spacer
spacer

PDBsum entry 2bdp

Go to PDB code: 
protein dna_rna ligands metals links
Transferase/DNA PDB id
2bdp

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
580 a.a. *
DNA/RNA
Ligands
SO4 ×3
Metals
_MG
Waters ×468
* Residue conservation analysis
PDB id:
2bdp
Name: Transferase/DNA
Title: Crystal structure of bacillus DNA polymerase i fragment complexed to 9 base pairs of duplex DNA
Structure: DNA (5'-d( Gp Cp Ap Tp Gp Ap Tp Gp C)-3'). Chain: p. Engineered: yes. DNA (5'-d(p Ap Gp Cp Ap Tp Cp Ap Tp Gp C)-3'). Chain: t. Engineered: yes. Protein (DNA polymerase i). Chain: a. Fragment: residues 297-876.
Source: Synthetic: yes. Geobacillus stearothermophilus. Organism_taxid: 1422. Expressed in: escherichia coli. Expression_system_taxid: 562
Biol. unit: Trimer (from PQS)
Resolution:
1.80Å     R-factor:   0.241     R-free:   0.276
Authors: J.R.Kiefer,C.Mao,L.S.Beese
Key ref:
J.R.Kiefer et al. (1998). Visualizing DNA replication in a catalytically active Bacillus DNA polymerase crystal. Nature, 391, 304-307. PubMed id: 9440698 DOI: 10.1038/34693
Date:
17-Nov-97     Release date:   13-Jan-99    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
P52026  (DPO1_GEOSE) -  DNA polymerase I from Geobacillus stearothermophilus
Seq:
Struc:
 
Seq:
Struc:
876 a.a.
580 a.a.*
Key:    Secondary structure  CATH domain
* PDB and UniProt seqs differ at 68 residue positions (black crosses)

DNA/RNA chains
  G-C-A-T-G-A-T-G-C 9 bases
  A-G-C-A-T-C-A-T-G-C 10 bases

 Enzyme reactions 
   Enzyme class: E.C.2.7.7.7  - DNA-directed Dna polymerase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: DNA(n) + a 2'-deoxyribonucleoside 5'-triphosphate = DNA(n+1) + diphosphate
DNA(n)
+ 2'-deoxyribonucleoside 5'-triphosphate
= DNA(n+1)
+ diphosphate
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    Added reference    
 
 
DOI no: 10.1038/34693 Nature 391:304-307 (1998)
PubMed id: 9440698  
 
 
Visualizing DNA replication in a catalytically active Bacillus DNA polymerase crystal.
J.R.Kiefer, C.Mao, J.C.Braman, L.S.Beese.
 
  ABSTRACT  
 
DNA polymerases copy DNA templates with remarkably high fidelity, checking for correct base-pair formation both at nucleotide insertion and at subsequent DNA extension steps. Despite extensive biochemical, genetic and structural studies, the mechanism by which nucleotides are correctly incorporated is not known. Here we present high-resolution crystal structures of a thermostable bacterial (Bacillus stearothermophilus) DNA polymerase I large fragments with DNA primer templates bound productively at the polymerase active site. The active site retains catalytic activity, allowing direct observation of the products of several rounds of nucleotide incorporation. The polymerase also retains its ability to discriminate between correct and incorrectly paired nucleotides in the crystal. Comparison of the structures of successively translocated complexes allows the structural features for the sequence-independent molecular recognition of correctly formed base pairs to be deduced unambiguously. These include extensive interactions with the first four to five base pairs in the minor groove, location of the terminal base pair in a pocket of excellent steric complementarity favouring correct base-pair formation, and a conformational switch from B-form to underwound A-form DNA at the polymerase active site.
 
  Selected figure(s)  
 
Figure 1.
Figure 1 Structure of the Bacillus fragment with duplex DNA bound at the polymerase active site. The Bacillus fragment molecular surface is coloured according to its proximity to the DNA, with all points less than 3.5 ? coloured magenta, between 3.5 and 5.0 ? yellow, and greater than 5 ? blue. Bound water molecules were not included in this calculation.
Figure 4.
Figure 4 Polymerase active site with observed DNA and modelled dTTP. The position of dTTP (violet) was based on the -polymerase complex18, adjusted such that the base ring stacks with the primer and one oxygen from each phosphate group was within 3 ? of the observed metal ion (gold). The sugar pucker of the primer terminus was made C3'-endo, which shifted its 3'-OH to within 1.7 ? of the modelled -phosphate of the dTTP. A second metal ion (violet) was modelled to be within 3 ? of the 3'-OH of the primer, the -phosphate group, and residues Asp 830 and Glu 831. The observed 5' template overhang cannot accept an incoming dNTP without a conformational change of the O helix.
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nature (1998, 391, 304-307) copyright 1998.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20152155 A.A.Golosov, J.J.Warren, L.S.Beese, and M.Karplus (2010).
The mechanism of the translocation step in DNA replication by DNA polymerase I: a computer simulation analysis.
  Structure, 18, 83-93.
PDB codes: 3eyz 3ez5
19921401 A.K.Upadhyay, T.T.Talele, and V.N.Pandey (2010).
Impact of template overhang-binding region of HIV-1 RT on the binding and orientation of the duplex region of the template-primer.
  Mol Cell Biochem, 338, 19-33.  
19596089 E.A.Motea, and A.J.Berdis (2010).
Terminal deoxynucleotidyl transferase: the story of a misguided DNA polymerase.
  Biochim Biophys Acta, 1804, 1151-1166.  
20152146 J.D.Pata, and J.Jaeger (2010).
Molecular machines and targeted molecular dynamics: DNA in motion.
  Structure, 18, 4-6.  
  20847947 R.G.Federley, and L.J.Romano (2010).
DNA polymerase: structural homology, conformational dynamics, and the effects of carcinogenic DNA adducts.
  J Nucleic Acids, 2010, 0.  
20162624 R.Venkatramani, and R.Radhakrishnan (2010).
Computational delineation of the catalytic step of a high-fidelity DNA polymerase.
  Protein Sci, 19, 815-825.  
19411253 K.Datta, N.P.Johnson, V.J.Licata, and P.H.von Hippel (2009).
Local Conformations and Competitive Binding Affinities of Single- and Double-stranded Primer-Template DNA at the Polymerization and Editing Active Sites of DNA Polymerases.
  J Biol Chem, 284, 17180-17193.  
19073696 M.Kimoto, R.Kawai, T.Mitsui, S.Yokoyama, and I.Hirao (2009).
An unnatural base pair system for efficient PCR amplification and functionalization of DNA molecules.
  Nucleic Acids Res, 37, e14.  
19308979 M.Renders, M.Abramov, M.Froeyen, and P.Herdewijn (2009).
Polymerase-catalysed incorporation of glucose nucleotides into a DNA duplex.
  Chemistry, 15, 5463-5470.  
19348507 M.Trostler, A.Delier, J.Beckman, M.Urban, J.N.Patro, T.E.Spratt, L.S.Beese, and R.D.Kuchta (2009).
Discrimination between right and wrong purine dNTPs by DNA polymerase I from Bacillus stearothermophilus.
  Biochemistry, 48, 4633-4641.  
19364137 P.Xu, L.Oum, Y.C.Lee, N.E.Geacintov, and S.Broyde (2009).
Visualizing sequence-governed nucleotide selectivities and mutagenic consequences through a replicative cycle: processing of a bulky carcinogen N2-dG lesion in a Y-family DNA polymerase.
  Biochemistry, 48, 4677-4690.  
19759017 W.A.Beard, D.D.Shock, V.K.Batra, L.C.Pedersen, and S.H.Wilson (2009).
DNA polymerase beta substrate specificity: side chain modulation of the "A-rule".
  J Biol Chem, 284, 31680-31689.
PDB codes: 3isb 3isc 3isd
18847263 G.T.Hwang, and F.E.Romesberg (2008).
Unnatural substrate repertoire of A, B, and X family DNA polymerases.
  J Am Chem Soc, 130, 14872-14882.  
18399510 J.Cramer, G.Rangam, A.Marx, and T.Restle (2008).
Varied active-site constraints in the klenow fragment of E. coli DNA polymerase I and the lesion-bypass Dbh DNA polymerase.
  Chembiochem, 9, 1243-1250.  
19006151 M.Renders, R.Lievrouw, M.Krecmerová, A.Holý, and P.Herdewijn (2008).
Enzymatic polymerization of phosphonate nucleosides.
  Chembiochem, 9, 2883-2888.  
18219644 N.Minakawa, Y.Kawano, S.Murata, N.Inoue, and A.Matsuda (2008).
Oligodeoxynucleotides containing 3-bromo-3-deazaadenine and 7-bromo-7-deazaadenine 2'-deoxynucleosides as chemical probes to investigate DNA-protein interactions.
  Chembiochem, 9, 464-470.  
18448432 P.Kukreti, K.Singh, A.Ketkar, and M.J.Modak (2008).
Identification of a new motif required for the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I (Klenow fragment): the RRRY motif is necessary for the binding of single-stranded DNA substrate and the template strand of the mismatched duplex.
  J Biol Chem, 283, 17979-17990.  
18058909 R.Venkatramani, and R.Radhakrishnan (2008).
Effect of oxidatively damaged DNA on the active site preorganization during nucleotide incorporation in a high fidelity polymerase from Bacillus stearothermophilus.
  Proteins, 71, 1360-1372.  
18407502 S.Broyde, L.Wang, O.Rechkoblit, N.E.Geacintov, and D.J.Patel (2008).
Lesion processing: high-fidelity versus lesion-bypass DNA polymerases.
  Trends Biochem Sci, 33, 209-219.  
18079151 S.E.Hile, and K.A.Eckert (2008).
DNA polymerase kappa produces interrupted mutations and displays polar pausing within mononucleotide microsatellite sequences.
  Nucleic Acids Res, 36, 688-696.  
18471977 V.K.Batra, W.A.Beard, D.D.Shock, L.C.Pedersen, and S.H.Wilson (2008).
Structures of DNA polymerase beta with active-site mismatches suggest a transient abasic site intermediate during misincorporation.
  Mol Cell, 30, 315-324.
PDB codes: 3c2k 3c2l 3c2m
18974785 W.Rutvisuttinunt, P.R.Meyer, and W.A.Scott (2008).
Interactions between HIV-1 reverse transcriptase and the downstream template strand in stable complexes with primer-template.
  PLoS ONE, 3, e3561.  
17611604 A.J.Berman, S.Kamtekar, J.L.Goodman, J.M.Lázaro, M.de Vega, L.Blanco, M.Salas, and T.A.Steitz (2007).
Structures of phi29 DNA polymerase complexed with substrate: the mechanism of translocation in B-family polymerases.
  EMBO J, 26, 3494-3505.
PDB codes: 2py5 2pyj 2pyl 2pzs
17321543 A.Jacewicz, K.Makiela, A.Kierzek, J.W.Drake, and A.Bebenek (2007).
The roles of Tyr391 and Tyr619 in RB69 DNA polymerase replication fidelity.
  J Mol Biol, 368, 18-29.  
17360513 C.Castro, E.Smidansky, K.R.Maksimchuk, J.J.Arnold, V.S.Korneeva, M.Götte, W.Konigsberg, and C.E.Cameron (2007).
Two proton transfers in the transition state for nucleotidyl transfer catalyzed by RNA- and DNA-dependent RNA and DNA polymerases.
  Proc Natl Acad Sci U S A, 104, 4267-4272.  
17785419 C.H.Tsai, J.Chen, and J.W.Szostak (2007).
Enzymatic synthesis of DNA on glycerol nucleic acid templates without stable duplex formation between product and template.
  Proc Natl Acad Sci U S A, 104, 14598-14603.  
17259182 K.Singh, A.Srivastava, S.S.Patel, and M.J.Modak (2007).
Participation of the fingers subdomain of Escherichia coli DNA polymerase I in the strand displacement synthesis of DNA.
  J Biol Chem, 282, 10594-10604.  
17118716 M.E.Arana, K.Takata, M.Garcia-Diaz, R.D.Wood, and T.A.Kunkel (2007).
A unique error signature for human DNA polymerase nu.
  DNA Repair (Amst), 6, 213-223.  
17317572 N.Z.Rudinger, R.Kranaster, and A.Marx (2007).
Hydrophobic amino acid and single-atom substitutions increase DNA polymerase selectivity.
  Chem Biol, 14, 185-194.  
17090533 R.A.Perlow-Poehnelt, I.Likhterov, L.Wang, D.A.Scicchitano, N.E.Geacintov, and S.Broyde (2007).
Increased flexibility enhances misincorporation: temperature effects on nucleotide incorporation opposite a bulky carcinogen-DNA adduct by a Y-family DNA polymerase.
  J Biol Chem, 282, 1397-1408.  
16718323 E.Amir, and S.Rozen (2006).
Easy access to the family of thiazole N-oxides using HOF x CH3CN.
  Chem Commun (Camb), (), 2262-2264.  
17071961 E.Longás, M.de Vega, J.M.Lázaro, and M.Salas (2006).
Functional characterization of highly processive protein-primed DNA polymerases from phages Nf and GA-1, endowed with a potent strand displacement capacity.
  Nucleic Acids Res, 34, 6051-6063.  
16412692 E.Pienaar, M.Theron, M.Nelson, and H.J.Viljoen (2006).
A quantitative model of error accumulation during PCR amplification.
  Comput Biol Chem, 30, 102-111.  
16455665 H.D.Cho, Y.Chen, G.Varani, and A.M.Weiner (2006).
A model for C74 addition by CCA-adding enzymes: C74 addition, like C75 and A76 addition, does not involve tRNA translocation.
  J Biol Chem, 281, 9801-9811.  
16929319 I.Hirao, M.Kimoto, T.Mitsui, T.Fujiwara, R.Kawai, A.Sato, Y.Harada, and S.Yokoyama (2006).
An unnatural hydrophobic base pair system: site-specific incorporation of nucleotide analogs into DNA and RNA.
  Nat Methods, 3, 729-735.  
16671068 J.Chiu, D.Tillett, and P.E.March (2006).
Mutation of Phe102 to Ser in the carboxyl terminal helix of Escherichia coli thioredoxin affects the stability and processivity of T7 DNA polymerase.
  Proteins, 64, 477-485.  
17179038 J.J.Warren, L.J.Forsberg, and L.S.Beese (2006).
The structural basis for the mutagenicity of O(6)-methyl-guanine lesions.
  Proc Natl Acad Sci U S A, 103, 19701-19706.
PDB codes: 2hhq 2hhs 2hht 2hhu 2hhv 2hhw 2hhx 2hvh 2hvi 2hw3
16959568 M.H.Lamers, R.E.Georgescu, S.G.Lee, M.O'Donnell, and J.Kuriyan (2006).
Crystal structure of the catalytic alpha subunit of E. coli replicative DNA polymerase III.
  Cell, 126, 881-892.
PDB codes: 2hnh 2hqa
17176036 R.Radhakrishnan, K.Arora, Y.Wang, W.A.Beard, S.H.Wilson, and T.Schlick (2006).
Regulation of DNA repair fidelity by molecular checkpoints: "gates" in DNA polymerase beta's substrate selection.
  Biochemistry, 45, 15142-15156.  
17022941 R.Radhakrishnan, and T.Schlick (2006).
Correct and incorrect nucleotide incorporation pathways in DNA polymerase beta.
  Biochem Biophys Res Commun, 350, 521-529.  
17052458 R.T.Pomerantz, D.Temiakov, M.Anikin, D.G.Vassylyev, and W.T.McAllister (2006).
A mechanism of nucleotide misincorporation during transcription due to template-strand misalignment.
  Mol Cell, 24, 245-255.  
16900098 T.A.Steitz (2006).
Visualizing polynucleotide polymerase machines at work.
  EMBO J, 25, 3458-3468.  
15995989 D.Summerer, N.Z.Rudinger, I.Detmer, and A.Marx (2005).
Enhanced fidelity in mismatch extension by DNA polymerase through directed combinatorial enzyme design.
  Angew Chem Int Ed Engl, 44, 4712-4715.  
15548515 G.W.Hsu, X.Huang, N.P.Luneva, N.E.Geacintov, and L.S.Beese (2005).
Structure of a high fidelity DNA polymerase bound to a benzo[a]pyrene adduct that blocks replication.
  J Biol Chem, 280, 3764-3770.
PDB code: 1xc9
15590678 H.D.Cho, C.L.Verlinde, and A.M.Weiner (2005).
Archaeal CCA-adding enzymes: central role of a highly conserved beta-turn motif in RNA polymerization without translocation.
  J Biol Chem, 280, 9555-9566.  
15933210 J.D.Ahle, S.Barr, A.M.Chin, and T.R.Battersby (2005).
Sequence determination of nucleic acids containing 5-methylisocytosine and isoguanine: identification and insight into polymerase replication of the non-natural nucleobases.
  Nucleic Acids Res, 33, 3176-3184.  
16157867 J.K.Ichida, A.Horhota, K.Zou, L.W.McLaughlin, and J.W.Szostak (2005).
High fidelity TNA synthesis by Therminator polymerase.
  Nucleic Acids Res, 33, 5219-5225.  
15886393 M.F.Langelier, D.Baali, V.Trinh, J.Greenblatt, J.Archambault, and B.Coulombe (2005).
The highly conserved glutamic acid 791 of Rpb2 is involved in the binding of NTP and Mg(B) in the active center of human RNA polymerase II.
  Nucleic Acids Res, 33, 2629-2639.  
15537632 N.Luo, and L.S.Kaguni (2005).
Mutations in the spacer region of Drosophila mitochondrial DNA polymerase affect DNA binding, processivity, and the balance between Pol and Exo function.
  J Biol Chem, 280, 2491-2497.  
16116089 R.E.Johnson, L.Prakash, and S.Prakash (2005).
Distinct mechanisms of cis-syn thymine dimer bypass by Dpo4 and DNA polymerase eta.
  Proc Natl Acad Sci U S A, 102, 12359-12364.  
16045613 S.Duigou, S.D.Ehrlich, P.Noirot, and M.F.Noirot-Gros (2005).
DNA polymerase I acts in translesion synthesis mediated by the Y-polymerases in Bacillus subtilis.
  Mol Microbiol, 57, 678-690.  
15952890 S.Prakash, R.E.Johnson, and L.Prakash (2005).
Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function.
  Annu Rev Biochem, 74, 317-353.  
16084394 V.K.Batra, W.A.Beard, D.D.Shock, L.C.Pedersen, and S.H.Wilson (2005).
Nucleotide-induced DNA polymerase active site motions accommodating a mutagenic DNA intermediate.
  Structure, 13, 1225-1233.
PDB codes: 1zjm 1zjn
14757837 A.M.Sismour, S.Lutz, J.H.Park, M.J.Lutz, P.L.Boyer, S.H.Hughes, and S.A.Benner (2004).
PCR amplification of DNA containing non-standard base pairs by variants of reverse transcriptase from Human Immunodeficiency Virus-1.
  Nucleic Acids Res, 32, 728-735.  
15210707 A.S.Meyer, M.Blandino, and T.E.Spratt (2004).
Escherichia coli DNA polymerase I (Klenow fragment) uses a hydrogen-bonding fork from Arg668 to the primer terminus and incoming deoxynucleotide triphosphate to catalyze DNA replication.
  J Biol Chem, 279, 33043-33046.  
15107492 C.L.Hendrickson, K.G.Devine, and S.A.Benner (2004).
Probing minor groove recognition contacts by DNA polymerases and reverse transcriptases using 3-deaza-2'-deoxyadenosine.
  Nucleic Acids Res, 32, 2241-2250.  
15130474 D.Das, and M.M.Georgiadis (2004).
The crystal structure of the monomeric reverse transcriptase from Moloney murine leukemia virus.
  Structure, 12, 819-829.
PDB codes: 1rw3 4mh8
15107493 D.Jose, and D.Porschke (2004).
Dynamics of the B-A transition of DNA double helices.
  Nucleic Acids Res, 32, 2251-2258.  
15016373 D.Temiakov, V.Patlan, M.Anikin, W.T.McAllister, S.Yokoyama, and D.G.Vassylyev (2004).
Structural basis for substrate selection by t7 RNA polymerase.
  Cell, 116, 381-391.
PDB code: 1s0v
15385534 G.W.Hsu, J.R.Kiefer, D.Burnouf, O.J.Becherel, R.P.Fuchs, and L.S.Beese (2004).
Observing translesion synthesis of an aromatic amine DNA adduct by a high-fidelity DNA polymerase.
  J Biol Chem, 279, 50280-50285.
PDB codes: 1ua0 1ua1
15322558 G.W.Hsu, M.Ober, T.Carell, and L.S.Beese (2004).
Error-prone replication of oxidatively damaged DNA by a high-fidelity DNA polymerase.
  Nature, 431, 217-221.
PDB codes: 1u45 1u47 1u48 1u49 1u4b
14990576 H.J.Lee, H.M.Lim, and S.Adhya (2004).
An unsubstituted C2 hydrogen of adenine is critical and sufficient at the -11 position of a promoter to signal base pair deformation.
  J Biol Chem, 279, 16899-16902.  
15345530 I.Andricioaei, A.Goel, D.Herschbach, and M.Karplus (2004).
Dependence of DNA polymerase replication rate on external forces: a model based on molecular dynamics simulations.
  Biophys J, 87, 1478-1497.  
15122879 J.J.Arnold, D.W.Gohara, and C.E.Cameron (2004).
Poliovirus RNA-dependent RNA polymerase (3Dpol): pre-steady-state kinetic analysis of ribonucleotide incorporation in the presence of Mn2+.
  Biochemistry, 43, 5138-5148.  
15211513 L.L.Videau, W.B.Arendall, and J.S.Richardson (2004).
The cis-Pro touch-turn: a rare motif preferred at functional sites.
  Proteins, 56, 298-309.  
15189144 L.S.Kaguni (2004).
DNA polymerase gamma, the mitochondrial replicase.
  Annu Rev Biochem, 73, 293-320.  
15258572 M.A.Graziewicz, M.J.Longley, R.J.Bienstock, M.Zeviani, and W.C.Copeland (2004).
Structure-function defects of human mitochondrial DNA polymerase in autosomal dominant progressive external ophthalmoplegia.
  Nat Struct Mol Biol, 11, 770-776.  
15515078 M.Strerath, J.Gaster, and A.Marx (2004).
Recognition of remote mismatches by DNA polymerases.
  Chembiochem, 5, 1585-1588.  
15199127 M.T.Washington, I.G.Minko, R.E.Johnson, W.T.Wolfle, T.M.Harris, R.S.Lloyd, S.Prakash, and L.Prakash (2004).
Efficient and error-free replication past a minor-groove DNA adduct by the sequential action of human DNA polymerases iota and kappa.
  Mol Cell Biol, 24, 5687-5693.  
15328364 P.Liu, A.Burdzy, and L.C.Sowers (2004).
DNA ligases ensure fidelity by interrogating minor groove contacts.
  Nucleic Acids Res, 32, 4503-4511.  
15210693 R.A.Perlow-Poehnelt, I.Likhterov, D.A.Scicchitano, N.E.Geacintov, and S.Broyde (2004).
The spacious active site of a Y-family DNA polymerase facilitates promiscuous nucleotide incorporation opposite a bulky carcinogen-DNA adduct: elucidating the structure-function relationship through experimental and computational approaches.
  J Biol Chem, 279, 36951-36961.  
15326591 R.L.Crowther, D.P.Remeta, C.A.Minetti, D.Das, S.P.Montano, and M.M.Georgiadis (2004).
Structural and energetic characterization of nucleic acid-binding to the fingers domain of Moloney murine leukemia virus reverse transcriptase.
  Proteins, 57, 15-26.
PDB code: 1nnd
15470496 S.Fujii, and R.P.Fuchs (2004).
Defining the position of the switches between replicative and bypass DNA polymerases.
  EMBO J, 23, 4342-4352.  
15035983 S.J.Johnson, and L.S.Beese (2004).
Structures of mismatch replication errors observed in a DNA polymerase.
  Cell, 116, 803-816.
PDB codes: 1njw 1njx 1njy 1njz 1nk0 1nk4 1nk5 1nk6 1nk7 1nk8 1nk9 1nkb 1nkc 1nke
15065652 T.A.Steitz, and Y.W.Yin (2004).
Accuracy, lesion bypass, strand displacement and translocation by DNA polymerases.
  Philos Trans R Soc Lond B Biol Sci, 359, 17-23.  
14729920 V.Truniger, J.M.Lázaro, and M.Salas (2004).
Function of the C-terminus of phi29 DNA polymerase in DNA and terminal protein binding.
  Nucleic Acids Res, 32, 361-370.  
15145936 W.A.Beard, D.D.Shock, and S.H.Wilson (2004).
Influence of DNA structure on DNA polymerase beta active site function: extension of mutagenic DNA intermediates.
  J Biol Chem, 279, 31921-31929.  
15016374 Y.W.Yin, and T.A.Steitz (2004).
The structural mechanism of translocation and helicase activity in T7 RNA polymerase.
  Cell, 116, 393-404.
PDB codes: 1s76 1s77
12560493 D.Shinde, Y.Lai, F.Sun, and N.Arnheim (2003).
Taq DNA polymerase slippage mutation rates measured by PCR and quasi-likelihood analysis: (CA/GT)n and (A/T)n microsatellites.
  Nucleic Acids Res, 31, 974-980.  
12573693 K.E.McGinness, and G.F.Joyce (2003).
In search of an RNA replicase ribozyme.
  Chem Biol, 10, 5.  
12522214 K.Singh, and M.J.Modak (2003).
Presence of 18-A long hydrogen bond track in the active site of Escherichia coli DNA polymerase I (Klenow fragment). Its requirement in the stabilization of enzyme-template-primer complex.
  J Biol Chem, 278, 11289-11302.  
14576300 M.B.Kermekchiev, A.Tzekov, and W.M.Barnes (2003).
Cold-sensitive mutants of Taq DNA polymerase provide a hot start for PCR.
  Nucleic Acids Res, 31, 6139-6147.  
12637557 M.Ogawa, S.Limsirichaikul, A.Niimi, S.Iwai, S.Yoshida, and M.Suzuki (2003).
Distinct function of conserved amino acids in the fingers of Saccharomyces cerevisiae DNA polymerase alpha.
  J Biol Chem, 278, 19071-19078.  
14527996 M.T.Washington, L.Prakash, and S.Prakash (2003).
Mechanism of nucleotide incorporation opposite a thymine-thymine dimer by yeast DNA polymerase eta.
  Proc Natl Acad Sci U S A, 100, 12093-12098.  
12832493 M.T.Washington, S.A.Helquist, E.T.Kool, L.Prakash, and S.Prakash (2003).
Requirement of Watson-Crick hydrogen bonding for DNA synthesis by yeast DNA polymerase eta.
  Mol Cell Biol, 23, 5107-5112.  
14522052 N.Paul, V.C.Nashine, G.Hoops, P.Zhang, J.Zhou, D.E.Bergstrom, and V.J.Davisson (2003).
DNA polymerase template interactions probed by degenerate isosteric nucleobase analogs.
  Chem Biol, 10, 815-825.  
14576295 P.Jałoszyński, C.Masutani, F.Hanaoka, A.B.Perez, and S.Nishimura (2003).
8-Hydroxyguanine in a mutational hotspot of the c-Ha-ras gene causes misreplication, 'action-at-a-distance' mutagenesis and inhibition of replication.
  Nucleic Acids Res, 31, 6085-6095.  
14579358 R.C.Rittenhouse, W.K.Apostoluk, J.H.Miller, and T.P.Straatsma (2003).
Characterization of the active site of DNA polymerase beta by molecular dynamics and quantum chemical calculation.
  Proteins, 53, 667-682.  
12649320 S.J.Johnson, J.S.Taylor, and L.S.Beese (2003).
Processive DNA synthesis observed in a polymerase crystal suggests a mechanism for the prevention of frameshift mutations.
  Proc Natl Acad Sci U S A, 100, 3895-3900.
PDB codes: 1l3s 1l3t 1l3u 1l3v 1l5u 1lv5
12637558 S.Limsirichaikul, M.Ogawa, A.Niimi, S.Iwai, T.Murate, S.Yoshida, and M.Suzuki (2003).
The Gly-952 residue of Saccharomyces cerevisiae DNA polymerase alpha is important in discriminating correct deoxyribonucleotides from incorrect ones.
  J Biol Chem, 278, 19079-19086.  
12581656 W.Yang (2003).
Damage repair DNA polymerases Y.
  Curr Opin Struct Biol, 13, 23-30.  
12641455 Z.A.Doddridge, R.D.Bertram, C.J.Hayes, and P.Soultanas (2003).
Effects of vinylphosphonate internucleotide linkages on the cleavage specificity of exonuclease III and on the activity of DNA polymerase I.
  Biochemistry, 42, 3239-3246.  
12473094 A.V.Cherepanov, and S.de Vries (2002).
Dynamic mechanism of nick recognition by DNA ligase.
  Eur J Biochem, 269, 5993-5999.  
12039005 C.M.Wilmot, and A.R.Pearson (2002).
Cryocrystallography of metalloprotein reaction intermediates.
  Curr Opin Chem Biol, 6, 202-207.  
11830658 D.T.Minnick, L.Liu, N.D.Grindley, T.A.Kunkel, and C.M.Joyce (2002).
Discrimination against purine-pyrimidine mispairs in the polymerase active site of DNA polymerase I: a structural explanation.
  Proc Natl Acad Sci U S A, 99, 1194-1199.  
12189135 E.Fidalgo da Silva, S.S.Mandal, and L.J.Reha-Krantz (2002).
Using 2-aminopurine fluorescence to measure incorporation of incorrect nucleotides by wild type and mutant bacteriophage T4 DNA polymerases.
  J Biol Chem, 277, 40640-40649.  
12045095 E.T.Kool (2002).
Active site tightness and substrate fit in DNA replication.
  Annu Rev Biochem, 71, 191-219.  
12202771 H.A.Held, and S.A.Benner (2002).
Challenging artificial genetic systems: thymidine analogs with 5-position sulfur functionality.
  Nucleic Acids Res, 30, 3857-3869.  
12411499 K.M.Kazmierczak, E.K.Davydova, A.A.Mustaev, and L.B.Rothman-Denes (2002).
The phage N4 virion RNA polymerase catalytic domain is related to single-subunit RNA polymerases.
  EMBO J, 21, 5815-5823.  
12210533 P.Cramer (2002).
Common structural features of nucleic acid polymerases.
  Bioessays, 24, 724-729.  
12447445 P.Szabó, I.Scheuring, T.Czárán, and E.Szathmáry (2002).
In silico simulations reveal that replicators with limited dispersal evolve towards higher efficiency and fidelity.
  Nature, 420, 340-343.  
11919199 R.J.Kokoska, K.Bebenek, F.Boudsocq, R.Woodgate, and T.A.Kunkel (2002).
Low fidelity DNA synthesis by a y family DNA polymerase due to misalignment in the active site.
  J Biol Chem, 277, 19633-19638.  
11914087 S.S.Mandal, E.Fidalgo da Silva, and L.J.Reha-Krantz (2002).
Using 2-aminopurine fluorescence to detect base unstacking in the template strand during nucleotide incorporation by the bacteriophage T4 DNA polymerase.
  Biochemistry, 41, 4399-4406.  
11948182 T.S.Fisher, and V.R.Prasad (2002).
Substitutions of Phe61 located in the vicinity of template 5'-overhang influence polymerase fidelity and nucleoside analog sensitivity of HIV-1 reverse transcriptase.
  J Biol Chem, 277, 22345-22352.  
11917008 V.Truniger, J.M.Lázaro, F.J.Esteban, L.Blanco, and M.Salas (2002).
A positively charged residue of phi29 DNA polymerase, highly conserved in DNA polymerases from families A and B, is involved in binding the incoming nucleotide.
  Nucleic Acids Res, 30, 1483-1492.  
11756435 W.A.Beard, D.D.Shock, X.P.Yang, S.F.DeLauder, and S.H.Wilson (2002).
Loss of DNA polymerase beta stacking interactions with templating purines, but not pyrimidines, alters catalytic efficiency and fidelity.
  J Biol Chem, 277, 8235-8242.  
12242451 Y.W.Yin, and T.A.Steitz (2002).
Structural basis for the transition from initiation to elongation transcription in T7 RNA polymerase.
  Science, 298, 1387-1395.
PDB code: 1msw
11447284 A.Goel, M.D.Frank-Kamenetskii, T.Ellenberger, and D.Herschbach (2001).
Tuning DNA "strings": modulating the rate of DNA replication with mechanical tension.
  Proc Natl Acad Sci U S A, 98, 8485-8489.  
11504869 C.Rocher, R.Dalibart, T.Letellier, G.Précigoux, and P.Lestienne (2001).
Initiation of DNA replication by DNA polymerases from primers forming a triple helix.
  Nucleic Acids Res, 29, 3320-3326.  
12762005 D.E.Brodersen, A.P.Carter, W.M.Clemons, R.J.Morgan-Warren, F.V.Murphy, J.M.Ogle, M.J.Tarry, B.T.Wimberly, and V.Ramakrishnan (2001).
Atomic structures of the 30S subunit and its complexes with ligands and antibiotics.
  Cold Spring Harb Symp Quant Biol, 66, 17-32.  
11340050 E.T.Kool (2001).
Hydrogen bonding, base stacking, and steric effects in dna replication.
  Annu Rev Biophys Biomol Struct, 30, 1.  
11595188 H.Ling, F.Boudsocq, R.Woodgate, and W.Yang (2001).
Crystal structure of a Y-family DNA polymerase in action: a mechanism for error-prone and lesion-bypass replication.
  Cell, 107, 91.
PDB codes: 1jx4 1jxl
11340196 J.M.Ogle, D.E.Brodersen, W.M.Clemons, M.J.Tarry, A.P.Carter, and V.Ramakrishnan (2001).
Recognition of cognate transfer RNA by the 30S ribosomal subunit.
  Science, 292, 897-902.
PDB codes: 1ibk 1ibl 1ibm
11330999 J.W.Arndt, W.Gong, X.Zhong, A.K.Showalter, J.Liu, C.A.Dunlap, Z.Lin, C.Paxson, M.D.Tsai, and M.K.Chan (2001).
Insight into the catalytic mechanism of DNA polymerase beta: structures of intermediate complexes.
  Biochemistry, 40, 5368-5375.
PDB codes: 1huo 1huz
11812826 M.Gutiérrez-Rivas, and L.Menéndez-Arias (2001).
A mutation in the primer grip region of HIV-1 reverse transcriptase that confers reduced fidelity of DNA synthesis.
  Nucleic Acids Res, 29, 4963-4972.  
11574676 M.T.Hossain, T.Sunami, M.Tsunoda, T.Hikima, T.Chatake, Y.Ueno, A.Matsuda, and A.Takénaka (2001).
Crystallographic studies on damaged DNAs IV. N( 4)-methoxycytosine shows a second face for Watson-Crick base-pairing, leading to purine transition mutagenesis.
  Nucleic Acids Res, 29, 3949-3954.
PDB code: 1j8l
11395413 M.V.Rodnina, and W.Wintermeyer (2001).
Fidelity of aminoacyl-tRNA selection on the ribosome: kinetic and structural mechanisms.
  Annu Rev Biochem, 70, 415-435.  
11166571 M.V.Rodnina, and W.Wintermeyer (2001).
Ribosome fidelity: tRNA discrimination, proofreading and induced fit.
  Trends Biochem Sci, 26, 124-130.  
11721003 M.Y.Tolstorukov, V.I.Ivanov, G.G.Malenkov, R.L.Jernigan, and V.B.Zhurkin (2001).
Sequence-dependent B<-->A transition in DNA evaluated with dimeric and trimeric scales.
  Biophys J, 81, 3409-3421.  
11258875 T.E.Spratt (2001).
Identification of hydrogen bonds between Escherichia coli DNA polymerase I (Klenow fragment) and the minor groove of DNA by amino acid substitution of the polymerase and atomic substitution of the DNA.
  Biochemistry, 40, 2647-2652.  
11320242 T.Ohtsuki, M.Kimoto, M.Ishikawa, T.Mitsui, I.Hirao, and S.Yokoyama (2001).
Unnatural base pairs for specific transcription.
  Proc Natl Acad Sci U S A, 98, 4922-4925.  
11369861 Y.Li, and G.Waksman (2001).
Crystal structures of a ddATP-, ddTTP-, ddCTP, and ddGTP- trapped ternary complex of Klentaq1: insights into nucleotide incorporation and selectivity.
  Protein Sci, 10, 1225-1233.  
11063578 C.I.Wooddell, and R.R.Burgess (2000).
Topology of yeast RNA polymerase II subunits in transcription elongation complexes studied by photoaffinity cross-linking.
  Biochemistry, 39, 13405-13421.  
12760024 E.T.Kool (2000).
Roles of Watson-Crick and minor groove hydrogen bonds in DNA replication.
  Cold Spring Harb Symp Quant Biol, 65, 93.  
10617626 G.J.Klarmann, R.A.Smith, R.F.Schinazi, T.W.North, and B.D.Preston (2000).
Site-specific incorporation of nucleoside analogs by HIV-1 reverse transcriptase and the template grip mutant P157S. Template interactions influence substrate recognition at the polymerase active site.
  J Biol Chem, 275, 359-366.  
10679468 G.M.Cheetham, and T.A.Steitz (2000).
Insights into transcription: structure and function of single-subunit DNA-dependent RNA polymerases.
  Curr Opin Struct Biol, 10, 117-123.  
10944102 G.Martin, W.Keller, and S.Doublié (2000).
Crystal structure of mammalian poly(A) polymerase in complex with an analog of ATP.
  EMBO J, 19, 4193-4203.
PDB code: 1f5a
11090167 H.Liu, J.H.Naismith, and R.T.Hay (2000).
Identification of conserved residues contributing to the activities of adenovirus DNA polymerase.
  J Virol, 74, 11681-11689.  
11041863 J.C.Morales, and E.T.Kool (2000).
Functional hydrogen-bonding map of the minor groove binding tracks of six DNA polymerases.
  Biochemistry, 39, 12979-12988.  
  20882113 J.C.Morales, and E.T.Kool (2000).
Varied Molecular Interactions at the Active Sites of Several DNA Polymerases: Nonpolar Nucleoside Isosteres as Probes.
  J Am Chem Soc, 122, 1001-1007.  
10995224 J.Huang, L.G.Brieba, and R.Sousa (2000).
Misincorporation by wild-type and mutant T7 RNA polymerases: identification of interactions that reduce misincorporation rates by stabilizing the catalytically incompetent open conformation.
  Biochemistry, 39, 11571-11580.  
10681506 J.J.Arnold, and C.E.Cameron (2000).
Poliovirus RNA-dependent RNA polymerase (3D(pol)). Assembly of stable, elongation-competent complexes by using a symmetrical primer-template substrate (sym/sub).
  J Biol Chem, 275, 5329-5336.  
11041840 K.Vastmans, S.Pochet, A.Peys, L.Kerremans, A.Van Aerschot, C.Hendrix, P.Marlière, and P.Herdewijn (2000).
Enzymatic incorporation in DNA of 1,5-anhydrohexitol nucleotides.
  Biochemistry, 39, 12757-12765.  
11087416 L.Sun, M.Wang, E.T.Kool, and J.S.Taylor (2000).
Pyrene nucleotide as a mechanistic probe: evidence for a transient abasic site-like intermediate in the bypass of dipyrimidine photoproducts by T7 DNA polymerase.
  Biochemistry, 39, 14603-14610.  
11112542 M.E.Glasner, C.C.Yen, E.H.Ekland, and D.P.Bartel (2000).
Recognition of nucleoside triphosphates during RNA-catalyzed primer extension.
  Biochemistry, 39, 15556-15562.  
10666444 S.J.Evans, M.J.Fogg, A.Mamone, M.Davis, L.H.Pearl, and B.A.Connolly (2000).
Improving dideoxynucleotide-triphosphate utilisation by the hyper-thermophilic DNA polymerase from the archaeon Pyrococcus furiosus.
  Nucleic Acids Res, 28, 1059-1066.  
10966467 T.A.Kunkel, and K.Bebenek (2000).
DNA replication fidelity.
  Annu Rev Biochem, 69, 497-529.  
10856255 T.L.Ware, H.Wang, and E.H.Blackburn (2000).
Three telomerases with completely non-telomeric template replacements are catalytically active.
  EMBO J, 19, 3119-3131.  
11123928 V.S.Kraynov, A.K.Showalter, J.Liu, X.Zhong, and M.D.Tsai (2000).
DNA polymerase beta: contributions of template-positioning and dNTP triphosphate-binding residues to catalysis and fidelity.
  Biochemistry, 39, 16008-16015.  
  10082555 A.J.Ye, W.J.Haynes, and D.P.Romero (1999).
Expression of mutated Paramecium telomerase RNAs in vivo leads to templating errors that resemble those made by retroviral reverse transcriptase.
  Mol Cell Biol, 19, 2887-2894.  
10022845 C.Isel, E.Westhof, C.Massire, S.F.Le Grice, B.Ehresmann, C.Ehresmann, and R.Marquet (1999).
Structural basis for the specificity of the initiation of HIV-1 reverse transcription.
  EMBO J, 18, 1038-1048.  
10447680 C.Roll, C.Ketterl, G.V.Fazakerley, and Y.Boulard (1999).
Solution structures of a duplex containing an adenine opposite a gap (absence of one nucleotide). An NMR study and molecular dynamic simulations with explicit water molecules.
  Eur J Biochem, 264, 120-131.  
10551858 D.A.Lewis, K.Bebenek, W.A.Beard, S.H.Wilson, and T.A.Kunkel (1999).
Uniquely altered DNA replication fidelity conferred by an amino acid change in the nucleotide binding pocket of human immunodeficiency virus type 1 reverse transcriptase.
  J Biol Chem, 274, 32924-32930.  
9915846 D.T.Minnick, K.Bebenek, W.P.Osheroff, R.M.Turner, M.Astatke, L.Liu, T.A.Kunkel, and C.M.Joyce (1999).
Side chains that influence fidelity at the polymerase active site of Escherichia coli DNA polymerase I (Klenow fragment).
  J Biol Chem, 274, 3067-3075.  
10600732 G.M.Cheetham, and T.A.Steitz (1999).
Structure of a transcribing T7 RNA polymerase initiation complex.
  Science, 286, 2305-2309.
PDB code: 1qln
10499797 J.Fu, A.L.Gnatt, D.A.Bushnell, G.J.Jensen, N.E.Thompson, R.R.Burgess, P.R.David, and R.D.Kornberg (1999).
Yeast RNA polymerase II at 5 A resolution.
  Cell, 98, 799-810.  
10075642 J.H.Hurley (1999).
Structure, mechanism, and regulation of mammalian adenylyl cyclase.
  J Biol Chem, 274, 7599-7602.  
10047577 J.Jäger, and J.D.Pata (1999).
Getting a grip: polymerases and their substrate complexes.
  Curr Opin Struct Biol, 9, 21-28.  
9890882 J.Y.Feng, and K.S.Anderson (1999).
Mechanistic studies comparing the incorporation of (+) and (-) isomers of 3TCTP by HIV-1 reverse transcriptase.
  Biochemistry, 38, 55-63.  
10097083 K.P.Hopfner, A.Eichinger, R.A.Engh, F.Laue, W.Ankenbauer, R.Huber, and B.Angerer (1999).
Crystal structure of a thermostable type B DNA polymerase from Thermococcus gorgonarius.
  Proc Natl Acad Sci U S A, 96, 3600-3605.
PDB code: 1tgo
9920867 L.Dzantiev, and L.J.Romano (1999).
Interaction of Escherichia coli DNA polymerase I (Klenow fragment) with primer-templates containing N-acetyl-2-aminofluorene or N-2-aminofluorene adducts in the active site.
  J Biol Chem, 274, 3279-3284.  
10430892 M.A.Greagg, M.J.Fogg, G.Panayotou, S.J.Evans, B.A.Connolly, and L.H.Pearl (1999).
A read-ahead function in archaeal DNA polymerases detects promutagenic template-strand uracil.
  Proc Natl Acad Sci U S A, 96, 9045-9050.  
10535929 M.D.Sutton, T.Opperman, and G.C.Walker (1999).
The Escherichia coli SOS mutagenesis proteins UmuD and UmuD' interact physically with the replicative DNA polymerase.
  Proc Natl Acad Sci U S A, 96, 12373-12378.  
  10631986 R.Sakowicz, S.Farlow, and L.S.Goldstein (1999).
Cloning and expression of kinesins from the thermophilic fungus Thermomyces lanuginosus.
  Protein Sci, 8, 2705-2710.  
10368292 S.Doublié, M.R.Sawaya, and T.Ellenberger (1999).
An open and closed case for all polymerases.
  Structure, 7, R31-R35.  
10322129 S.G.Sarafianos, K.Das, J.Ding, P.L.Boyer, S.H.Hughes, and E.Arnold (1999).
Touching the heart of HIV-1 drug resistance: the fingers close down on the dNTP at the polymerase active site.
  Chem Biol, 6, R137-R146.  
10364165 T.A.Steitz (1999).
DNA polymerases: structural diversity and common mechanisms.
  J Biol Chem, 274, 17395-17398.  
10393195 T.Pape, W.Wintermeyer, and M.Rodnina (1999).
Induced fit in initial selection and proofreading of aminoacyl-tRNA on the ribosome.
  EMBO J, 18, 3800-3807.  
9920913 W.P.Osheroff, H.K.Jung, W.A.Beard, S.H.Wilson, and T.A.Kunkel (1999).
The fidelity of DNA polymerase beta during distributive and processive DNA synthesis.
  J Biol Chem, 274, 3642-3650.  
10409611 W.P.Osheroff, W.A.Beard, S.H.Wilson, and T.A.Kunkel (1999).
Base substitution specificity of DNA polymerase beta depends on interactions in the DNA minor groove.
  J Biol Chem, 274, 20749-20752.  
10535734 Y.Shamoo, and T.A.Steitz (1999).
Building a replisome from interacting pieces: sliding clamp complexed to a peptide from DNA polymerase and a polymerase editing complex.
  Cell, 99, 155-166.
PDB codes: 1b77 1b8h 1clq 1qe4
10545321 Y.Zhao, D.Jeruzalmi, I.Moarefi, L.Leighton, R.Lasken, and J.Kuriyan (1999).
Crystal structure of an archaebacterial DNA polymerase.
  Structure, 7, 1189-1199.
PDB codes: 1d5a 1qqc
10447379 A.P.Pugsley, and T.J.Silhavy (1998).
Cell regulation: continually redefining the rules.
  Curr Opin Microbiol, 1, 141-144.  
9670025 D.Jeruzalmi, and T.A.Steitz (1998).
Structure of T7 RNA polymerase complexed to the transcriptional inhibitor T7 lysozyme.
  EMBO J, 17, 4101-4113.
PDB code: 1aro
9792681 D.Yue, A.M.Weiner, and N.Maizels (1998).
The CCA-adding enzyme has a single active site.
  J Biol Chem, 273, 29693-29700.  
9846123 E.T.Kool (1998).
Replication of non-hydrogen bonded bases by DNA polymerases: a mechanism for steric matching.
  Biopolymers, 48, 3.  
9831551 H.Huang, R.Chopra, G.L.Verdine, and S.C.Harrison (1998).
Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance.
  Science, 282, 1669-1675.
PDB code: 1rtd
9808038 J.C.Morales, and E.T.Kool (1998).
Efficient replication between non-hydrogen-bonded nucleoside shape analogs.
  Nat Struct Biol, 5, 950-954.  
9733733 J.M.Lanchy, G.Keith, S.F.Le Grice, B.Ehresmann, C.Ehresmann, and R.Marquet (1998).
Contacts between reverse transcriptase and the primer strand govern the transition from initiation to elongation of HIV-1 reverse transcription.
  J Biol Chem, 273, 24425-24432.  
9757823 K.Singh, and M.J.Modak (1998).
A unified DNA- and dNTP-binding mode for DNA polymerases.
  Trends Biochem Sci, 23, 277-281.  
9520378 M.Astatke, K.Ng, N.D.Grindley, and C.M.Joyce (1998).
A single side chain prevents Escherichia coli DNA polymerase I (Klenow fragment) from incorporating ribonucleotides.
  Proc Natl Acad Sci U S A, 95, 3402-3407.  
9724526 M.Souquet, T.Restle, R.Krebs, S.F.Le Grice, R.S.Goody, and B.M.Wöhrl (1998).
Analysis of the polymerization kinetics of homodimeric EIAV p51/51 reverse transcriptase implies the formation of a polymerase active site identical to heterodimeric EIAV p66/51 reverse transcriptase.
  Biochemistry, 37, 12144-12152.  
9786901 M.de Vega, L.Blanco, and M.Salas (1998).
phi29 DNA polymerase residue Ser122, a single-stranded DNA ligand for 3'-5' exonucleolysis, is required to interact with the terminal protein.
  J Biol Chem, 273, 28966-28977.  
9606201 P.Y.Shi, N.Maizels, and A.M.Weiner (1998).
CCA addition by tRNA nucleotidyltransferase: polymerization without translocation?
  EMBO J, 17, 3197-3206.  
9858758 R.Strick, and C.W.Knopf (1998).
DNA binding properties and processive proofreading of herpes simplex virus type 1 DNA polymerase.
  Biochim Biophys Acta, 1388, 315-324.  
10384291 S.A.Darst, A.Polyakov, C.Richter, and G.Zhang (1998).
Structural studies of Escherichia coli RNA polymerase.
  Cold Spring Harb Symp Quant Biol, 63, 269-276.  
9914251 S.Doublié, and T.Ellenberger (1998).
The mechanism of action of T7 DNA polymerase.
  Curr Opin Struct Biol, 8, 704-712.  
9786651 S.H.Thrall, R.Krebs, B.M.Wöhrl, L.Cellai, R.S.Goody, and T.Restle (1998).
Pre-steady-state kinetic characterization of RNA-primed initiation of transcription by HIV-1 reverse transcriptase and analysis of the transition to a processive DNA-primed polymerization mode.
  Biochemistry, 37, 13349-13358.  
9461069 T.A.Kunkel, and S.H.Wilson (1998).
DNA polymerases on the move.
  Nat Struct Biol, 5, 95-99.  
9819210 T.Mitterauer, M.Hohenegger, W.J.Tang, C.Nanoff, and M.Freissmuth (1998).
The C2 catalytic domain of adenylyl cyclase contains the second metal ion (Mn2+) binding site.
  Biochemistry, 37, 16183-16191.  
9804810 W.A.Beard, K.Bebenek, T.A.Darden, L.Li, R.Prasad, T.A.Kunkel, and S.H.Wilson (1998).
Vertical-scanning mutagenesis of a critical tryptophan in the minor groove binding track of HIV-1 reverse transcriptase. Molecular nature of polymerase-nucleic acid interactions.
  J Biol Chem, 273, 30435-30442.  
9808040 Y.C.Yuan, R.H.Whitson, Q.Liu, K.Itakura, and Y.Chen (1998).
A novel DNA-binding motif shares structural homology to DNA replication and repair nucleases and polymerases.
  Nat Struct Biol, 5, 959-964.
PDB code: 1bmy
9857206 Y.Li, S.Korolev, and G.Waksman (1998).
Crystal structures of open and closed forms of binary and ternary complexes of the large fragment of Thermus aquaticus DNA polymerase I: structural basis for nucleotide incorporation.
  EMBO J, 17, 7514-7525.
PDB codes: 2ktq 3ktq 4ktq
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer