagan,J.M.
    Turned on for degradation: ATPase-independent degradation by ClpP
    J Struct Biol165, 118-125. PubMed  Europe PubMed DOI  S
  212. Camberg,J.L., Hoskins,J.R. and Wickner,S.
    ClpXP protease degrades the cytoskeletal protein, FtsZ, and modulates FtsZ polymer dynamics
    Proc Natl Acad Sci U S A106, 10614-10619. PubMed  Europe PubMed DOI
  213. Cao,J., Li,D., Gong,Y., Yin,N., Chen,T., Wong,C.K., Xu,W., Luo,J., Zhang,X., Lam,C.W. and Yin,Y.
    Caseinolytic protease: a protein vaccine which could elicit serotype-independent protection against invasive pneumococcal infection
    Clin Exp Immunol156, 52-60. PubMed  Europe PubMed DOI  T
  214. Ingmer,H. and Brondsted,L.
    Proteases in bacterial pathogenesis
    Res Microbiol160, 704-710. PubMed  Europe PubMed DOI  V
  215. Kirstein,J., Hoffmann,A., Lilie,H., Schmidt,R., Rubsamen-Waigmann,H., Brotz-Oesterhelt,H., Mogk,A. and Turgay,K.
    The antibiotic ADEP reprogrammes ClpP, switching it from a regulated to an uncontrolled protease
    EMBO Mol Med1, 37-49. PubMed  Europe PubMed DOI
  216. Kolygo,K., Ranjan,N., Kress,W., Striebel,F., Hollenstein,K., Neelsen,K., Steiner,M., Summer,H. and Weber-Ban,E.
    Studying chaperone-proteases using a real-time approach based on FRET
    J Struct Biol168, 267-277. PubMed  Europe PubMed DOI
  217. Koodathingal,P., Jaffe,N.E., Kraut,D.A., Prakash,S., Fishbain,S., Herman,C. and Matouschek,A.
    ATP-dependent proteases differ substantially in their ability to unfold globular proteins
    J Biol Chem284, 18674-18684. PubMed  Europe PubMed DOI
  218. Kress,W., Mutschler,H. and Weber-Ban,E.
    Both ATPase domains of ClpA are critical for processing of stable protein structures
    J Biol Chem284, 31441-31452. PubMed  Europe PubMed DOI
  219. Kress,W., Maglica,Z. and Weber-Ban,E.
    Clp chaperone-proteases: structure and function
    Res Microbiol160, 618-628. PubMed  Europe PubMed DOI  V
  220. Loughlin,M.F., Arandhara,V., Okolie,C., Aldsworth,T.G. and Jenks,P.J.
    Helicobacter pylori mutants defective in the clpP ATP-dependant protease and the chaperone clpA display reduced macrophage and murine survival
    Microb Pathog46, 53-57. PubMed  Europe PubMed DOI
  221. Maglica,Z., Kolygo,K. and Weber-Ban,E.
    Optimal efficiency of ClpAP and ClpXP chaperone-proteases is achieved by architectural symmetry
    Structure17, 508-516. PubMed  Europe PubMed DOI
  222. Mei,Z., Wang,F., Qi,Y., Zhou,Z., Hu,Q., Li,H., Wu,J. and Shi,Y.
    Molecular determinants of MecA as a degradation tag for the ClpCP protease
    J Biol Chem284, 34366-34375. PubMed  Europe PubMed DOI
  223. Pierechod,M., Nowak,A., Saari,A., Purta,E., Bujnicki,J.M. and Konieczny,I.
    Conformation of a plasmid replication initiator protein affects its proteolysis by ClpXP system
    Protein Sci18, 637-649. PubMed  Europe PubMed DOI
  224. Schmidt,R., Bukau,B. and Mogk,A.
    Principles of general and regulatory proteolysis by AAA+ proteases in Escherichia coli
    Res Microbiol160, 629-636. PubMed  Europe PubMed DOI
  225. Schuenemann,V.J., Kralik,S.M., Albrecht,R., Spall,S.K., Truscott,K.N., Dougan,D.A. and Zeth,K.
    Structural basis of N-end rule substrate recognition in Escherichia coli by the ClpAP adaptor protein ClpS
    EMBO Rep10, 508-514. PubMed  Europe PubMed DOI
  226. Shin,Y., Davis,J.H., Brau,R.R., Martin,A., Kenniston,J.A., Baker,T.A., Sauer,R.T. and Lang,M.J.
    Single-molecule denaturation and degradation of proteins by the AAA+ ClpXP protease
    Proc Natl Acad Sci U S A106, 19340-19345. PubMed  Europe PubMed DOI  A
  227. Wang,F., Mei,Z., Qi,Y., Yan,C., Xiang,S., Zhou,Z., Hu,Q., Wang,J. and Shi,Y.
    Crystal structure of the MecA degradation tag
    J Biol Chem284, 34376-34381. PubMed  Europe PubMed DOI
  228. 2008
  229. Cao,J., Chen,T., Li,D., Wong,C.K., Chen,D., Xu,W., Zhang,X., Lam,C.W. and Yin,Y.
    Mucosal immunization with purified ClpP could elicit protective efficacy against pneumococcal pneumonia and sepsis in mice
    Microbes Infect10, 1536-1542. PubMed  Europe PubMed DOI  U
  230. Capestany,C.A., Tribble,G.D., Maeda,K., Demuth,D.R. and Lamont,R.J.
    Role of the Clp system in stress tolerance, biofilm formation, and intracellular invasion in Porphyromonas gingivalis
    J Bacteriol190, 1436-1446. PubMed  Europe PubMed DOI
  231. Farbman,M.E., Gershenson,A. and Licht,S.
    Role of a Conserved Pore Residue in the Formation of a Prehydrolytic High Substrate Affinity State in the AAA+ Chaperone ClpA
    Biochemistry47, 13497-13505. PubMed  Europe PubMed DOI
  232. Iniesta,A.A. and Shapiro,L.
    A bacterial control circuit integrates polar localization and proteolysis of key regulatory proteins with a phospho-signaling cascade
    Proc Natl Acad Sci U S A105, 16602-16607. PubMed  Europe PubMed DOI
  233. Inobe,T. and Matouschek,A.
    Protein targeting to ATP-dependent proteases
    Curr Opin Struct Biol18, 43-51. PubMed  Europe PubMed DOI  V
  234. Jennings,L.D., Lun,D.S., Medard,M. and Licht,S.
    ClpP hydrolyzes a protein substrate processively in the absence of the ClpA ATPase: mechanistic studies of ATP-independent proteolysis
    Biochemistry47, 11536-11546. PubMed  Europe PubMed DOI
  235. Jennings,L.D., Bohon,J., Chance,M.R. and Licht,S.
    The ClpP N-Terminus Coordinates Substrate Access with Protease Active Site Reactivity
    Biochemistry47, 11031-11040. PubMed  Europe PubMed DOI
  236. Kain,J., He,G.G. and Losick,R.
    Polar localization and compartmentalization of ClpP proteases during growth and sporulation in Bacillus subtilis
    J Bacteriol190, 6749-6757. PubMed  Europe PubMed DOI
  237. Kim,D.Y. and Kim,K.K.
    The structural basis for the activation and peptide recognition of bacterial ClpP
    J Mol Biol379, 760-771. PubMed  Europe PubMed DOI  S
  238. Licht,S. and Lee,I.
    Resolving individual steps in the operation of ATP-dependent proteolytic molecular machines: from conformational changes to substrate translocation and processivity
    Biochemistry47, 3595-3605. PubMed  Europe PubMed DOI
  239. Maglica,Z., Striebel,F. and Weber-Ban,E.
    An intrinsic degradation tag on the ClpA C-terminus regulates the balance of ClpAP complexes with different substrate specificity
    J Mol Biol384, 503-511. PubMed  Europe PubMed DOI
  240. Martin,A., Baker,T.A. and Sauer,R.T.
    Protein unfolding by a AAA+ protease is dependent on ATP-hydrolysis rates and substrate energy landscapes
    Nat Struct Mol Biol15, 139-145. PubMed  Europe PubMed DOI
  241. Martin,A., Baker,T.A. and Sauer,R.T.
    Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding
    Nat Struct Mol Biol15, 1147-1151. PubMed  Europe PubMed DOI
  242. Simmons,L.A., Grossman,A.D. and Walker,G.C.
    Clp and Lon proteases occupy distinct subcellular positions in Bacillus subtilis
    J Bacteriol190, 6758-6768. PubMed  Europe PubMed DOI
  243. Wang,K.H., Roman-Hernandez,G., Grant,R.A., Sauer,R.T. and Baker,T.A.
    The molecular basis of N-end rule recognition
    Mol Cell32, 406-414. PubMed  Europe PubMed DOI
  244. Wang,K.H., Oakes,E.S., Sauer,R.T. and Baker,T.A.
    Tuning the strength of a bacterial N-end rule degradation signal
    J Biol Chem283, 24600-24607. PubMed  Europe PubMed DOI
  245. 2007
  246. Cheng,L., Naumann,T.A., Horswill,A.R., Hong,S.J., Venters,B.J., Tomsho,J.W., Benkovic,S.J. and Keiler,K.C.
    Discovery of antibacterial cyclic peptides that inhibit the ClpXP protease
    Protein Sci16, 1535-1542. PubMed  Europe PubMed DOI  I
  247. Farbman,M.E., Gershenson,A. and Licht,S.
    Single-molecule analysis of nucleotide-dependent substrate binding by the protein unfoldase ClpA
    J Am Chem Soc129, 12378-12379. PubMed  Europe PubMed DOI
  248. [YEAR:12-1-2007]Farrell,C.M., Baker,T.A. and Sauer,R.T.
    Altered specificity of a AAA+ protease
    Mol Cell25, 161-166. PubMed  Europe PubMed DOI
  249. Frees,D., Savijoki,K., Varmanen,P. and Ingmer,H.
    Clp ATPases and ClpP proteolytic complexes regulate vital biological processes in low GC, Gram-positive bacteria
    Mol Microbiol63, 1285-1295. PubMed  Europe PubMed DOI  V
  250. Kress,W., Mutschler,H. and Weber-Ban,E.
    Assembly pathway of an AAA+ protein: tracking ClpA and ClpAP complex formation in real time
    Biochemistry46, 6183-6193. PubMed  Europe PubMed DOI
  251. Martin,A., Baker,T.A. and Sauer,R.T.
    Distinct static and dynamic interactions control ATPase-peptidase communication in a AAA+ protease
    Mol Cell27, 41-52. PubMed  Europe PubMed DOI
  252. Reeves,A., Gerth,U., Volker,U. and Haldenwang,W.G.
    ClpP modulates the activity of the Bacillus subtilis stress response transcription factor, sigmaB
    J Bacteriol189, 6168-6175. PubMed  Europe PubMed DOI
  253. Servant,P., Jolivet,E., Bentchikou,E., Mennecier,S., Bailone,A. and Sommer,S.
    The ClpPX protease is required for radioresistance and regulates cell division after gamma-irradiation in Deinococcus radiodurans
    Mol Microbiol66, 1231-1239. PubMed  Europe PubMed DOI
  254. Stanne,T.M., Pojidaeva,E., Andersson,F.I. and Clarke,A.K.
    Distinctive types of ATP-dependent Clp proteases in cyanobacteria
    J Biol Chem282, 14394-14402. PubMed  Europe PubMed DOI
  255. Wang,C., Li,M., Dong,D., Wang,J., Ren,J., Otto,M. and Gao,Q.
    Role of ClpP in biofilm formation and virulence of Staphylococcus epidermidis
    Microbes Infect9, 1376-1383. PubMed  Europe PubMed DOI
  256. Yu,A.Y. and Houry,W.A.
    ClpP: a distinctive family of cylindrical energy-dependent serine proteases
    FEBS Lett581, 3749-3757. PubMed  Europe PubMed DOI  V
  257. 2006
  258. [YEAR:5-4-2006]Adam,Z., Rudella,A. and van Wijk,K.J.
    Recent advances in the study of Clp, FtsH and other proteases located in chloroplasts
    Curr Opin Plant Biol9, 234-240. PubMed  Europe PubMed DOI
  259. [YEAR:1-12-2006]Bewley,M.C., Graziano,V., Griffin,K. and Flanagan,J.M.
    The asymmetry in the mature amino-terminus of ClpP facilitates a local symmetry match in ClpAP and ClpXP complexes
    J Struct Biol153, 113-128. PubMed  Europe PubMed DOI  S
  260. [YEAR:9-2-2006]Erbse,A., Schmidt,R., Bornemann,T., Schneider-Mergener,J., Mogk,A., Zahn,R., Dougan,D.A. and Bukau,B.
    ClpS is an essential component of the N-end rule pathway in Escherichia coli
    Nature439, 753-756. PubMed  Europe PubMed DOI
  261. Michel,A., Agerer,F., Hauck,C.R., Herrmann,M., Ullrich,J., Hacker,J. and Ohlsen,K.
    Global regulatory impact of ClpP protease of Staphylococcus aureus on regulons involved in virulence, oxidative stress response, autolysis, and DNA repair
    J Bacteriol188, 5783-5796. PubMed  Europe PubMed DOI
  262. [YEAR:21-4-2006]Neher,S.B., Villen,J., Oakes,E.C., Bakalarski,C.E., Sauer,R.T., Gygi,S.P. and Baker,T.A.
    Proteomic profiling of ClpXP substrates after DNA damage reveals extensive instability within SOS regulon
    Mol Cell22, 193-204. PubMed  Europe PubMed DOI
  263. [YEAR:21-4-2006]Szyk,A. and Maurizi,M.R.
    Crystal structure at 1.9A of E. coli ClpP with a peptide covalently bound at the active site
    J Struct Biol156, 165-174. PubMed  Europe PubMed DOI  S  I
  264. [YEAR:29-6-2006]Thibault,G., Tsitrin,Y., Davidson,T., Gribun,A. and Houry,W.A.
    Large nucleotide-dependent movement of the N-terminal domain of the ClpX chaperone
    EMBO J25, 3367-3376. PubMed  Europe PubMed DOI
  265. [YEAR:8-8-2006]Zellmeier,S., Schumann,W. and Wiegert,T.
    Involvement of Clp protease activity in modulating the Bacillus subtilis sigmaw stress response
    Mol Microbiol61, 1569-1582. PubMed  Europe PubMed DOI
  266. 2005
  267. [YEAR:11-11-2005]Barker-Astrom,K., Schelin,J., Gustafsson,P., Clarke,A.K. and Campbell,D.A.
    Chlorosis during nitrogen starvation is altered by carbon dioxide and temperature status and is mediated by the ClpP1 protease in Synechococcus elongatus
    Arch Microbiol183, 66-69. PubMed  Europe PubMed DOI
  268. Brotz-Oesterhelt,H., Beyer,D., Kroll,H.P., Endermann,R., Ladel,C., Schroeder,W., Hinzen,B., Raddatz,S., Paulsen,H., Henninger,K., Bandow,J.E., Sahl,H.G. and Labischinski,H.
    Dysregulation of bacterial proteolytic machinery by a new class of antibiotics
    Nat Med11, 1082-1087. PubMed  Europe PubMed DOI
  269. [YEAR:25-10-2005]Choi,K.H. and Licht,S.
    Control of peptide product sizes by the energy-dependent protease ClpAP
    Biochemistry44, 13921-13931. PubMed  Europe PubMed DOI
  270. Clarke,A.K., MacDonald,T.M. and Sjogren,L.L.E.
    The ATP-dependent Clp protease in chloroplasts of higher plants
    Physiol Plant123, 406-412.
  271. Farrell,C.M., Grossman,A.D. and Sauer,R.T.
    Cytoplasmic degradation of ssrA-tagged proteins
    Mol Microbiol57, 1750-1761. PubMed  Europe PubMed DOI
  272. [YEAR:8-2-2005]Gribun,A., Kimber,M.S., Ching,R., Sprangers,R., Fiebig,K.M. and Houry,W.A.
    The ClpP double ring tetradecameric protease exhibits plastic ring-ring interactions, and the N termini of its subunits form flexible loops that are essential for ClpXP and ClpAP complex formation
    J Biol Chem280, 16185-16196. PubMed  Europe PubMed DOI  S
  273. [YEAR:5-10-2005]Hinnerwisch,J., Reid,B.G., Fenton,W.A. and Horwich,A.L.
    Roles of the N-domains of the ClpA unfoldase in binding substrate proteins and in stable complex formation with the ClpP protease
    J Biol Chem280, 40838-40844. PubMed  Europe PubMed DOI
  274. [YEAR:1-7-2005]Hinnerwisch,J., Fenton,W.A., Furtak,K.J., Farr,G.W. and Horwich,A.L.
    Loops in the central channel of ClpA chaperone mediate protein binding, unfolding, and translocation
    Cell121, 1029-1041. PubMed  Europe PubMed DOI
  275. [YEAR:8-5-2005]Levchenko,I., Grant,R.A., Flynn,J.M., Sauer,R.T. and Baker,T.A.
    Versatile modes of peptide recognition by the AAA+ adaptor protein SspB
    Nat Struct Mol Biol12, 520-525. PubMed  Europe PubMed DOI  S
  276. [YEAR:18-1-2005]Piszczek,G., Rozycki,J., Singh,S.K., Ginsburg,A. and Maurizi,M.R.
    The molecular chaperone, ClpA, has a single high affinity peptide binding site per hexamer
    J Biol Chem280, 12221-12230. PubMed  Europe PubMed DOI
  277. [YEAR:8-12-2005]Sharma,S., Hoskins,J.R. and Wickner,S.
    Binding and degradation of heterodimeric substrates by ClpAP and ClpXP
    J Biol Chem280, 5449-5455. PubMed  Europe PubMed DOI
  278. [YEAR:23-9-2005]Tomoyasu,T., Takaya,A., Handa,Y., Karata,K. and Yamamoto,T.
    ClpXP controls the expression of LEE genes in enterohaemorrhagic Escherichia coli
    FEMS Microbiol Lett253, 59-66. PubMed  Europe PubMed DOI
  279. 2004
  280. Flynn,J.M., Levchenko,I., Sauer,R.T. and Baker,T.A.
    Modulating substrate choice: the SspB adaptor delivers a regulator of the extracytoplasmic-stress response to the AAA+ protease ClpXP for degradation
    Genes Dev18, 2292-2301. PubMed  Europe PubMed DOI
  281. Ishikawa,T., Maurizi,M.R. and Steven,A.C.
    The N-terminal substrate-binding domain of ClpA unfoldase is highly mobile and extends axially from the distal surface of ClpAP protease
    J Struct Biol146, 180-188. PubMed  Europe PubMed DOI
  282. Joshi,S.A., Hersch,G.L., Baker,T.A. and Sauer,R.T.
    Communication between ClpX and ClpP during substrate processing and degradation
    Nat Struct Mol Biol11, 404-411. PubMed  Europe PubMed DOI
  283. Kock,H., Gerth,U. and Hecker,M.
    MurAA, catalysing the first committed step in peptidoglycan biosynthesis, is a target of Clp-dependent proteolysis in Bacillus subtilis
    Mol Microbiol51, 1087-1102. PubMed  Europe PubMed DOI
  284. Kock,H., Gerth,U. and Hecker,M.
    The ClpP peptidase is the major determinant of bulk protein turnover in Bacillus subtilis
    J Bacteriol186, 5856-5864. PubMed  Europe PubMed DOI
  285. Kwon,H.Y., Ogunniyi,A.D., Choi,M.H., Pyo,S.N., Rhee,D.K. and Paton,J.C.
    The ClpP protease of Streptococcus pneumoniae modulates virulence gene expression and protects against fatal pneumococcal challenge
    Infect Immun72, 5646-5653. PubMed  Europe PubMed DOI
  286. Maurizi,M.R.
    Endopeptidase Clp
    [ISSN:0-12-079610-4]2, 2017-2023.  V
  287. Ortega,J., Lee,H.S., Maurizi,M.R. and Steven,A.C.
    ClpA and ClpX ATPases bind simultaneously to opposite ends of ClpP peptidase to form active hybrid complexes
    J Struct Biol146, 217-226. PubMed  Europe PubMed DOI
  288. Peltier,J.B., Ripoll,D.R., Friso,G., Rudella,A., Cai,Y., Ytterberg,J., Giacomelli,L., Pillardy,J. and van Wijk,K.J.
    Clp protease complexes from photosynthetic and non-photosynthetic plastids and mitochondria of plants, their predicted three-dimensional structures, and functional implications
    J Biol Chem279, 4768-4781. PubMed  Europe PubMed DOI
  289. Siddiqui,S.M., Sauer,R.T. and Baker,T.A.
    Role of the processing pore of the ClpX AAA+ ATPase in the recognition and engagement of specific protein substrates
    Genes Dev18, 369-374. PubMed  Europe PubMed DOI
  290. [YEAR:24-11-2004]Weibezahn,J., Tessarz,P., Schlieker,C., Zahn,R., Maglica,Z., Lee,S., Zentgraf,H., Weber-Ban,E.U., Dougan,D.A., Tsai,F.T., Mogk,A. and Bukau,B.
    Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB
    Cell119, 653-665. PubMed  Europe PubMed DOI
  291. Xia,D., Esser,L., Singh,S.K., Guo,F. and Maurizi,M.R.
    Crystallographic investigation of peptide binding sites in the N-domain of the ClpA chaperone
    J Struct Biol146, 166-179. PubMed  Europe PubMed DOI
  292. 2003
  293. Flynn,J.M., Neher,S.B., Kim,Y.I., Sauer,R.T. and Baker,T.A.
    Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals
    Mol Cell11, 671-683. PubMed  Europe PubMed DOI
  294. Matsui,H., Suzuki,M., Isshiki,Y., Kodama,C., Eguchi,M., Kikuchi,Y., Motokawa,K., Takaya,A., Tomoyasu,T. and Yamamoto,T.
    Oral immunization with ATP-dependent protease-deficient mutants protects mice against subsequent oral challenge with virulent Salmonella enterica serovar typhimurium
    Infect Immun71, 30-39. PubMed  Europe PubMed DOI
  295. Nair,S., Poyart,C., Beretti,J.L., Veiga-Fernandes,H., Berche,P. and Trieu-Cuot,P.
    Role of the Streptococcus agalactiae ClpP serine protease in heat-induced stress defence and growth arrest
    Microbiology (Reading, Engl )149, 407-417. PubMed  Europe PubMed DOI
  296. [YEAR:1-5-2003]Neher,S.B., Flynn,J.M., Sauer,R.T. and Baker,T.A.
    Latent ClpX-recognition signals ensure LexA destruction after DNA damage
    Genes Dev17, 1084-1089. PubMed  Europe PubMed DOI
  297. [YEAR:11-11-2003]Neher,S.B., Sauer,R.T. and Baker,T.A.
    Distinct peptide signals in the UmuD and UmuD' subunits of UmuD/D' mediate tethering and substrate processing by the ClpXP protease
    Proc Natl Acad Sci U S A100, 13219-13224. PubMed  Europe PubMed DOI
  298. Song,H.K. and Eck,M.J.
    Structural basis of degradation signal recognition by SspB, a specificity-enhancing factor for the ClpXP proteolytic machine
    Mol Cell12, 75-86. PubMed  Europe PubMed DOI
  299. Tomoyasu,T., Takaya,A., Isogai,E. and Yamamoto,T.
    Turnover of FlhD and FlhC, master regulator proteins for Salmonella flagellum biogenesis, by the ATP-dependent ClpXP protease
    Mol Microbiol48, 443-452. PubMed  Europe PubMed DOI
  300. Weichart,D., Querfurth,N., Dreger,M. and Hengge-Aronis,R.
    Global role for ClpP-containing proteases in stationary-phase adaptation of Escherichia coli
    J Bacteriol185, 115-125. PubMed  Europe PubMed DOI
  301. 2002
  302. Bohn,C., Binet,E. and Bouloc,P.
    Screening for stabilization of proteins with a trans-translation signature in Escherichia coli selects for inactivation of the ClpXP protease
    Mol Genet Genomics266, 827-831. PubMed  Europe PubMed DOI
  303. Guo,F., Maurizi,M.R., Esser,L. and Xia,D.
    Crystal structure of ClpA, an Hsp100 chaperone and regulator of ClpAP protease
    J Biol Chem277, 46743-46752. PubMed  Europe PubMed DOI
  304. [YEAR:20-8-2002]Hoskins,J.R., Yanagihara,K., Mizuuchi,K. and Wickner,S.
    ClpAP and ClpXP degrade proteins with tags located in the interior of the primary sequence
    Proc Natl Acad Sci U S A99, 11037-11042. PubMed  Europe PubMed DOI
  305. [YEAR:16-9-2002]Ortega,J., Lee,H.S., Maurizi,M.R. and Steven,A.C.
    Alternating translocation of protein substrates from both ends of ClpXP protease
    EMBO J21, 4938-4949. PubMed  Europe PubMed DOI  S
  306. Schelin,J., Lindmark,F. and Clarke,A.K.
    The clpP multigene family for the ATP-dependent Clp protease in the cyanobacterium Synechococcus
    Microbiology (Reading, Engl )148, 2255-2265. PubMed  Europe PubMed
  307. Thomsen,L.E., Olsen,J.E., Foster,J.W. and Ingmer,H.
    ClpP is involved in the stress response and degradation of misfolded proteins in Salmonella enterica serovar Typhimurium
    Microbiology (Reading, Engl )148, 2727-2733. PubMed  Europe PubMed
  308. Tomoyasu,T., Ohkishi,T., Ukyo,Y., Tokumitsu,A., Takaya,A., Suzuki,M., Sekiya,K., Matsui,H., Kutsukake,K. and Yamamoto,T.
    The ClpXP ATP-dependent protease regulates flagellum synthesis in Salmonella enterica serovar typhimurium
    J Bacteriol184, 645-653. PubMed  Europe PubMed
  309. Zheng,B., Halperin,T., Hruskova-Heidingsfeldova,O., Adam,Z. and Clarke,A.K.
    Characterization of chloroplast Clp proteins in Arabidopsis: localization, tissue specificity and stress responses
    Physiol Plant114, 92-101. PubMed  Europe PubMed
  310. 2001
  311. Adam,Z., Adamska,I., Nakabayashi,K., Ostersetzer,O., Haussuhl,K., Manuell,A., Zheng,B., Vallon,O., Rodermel,S.R., Shinozaki,K. and Clarke,A.K.
    Chloroplast and mitochondrial proteases in Arabidopsis. A proposed nomenclature
    Plant Physiol125, 1912-1918. PubMed  Europe PubMed DOI
  312. [YEAR:15-6-2001]Burton,R.E., Siddiqui,S.M., Kim,Y.I., Baker,T.A. and Sauer,R.T.
    Effects of protein stability and structure on substrate processing by the ClpXP unfolding and degradation machine
    EMBO J20, 3092-3100. PubMed  Europe PubMed DOI
  313. Gaillot,O., Bregenholt,S., Jaubert,F., Di Santo,J.P. and Berche,P.
    Stress-induced ClpP serine protease of Listeria monocytogenes is essential for induction of listeriolysin O-dependent protective immunity
    Infect Immun69, 4938-4943. PubMed  Europe PubMed DOI
  314. Halperin,T., Zheng,B., Itzhaki,H., Clarke,A.K. and Adam,Z.
    Plant mitochondria contain proteolytic and regulatory subunits of the ATP-dependent Clp protease
    Plant Mol Biol45, 461-468. PubMed  Europe PubMed DOI
  315. [YEAR:10-4-2001]Ishikawa,T., Beuron,F., Kessel,M., Wickner,S., Maurizi,M.R. and Steven,A.C.
    Translocation pathway of protein substrates in ClpAP protease
    Proc Natl Acad Sci U S A98, 4328-4333. PubMed  Europe PubMed DOI
  316. Kim,Y.I., Levchenko,I., Fraczkowska,K., Woodruff,R.V., Sauer,R.T. and Baker,T.A.
    Molecular determinants of complex formation between Clp/Hsp100 ATPases and the ClpP peptidase
    Nat Struct Biol8, 230-233. PubMed  Europe PubMed DOI
  317. [YEAR:15-2-2001]Kruger,E., Zuhlke,D., Witt,E., Ludwig,H. and Hecker,M.
    Clp-mediated proteolysis in Gram-positive bacteria is autoregulated by the stability of a repressor
    EMBO J20, 852-863. PubMed  Europe PubMed DOI
  318. Lee,C., Schwartz,M.P., Prakash,S., Iwakura,M. and Matouschek,A.
    ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signal
    Mol Cell7, 627-637. PubMed  Europe PubMed DOI
  319. [YEAR:27-3-2001]Reid,B.G., Fenton,W.A., Horwich,A.L. and Weber-Ban,E.U.
    ClpA mediates directional translocation of substrate proteins into the ClpP protease
    Proc Natl Acad Sci U S A98, 3768-3772. PubMed  Europe PubMed DOI
  320. Shikanai,T., Shimizu,K., Ueda,K., Nishimura,Y., Kuroiwa,T. and Hashimoto,T.
    The chloroplast clpP gene, encoding a proteolytic subunit of ATP-dependent protease, is indispensable for chloroplast development in tobacco
    Plant Cell Physiol42, 264-273. PubMed  Europe PubMed
  321. Yamamoto,T., Sashinami,H., Takaya,A., Tomoyasu,T., Matsui,H., Kikuchi,Y., Hanawa,T., Kamiya,S. and Nakane,A.
    Disruption of the genes for ClpXP protease in Salmonella enterica serovar typhimurium results in persistent infection in mice, and development of persistence requires endogenous gamma interferon and tumor necrosis factor alpha
    Infect Immun69, 3164-3174. PubMed  Europe PubMed DOI
  322. 2000
  323. Gaillot,O., Pellegrini,E., Bregenholt,S., Nair,S. and Berche,P.
    The ClpP serine protease is essential for the intracellular parasitism and virulence of Listeria monocytogenes
    Mol Microbiol35, 1286-1294. PubMed  Europe PubMed DOI
  324. [YEAR:2-10-2000]Gonzalez,M., Rasulova,F., Maurizi,M.R. and Woodgate,R.
    Subunit-specific degradation of the UmuD/D' heterodimer by the ClpXP protease: the role of trans recognition in UmuD' stability
    EMBO J19, 5251-5258. PubMed  Europe PubMed DOI
  325. [YEAR:10-11-2000]Hoskins,J.R., Kim,S.Y. and Wickner,S.
    Substrate recognition by the ClpA chaperone component of ClpAP protease
    J Biol Chem275, 35361-35367. PubMed  Europe PubMed DOI
  326. Kim,Y.I., Burton,R.E., Burton,B.M., Sauer,R.T. and Baker,T.A.
    Dynamics of substrate denaturation and translocation by the ClpXP degradation machine
    Mol Cell5, 639-648. PubMed  Europe PubMed
  327. [YEAR:29-9-2000]Levchenko,I., Seidel,M., Sauer,R.T. and Baker,T.A.
    A specificity-enhancing factor for the ClpXP degradation machine
    Science289, 2354-2356. PubMed  Europe PubMed DOI
  328. Mayo,I., Arizti,P., Pares,A., Oliva,J., Doforno,R.A., de Sagarra,M.R., Rodes,J. and Castano,J.G.
    Antibodies against the COOH-terminal region of E. coli ClpP protease in patients with primary biliary cirrhosis
    J Hepatol33, 528-536. PubMed  Europe PubMed
  329. Ortega,J., Singh,S.K., Ishikawa,T., Maurizi,M.R. and Steven,A.C.
    Visualization of substrate binding and translocation by the ATP-dependent protease, ClpXP
    Mol Cell6, 1515-1521. PubMed  Europe PubMed DOI
  330. [YEAR:1-8-2000]Singh,S.K., Grimaud,R., Hoskins,J.R., Wickner,S. and Maurizi,M.R.
    Unfolding and internalization of proteins by the ATP-dependent proteases ClpXP and ClpAP
    Proc Natl Acad Sci U S A97, 8898-8903. PubMed  Europe PubMed DOI
  331. Wegrzyn,A., Czyz,A., Gabig,M. and Wegrzyn,G.
    ClpP/ClpX-mediated degradation of the bacteriophage lambda O protein and regulation of lambda phage and lambda plasmid replication
    Arch Microbiol174, 89-96. PubMed  Europe PubMed DOI
  332. 1999
  333. [YEAR:14-5-1999]Gonciarz-Swiatek,M., Wawrzynow,A., Um,S.J., Learn,B.A., McMacken,R., Kelley,W.L., Georgopoulos,C., Sliekers,O. and Zylicz,M.
    Recognition, targeting, and hydrolysis of the lambda O replication protein by the ClpP/ClpX protease
    J Biol Chem274, 13999-14005. PubMed  Europe PubMed DOI
  334. OSteras,M., Stotz,A., Schmid Nuoffer,S. and Jenal,U.
    Identification and transcriptional control of the genes encoding the Caulobacter crescentus ClpXP protease
    J Bacteriol181, 3039-3050. PubMed  Europe PubMed
  335. Porankiewicz,J., Wang,J. and Clarke,A.K.
    New insights into the ATP-dependent Clp protease: Escherichia coli and beyond
    Mol Microbiol32, 449-458. PubMed  Europe PubMed DOI
  336. Schmidt,M., Lupas,A.N. and Finley,D.
    Structure and mechanism of ATP-dependent proteases
    Curr Opin Chem Biol3, 584-591. PubMed  Europe PubMed DOI
  337. [YEAR:9-11-1999]Singh,S.K., Guo,F. and Maurizi,M.R.
    ClpA and ClpP remain associated during multiple rounds of ATP-dependent protein degradation by ClpAP protease
    Biochemistry38, 14906-14915. PubMed  Europe PubMed DOI
  338. [YEAR:2-9-1999]Weber-Ban,E.U., Reid,B.G., Miranker,A.D. and Horwich,A.L.
    Global unfolding of a substrate protein by the Hsp100 chaperone ClpA
    Nature401, 90-93. PubMed  Europe PubMed DOI
  339. 1998
  340. Beuron,F., Maurizi,M.R., Belnap,D.M., Kocsis,E., Booy,F.P., Kessel,M. and Steven,A.C.
    At sixes and sevens: Characterization of the symmetry mismatch of the ClpAP chaperone-assisted protease
    J Struct Biol123, 248-259. PubMed  Europe PubMed DOI
  341. Clarke,A.K., Schelin,J. and Porankiewicz,J.
    Inactivation of the clpP1 gene for the proteolytic subunit of the ATP-dependent Clp protease in the cyanobacterium Synechococcus limits growth and light acclimation
    Plant Mol Biol37, 791-801. PubMed  Europe PubMed DOI
  342. [YEAR:1-5-1998]Gottesman,S., Roche,E., Zhou,Y. and Sauer,R.T.
    The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system
    Genes Dev12, 1338-1347. PubMed  Europe PubMed
  343. Porankiewicz,J., Schelin,J. and Clarke,A.K.
    The ATP-dependent Clp protease is essential for acclimation to UV-B and low temperature in the cyanobacterium Synechococcus
    Mol Microbiol29, 275-283. PubMed  Europe PubMed DOI
  344. 1997
  345. [YEAR:26-12-1997]Levchenko,I., Smith,C.K., Walsh,N.P., Sauer,R.T. and Baker,T.A.
    PDZ-like domains mediate binding specificity in the Clp/Hsp100 family of chaperones and protease regulatory subunits
    Cell91, 939-947. PubMed  Europe PubMed DOI
  346. Lupas,A., Flanagan,J.M., Tamura,T. and Baumeister,W.
    Self-compartmentalizing proteases
    Trends Biochem Sci22, 399-404. PubMed  Europe PubMed DOI
  347. Pederson,K.J., Carlson,S. and Pierson,D.E.
    The ClpP protein, a subunit of the Clp protease, modulates ail gene expression in Yersinia enterocolitica
    Mol Microbiol26, 99-107. PubMed  Europe PubMed
  348. Suzuki,C.K., Rep,M., van Dijl,J.M., Suda,K., Grivell,L.A. and Schatz,G.
    ATP-dependent proteases that also chaperone protein biogenesis
    Trends Biochem Sci22, 118-123. PubMed  Europe PubMed DOI  V
  349. [YEAR:14-11-1997]Wang,J., Hartling,J.A. and Flanagan,J.M.
    The structure of ClpP at 2.3 A resolution suggests a model for ATP-dependent proteolysis
    Cell91, 447-456. PubMed  Europe PubMed  S
  350. 1996
  351. Gottesman,S.
    Proteases and their targets in Escherichia coli
    Annu Rev Genet30, 465-506. PubMed  Europe PubMed DOI  V
  352. [YEAR:15-2-1996]Kruklitis,R., Welty,D.J. and Nakai,H.
    ClpX protein of Escherichia coli activates bacteriophage Mu transposase in the strand transfer complex for initiation of Mu DNA synthesis
    EMBO J15, 935-944. PubMed  Europe PubMed
  353. Shin,D.H., Lee,C.S., Chung,C.H. and Suh,S.W.
    Molecular symmetry of the ClpP component of the ATP-dependent Clp protease, an Escherichia coli homolog of 20 S proteasome
    J Mol Biol262, 71-76. PubMed  Europe PubMed DOI  S
  354. 1995
  355. Kessel,M., Maurizi,M.R., Kim,B., Kocsis,E., Trus,B.L., Singh,S.K. and Steven,A.C.
    Homology in structural organization between E. coli ClpAP protease and the eukaryotic 26 S proteasome
    J Mol Biol250, 587-594. PubMed  Europe PubMed DOI
  356. [YEAR:11-4-1995]Lehnherr,H. and Yarmolinsky,M.B.
    Addiction protein Phd of plasmid prophage P1 is a substrate of the ClpXP serine protease of Escherichia coli
    Proc Natl Acad Sci U S A92, 3274-3277. PubMed  Europe PubMed
  357. 1994
  358. Maurizi,M.R., Thompson,M.W., Singh,S.K. and Kim,S.H.
    Endopeptidase Clp: ATP-dependent Clp protease from Escherichia coli
    Methods Enzymol244, 314-331. PubMed  Europe PubMed DOI  V
  359. Thompson,M.W., Singh,S.K. and Maurizi,M.R.
    Processive degradation of proteins by the ATP-dependent Clp protease from Escherichia coli. Requirement for the multiple array of active sites in ClpP but not ATP hydrolysis
    J Biol Chem269, 18209-18215. PubMed  Europe PubMed
  360. Thompson,M.W. and Maurizi,M.R.
    Activity and specificity of Escherichia coli ClpAP protease in cleaving model peptide substrates
    J Biol Chem269, 18201-18208. PubMed  Europe PubMed
  361. 1993
  362. Arribas,J. and Castano,J.G.
    A comparative study of the chymotrypsin-like activity of the rat liver multicatalytic proteinase and the ClpP from Escherichia coli
    J Biol Chem268, 21165-21171. PubMed  Europe PubMed
  363. [YEAR:25-10-1993]Gottesman,S., Clark,W.P., de Crecy-Lagard,V. and Maurizi,M.R.
    ClpX, an alternative subunit for the ATP-dependent Clp protease of Escherichia coli. Sequence and in vivo activities
    J Biol Chem268, 22618-22626. PubMed  Europe PubMed
  364. 1991
  365. Tobias,J.W., Shrader,T.E., Rocap,G. and Varshavsky,A.
    The N-end rule in bacteria
    Science254, 1374-1377. PubMed  Europe PubMed
  366. 1990
  367. Gottesman,S., Squires,C., Pichersky,E., Carrington,M., Hobbs,M., Mattick,J.S., Dalrymple,B., Kuramitsu,H., Shiroza,T., Foster,T., Clark,W.P., Ross,B., Squires,C.L. and Maurizi,M.R.
    Conservation of the regulatory subunit for the Clp ATP-dependent protease in prokaryotes and eukaryotes
    Proc Natl Acad Sci U S A87, 3513-3517. PubMed  Europe PubMed DOI
  368. Gottesman,S., Clark,W.P. and Maurizi,M.R.
    The ATP-dependent Clp protease of Escherichia coli. Sequence of clpA and identification of a Clp-specific substrate
    J Biol Chem265, 7886-7893. PubMed  Europe PubMed
  369. Maurizi,M.R.
    ATP-promoted interaction between ClpA and ClpP in activation of Clp protease from Escherichia coli
    Biochem Soc Trans19, 719-723.
  370. Maurizi,M.R., Clark,W.P., Kim,S.H. and Gottesman,S.
    Clp P represents a unique family of serine proteases
    J Biol Chem265, 12546-12552. PubMed  Europe PubMed  I
  371. Maurizi,M.R., Clark,W.P., Katayama,Y., Rudikoff,S., Pumphrey,J., Bowers,B. and Gottesman,S.
    Sequence and structure of Clp P, the proteolytic component of the ATP-dependent Clp protease of Escherichia coli
    J Biol Chem265, 12536-12545. PubMed  Europe PubMed
  372. 1988
  373. Katayama,Y., Gottesman,S., Pumphrey,J., Rudikoff,S., Clark,W.P. and Maurizi,M.R.
    The two-component, ATP-dependent Clp protease of Escherichia coli. Purification, cloning, and mutational analysis of the ATP-binding component
    J Biol Chem263, 15226-15236. PubMed  Europe PubMed
  374. 1987
  375. Hwang,B.J., Park,W.J., Chung,C.H. and Goldberg,A.L.
    Escherichia coli contains a soluble ATP-dependent protease (Ti) distinct from protease La
    Proc Natl Acad Sci U S A84, 5550-5554. PubMed  Europe PubMed
  376. Katayama-Fujimura,Y., Gottesman,S. and Maurizi,M.R.
    A multiple-component, ATP-dependent protease from Escherichia coli
    J Biol Chem262, 4477-4485. PubMed  Europe PubMed