spacer
spacer

PDBsum entry 2hhs

Go to PDB code: 
protein dna_rna ligands metals links
Transferase/DNA PDB id
2hhs

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
580 a.a. *
DNA/RNA
Ligands
GLC-FRU ×2
SO4 ×3
Metals
_MG
Waters ×318
* Residue conservation analysis
PDB id:
2hhs
Name: Transferase/DNA
Title: O6-methyl:c pair in the polymerase-10 basepair position
Structure: 5'-d( Cp Ap Tp (6Og)p Cp Gp Ap Gp Tp Cp Ap Gp G)-3'. Chain: b. Engineered: yes. Other_details: DNA primer strand. 5'-d( Cp Cp Tp Gp Ap Cp Tp Cp Gp Cp Ap Tp Gp A)-3'. Chain: c. Engineered: yes. Other_details: DNA template strand. DNA polymerase i.
Source: Synthetic: yes. Other_details: chemically synthesized. Geobacillus stearothermophilus. Organism_taxid: 1422. Gene: pola. Expressed in: escherichia coli bl21. Expression_system_taxid: 511693.
Biol. unit: Trimer (from PQS)
Resolution:
1.80Å     R-factor:   0.218     R-free:   0.240
Authors: J.J.Warren,L.J.Forsberg,L.S.Beese
Key ref:
J.J.Warren et al. (2006). The structural basis for the mutagenicity of O(6)-methyl-guanine lesions. Proc Natl Acad Sci U S A, 103, 19701-19706. PubMed id: 17179038 DOI: 10.1073/pnas.0609580103
Date:
28-Jun-06     Release date:   12-Dec-06    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
Q45458  (Q45458_GEOSE) -  DNA polymerase I from Geobacillus stearothermophilus
Seq:
Struc:
 
Seq:
Struc:
876 a.a.
580 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 67 residue positions (black crosses)

DNA/RNA chains
  C-A-T-6OG-C-G-A-G-T-C-A-G-G 13 bases
  C-C-T-G-A-C-T-C-G-C-A-T-G-A 14 bases

 Enzyme reactions 
   Enzyme class: E.C.2.7.7.7  - DNA-directed Dna polymerase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: DNA(n) + a 2'-deoxyribonucleoside 5'-triphosphate = DNA(n+1) + diphosphate
DNA(n)
+ 2'-deoxyribonucleoside 5'-triphosphate
= DNA(n+1)
+ diphosphate
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    Added reference    
 
 
DOI no: 10.1073/pnas.0609580103 Proc Natl Acad Sci U S A 103:19701-19706 (2006)
PubMed id: 17179038  
 
 
The structural basis for the mutagenicity of O(6)-methyl-guanine lesions.
J.J.Warren, L.J.Forsberg, L.S.Beese.
 
  ABSTRACT  
 
Methylating agents are widespread environmental carcinogens that generate a broad spectrum of DNA damage. Methylation at the guanine O(6) position confers the greatest mutagenic and carcinogenic potential. DNA polymerases insert cytosine and thymine with similar efficiency opposite O(6)-methyl-guanine (O6MeG). We combined pre-steady-state kinetic analysis and a series of nine x-ray crystal structures to contrast the reaction pathways of accurate and mutagenic replication of O6MeG in a high-fidelity DNA polymerase from Bacillus stearothermophilus. Polymerases achieve substrate specificity by selecting for nucleotides with shape and hydrogen-bonding patterns that complement a canonical DNA template. Our structures reveal that both thymine and cytosine O6MeG base pairs evade proofreading by mimicking the essential molecular features of canonical substrates. The steric mimicry depends on stabilization of a rare cytosine tautomer in C.O6MeG-polymerase complexes. An unusual electrostatic interaction between O-methyl protons and a thymine carbonyl oxygen helps stabilize T.O6MeG pairs bound to DNA polymerase. Because DNA methylators constitute an important class of chemotherapeutic agents, the molecular mechanisms of replication of these DNA lesions are important for our understanding of both the genesis and treatment of cancer.
 
  Selected figure(s)  
 
Figure 1.
Fig. 1. Structures of O6MeG·C (a) and O6MeG·T (b) pairs in DNA duplexes, unbound by protein. Hydrogen bonds are shown as dashed lines. (a Left) O6MeG·C wobble pair from ref. 27. (a Right) Model of Watson–Crick O6MeG·protonated C pair from ref. 52. (b) O6MeG·T pairs from refs. 29 and 30. The presence or absence of the H bond indicated by the "?" has been the subject of some controversy (29, 30).
Figure 3.
Fig. 3. T·O6MeG (a) and C·O6MeG (b) conformations in the –2 base pair position. Mesh shows 1 2 F[o] – F[c] electron density for the base pairs.
 
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20152155 A.A.Golosov, J.J.Warren, L.S.Beese, and M.Karplus (2010).
The mechanism of the translocation step in DNA replication by DNA polymerase I: a computer simulation analysis.
  Structure, 18, 83-93.
PDB codes: 3eyz 3ez5
20057044 V.B.Chen, W.B.Arendall, J.J.Headd, D.A.Keedy, R.M.Immormino, G.J.Kapral, L.W.Murray, J.S.Richardson, and D.C.Richardson (2010).
MolProbity: all-atom structure validation for macromolecular crystallography.
  Acta Crystallogr D Biol Crystallogr, 66, 12-21.  
19580331 P.Khuu, and P.S.Ho (2009).
A rare nucleotide base tautomer in the structure of an asymmetric DNA junction.
  Biochemistry, 48, 7824-7832.
PDB code: 3igt
19531487 R.Guza, L.Ma, Q.Fang, A.E.Pegg, and N.Tretyakova (2009).
Cytosine methylation effects on the repair of O6-methylguanines within CG dinucleotides.
  J Biol Chem, 284, 22601-22610.  
19523903 S.D.Gilbert, F.E.Reyes, A.L.Edwards, and R.T.Batey (2009).
Adaptive ligand binding by the purine riboswitch in the recognition of guanine and adenine analogs.
  Structure, 17, 857-868.
PDB codes: 3fo4 3fo6 3g4m 3gao 3ger 3ges 3gog 3got
19074196 X.Meng, Y.Zhou, S.Zhang, E.Y.Lee, D.N.Frick, and M.Y.Lee (2009).
DNA damage alters DNA polymerase delta to a form that exhibits increased discrimination against modified template bases and mismatched primers.
  Nucleic Acids Res, 37, 647-657.  
18854351 A.Dimitri, J.A.Burns, S.Broyde, and D.A.Scicchitano (2008).
Transcription elongation past O6-methylguanine by human RNA polymerase II and bacteriophage T7 RNA polymerase.
  Nucleic Acids Res, 36, 6459-6471.  
18522974 H.Feitsma, A.Akay, and E.Cuppen (2008).
Alkylation damage causes MMR-dependent chromosomal instability in vertebrate embryos.
  Nucleic Acids Res, 36, 4047-4056.  
18072751 J.C.Delaney, and J.M.Essigmann (2008).
Biological properties of single chemical-DNA adducts: a twenty year perspective.
  Chem Res Toxicol, 21, 232-252.  
18406444 P.Hsieh, and K.Yamane (2008).
DNA mismatch repair: molecular mechanism, cancer, and ageing.
  Mech Ageing Dev, 129, 391-407.  
18417481 R.van Boxtel, P.W.Toonen, H.S.van Roekel, M.Verheul, B.M.Smits, J.Korving, A.de Bruin, and E.Cuppen (2008).
Lack of DNA mismatch repair protein MSH6 in the rat results in hereditary non-polyposis colorectal cancer-like tumorigenesis.
  Carcinogenesis, 29, 1290-1297.  
18407502 S.Broyde, L.Wang, O.Rechkoblit, N.E.Geacintov, and D.J.Patel (2008).
Lesion processing: high-fidelity versus lesion-bypass DNA polymerases.
  Trends Biochem Sci, 33, 209-219.  
17531815 J.J.Warren, T.J.Pohlhaus, A.Changela, R.R.Iyer, P.L.Modrich, and L.S.Beese (2007).
Structure of the human MutSalpha DNA lesion recognition complex.
  Mol Cell, 26, 579-592.
PDB codes: 2o8b 2o8c 2o8d 2o8e 2o8f
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer