Lee2017 - Paracetamol first-pass metabolism PK model

Model Identifier
BIOMD0000000947
Short description
Authors developed a microfluidic gut-liver co-culture chip that aims to reproduce the first-pass metabolism of oral drugs. The study suggests the possibility of reproducing the human PK profile on a chip, contributing to accurate prediction of pharmacological effect of drugs.
Format
SBML
(L2V4)
Related Publication
-
3D gut-liver chip with a PK model for prediction of first-pass metabolism.
- Lee DW, Ha SK, Choi I, Sung JH
- Biomedical microdevices , 11/ 2017 , Volume 19 , Issue 4 , pages: 100 , PubMed ID: 29116458
- Department of Chemical Engineering, Hongik University, Seoul, 121-791, Korea.
- Accurate prediction of first-pass metabolism is essential for improving the time and cost efficiency of drug development process. Here, we have developed a microfluidic gut-liver co-culture chip that aims to reproduce the first-pass metabolism of oral drugs. This chip consists of two separate layers for gut (Caco-2) and liver (HepG2) cell lines, where cells can be co-cultured in both 2D and 3D forms. Both cell lines were maintained well in the chip, verified by confocal microscopy and measurement of hepatic enzyme activity. We investigated the PK profile of paracetamol in the chip, and corresponding PK model was constructed, which was used to predict PK profiles for different chip design parameters. Simulation results implied that a larger absorption surface area and a higher metabolic capacity are required to reproduce the in vivo PK profile of paracetamol more accurately. Our study suggests the possibility of reproducing the human PK profile on a chip, contributing to accurate prediction of pharmacological effect of drugs.
Contributors
Submitter of the first revision: Matthew Roberts
Submitter of this revision: Krishna Kumar Tiwari
Modellers: Matthew Roberts, Krishna Kumar Tiwari
Submitter of this revision: Krishna Kumar Tiwari
Modellers: Matthew Roberts, Krishna Kumar Tiwari
Metadata information
is (2 statements)
isDescribedBy (1 statement)
hasTaxon (1 statement)
hasProperty (1 statement)
hasPart (1 statement)
isVersionOf (1 statement)
occursIn (2 statements)
isDescribedBy (1 statement)
hasTaxon (1 statement)
hasProperty (1 statement)
hasPart (1 statement)
isVersionOf (1 statement)
occursIn (2 statements)
Curation status
Curated
Modelling approach(es)
Tags
Connected external resources
Name | Description | Size | Actions |
---|---|---|---|
Model files |
|||
Lee2017_Paracetamol_Metabolism.xml | SBML L2V4 representation of Lee2017 - Paracetamol first-pass metabolism PK model | 49.22 KB | Preview | Download |
Additional files |
|||
Evans2005.sedml | SEDML file for the model | 2.66 KB | Preview | Download |
Lee2017_Paracetamol_Metabolism.cps | COPASI file | 61.82 KB | Preview | Download |
figure.jpg | Attempt at reproducing figure 6. | 23.32 KB | Preview | Download |
- Model originally submitted by : Matthew Roberts
- Submitted: May 21, 2018 3:41:48 PM
- Last Modified: May 12, 2020 5:29:11 AM
Revisions
-
Version: 5
- Submitted on: May 12, 2020 5:29:11 AM
- Submitted by: Krishna Kumar Tiwari
- With comment: Automatically added model identifier BIOMD0000000947
-
Version: 3
- Submitted on: May 21, 2018 3:41:48 PM
- Submitted by: Matthew Roberts
- With comment: Uploaded COPASI file and curated figure to facilitate the curation process in the future
(*) You might be seeing discontinuous
revisions as only public revisions are displayed here. Any private revisions
of this model will only be shown to the submitter and their collaborators.
Legends
: Variable used inside SBML models
: Variable used inside SBML models
Species
Species | Initial Concentration/Amount |
---|---|
C para Basolateral HepG2 paracetamol ; D00217 |
5.0 μmol |
C glu Basolateral HepG2 D00217 ; paracetamol ; Glucuronide |
1.0E-15 μmol |
C sulf Apical paracetamol sulfate |
1.0E-15 μmol |
C sulf Basolateral HepG2 paracetamol sulfate |
1.0E-15 μmol |
C para Apical D00217 ; paracetamol |
2500.0 μmol |
C para Caco 2 paracetamol ; D00217 |
1.0E-15 μmol |
C glu Caco 2 Glucuronide ; paracetamol ; D00217 |
1.0E-15 μmol |
C sulf Caco 2 paracetamol sulfate |
1.0E-15 μmol |
C glu Apical paracetamol ; D00217 ; Glucuronide |
1.0E-15 μmol |
Reactions
Reactions | Rate | Parameters |
---|---|---|
C_para__Basolateral___HepG2_ = ((P_para*Ai*(C_para_Caco_2-C_para__Basolateral___HepG2_)-Mp_s_HepG2*C_para__Basolateral___HepG2_*V_basol)-Mp_g_HepG2*C_para__Basolateral___HepG2_*V_basol)/V_basol | ((P_para*Ai*(C_para_Caco_2-C_para__Basolateral___HepG2_)-Mp_s_HepG2*C_para__Basolateral___HepG2_*V_basol)-Mp_g_HepG2*C_para__Basolateral___HepG2_*V_basol)/V_basol | V_basol = 380.0; Mp_g_HepG2 = 0.59; Mp_s_HepG2 = 0.35; P_para = 103.8; Ai = 0.33 |
C_glu__Basolateral___HepG2_ = (P_glu*Ai*(C_glu_Caco_2-C_glu__Basolateral___HepG2_)+Mp_g_HepG2*C_para__Basolateral___HepG2_*V_basol)/V_basol | (P_glu*Ai*(C_glu_Caco_2-C_glu__Basolateral___HepG2_)+Mp_g_HepG2*C_para__Basolateral___HepG2_*V_basol)/V_basol | P_glu = 58.9; V_basol = 380.0; Mp_g_HepG2 = 0.59; Ai = 0.33 |
C_sulf_Apical = (-1)*P_sulf*Ai*(C_sulf_Apical-C_sulf_Caco_2)/V_api | (-1)*P_sulf*Ai*(C_sulf_Apical-C_sulf_Caco_2)/V_api | P_sulf = 49.9; V_api = 500.0; Ai = 0.33 |
C_sulf__Basolateral___HepG2_ = (P_sulf*Ai*(C_sulf_Caco_2-C_sulf__Basolateral___HepG2_)+Mp_s_HepG2*C_para__Basolateral___HepG2_*V_basol)/V_basol | (P_sulf*Ai*(C_sulf_Caco_2-C_sulf__Basolateral___HepG2_)+Mp_s_HepG2*C_para__Basolateral___HepG2_*V_basol)/V_basol | P_sulf = 49.9; V_basol = 380.0; Mp_s_HepG2 = 0.35; Ai = 0.33 |
C_para_Apical = (-1)*P_para*Ai*(C_para_Apical-C_para_Caco_2)/V_api | (-1)*P_para*Ai*(C_para_Apical-C_para_Caco_2)/V_api | P_para = 103.8; V_api = 500.0; Ai = 0.33 |
C_para_Caco_2 = (((P_para*Ai*(C_para_Apical-C_para_Caco_2)-P_para*Ai*(C_para_Caco_2-C_para__Basolateral___HepG2_))-Mp_s_caco*C_para_Caco_2*V_caco)-Mp_g_caco*C_para_Caco_2*V_caco)/V_caco | (((P_para*Ai*(C_para_Apical-C_para_Caco_2)-P_para*Ai*(C_para_Caco_2-C_para__Basolateral___HepG2_))-Mp_s_caco*C_para_Caco_2*V_caco)-Mp_g_caco*C_para_Caco_2*V_caco)/V_caco | Mp_s_caco = 14.9; Mp_g_caco = 17.6; V_caco = 0.33; P_para = 103.8; Ai = 0.33 |
C_glu_Caco_2 = ((P_glu*Ai*(C_glu_Apical-C_glu_Caco_2)-P_glu*Ai*(C_glu_Caco_2-C_glu__Basolateral___HepG2_))+Mp_g_caco*C_para_Caco_2*V_caco)/V_caco | ((P_glu*Ai*(C_glu_Apical-C_glu_Caco_2)-P_glu*Ai*(C_glu_Caco_2-C_glu__Basolateral___HepG2_))+Mp_g_caco*C_para_Caco_2*V_caco)/V_caco | P_glu = 58.9; Mp_g_caco = 17.6; V_caco = 0.33; Ai = 0.33 |
C_sulf_Caco_2 = ((P_sulf*Ai*(C_sulf_Apical-C_sulf_Caco_2)-P_sulf*Ai*(C_sulf_Caco_2-C_sulf__Basolateral___HepG2_))+Mp_s_caco*C_para_Caco_2*V_caco)/V_caco | ((P_sulf*Ai*(C_sulf_Apical-C_sulf_Caco_2)-P_sulf*Ai*(C_sulf_Caco_2-C_sulf__Basolateral___HepG2_))+Mp_s_caco*C_para_Caco_2*V_caco)/V_caco | P_sulf = 49.9; Mp_s_caco = 14.9; V_caco = 0.33; Ai = 0.33 |
C_glu_Apical = (-1)*P_glu*Ai*(C_glu_Apical-C_glu_Caco_2)/V_api | (-1)*P_glu*Ai*(C_glu_Apical-C_glu_Caco_2)/V_api | P_glu = 58.9; V_api = 500.0; Ai = 0.33 |
Curator's comment:
(added: 12 May 2020, 05:28:50, updated: 12 May 2020, 05:28:50)
(added: 12 May 2020, 05:28:50, updated: 12 May 2020, 05:28:50)
Figure 6 a,c,d,e,f are match and figure 6b is also very similar. Model encoded in COPASI and plot generated using MATLAB.