spacer
spacer

PDBsum entry 2q6g

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Hydrolase PDB id
2q6g

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
305 a.a. *
11 a.a. *
Ligands
THR-SER-ALA-VAL-
LEU-GLN-SER-GLY
Waters ×236
* Residue conservation analysis
PDB id:
2q6g
Name: Hydrolase
Title: Crystal structure of sars-cov main protease h41a mutant in complex with an n-terminal substrate
Structure: Severe acute respiratory syndrome coronavirus (sars-cov). Chain: a, b. Engineered: yes. Mutation: yes. Polypeptide chain. Chain: c, d. Engineered: yes
Source: Sars coronavirus. Organism_taxid: 228407. Strain: bj01. Gene: rep. Expressed in: escherichia coli bl21. Expression_system_taxid: 511693. Synthetic: yes. Other_details: chemically synthesized.
Resolution:
2.50Å     R-factor:   0.199     R-free:   0.267
Authors: X.Y.Xue,H.T.Yang,F.Xue,M.Bartlam,Z.H.Rao
Key ref: X.Xue et al. (2008). Structures of two coronavirus main proteases: implications for substrate binding and antiviral drug design. J Virol, 82, 2515-2527. PubMed id: 18094151
Date:
05-Jun-07     Release date:   12-Feb-08    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P0C6X7  (R1AB_CVHSA) -  Replicase polyprotein 1ab from Severe acute respiratory syndrome coronavirus
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
7073 a.a.
305 a.a.*
Protein chain
Pfam   ArchSchema ?
P0C6X7  (R1AB_CVHSA) -  Replicase polyprotein 1ab from Severe acute respiratory syndrome coronavirus
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
7073 a.a.
11 a.a.
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class 2: Chains A, B, C: E.C.2.1.1.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 3: Chains A, B, C: E.C.2.1.1.56  - mRNA (guanine-N(7))-methyltransferase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: a 5'-end (5'-triphosphoguanosine)-ribonucleoside in mRNA + S-adenosyl-L- methionine = a 5'-end (N(7)-methyl 5'-triphosphoguanosine)-ribonucleoside in mRNA + S-adenosyl-L-homocysteine
5'-end (5'-triphosphoguanosine)-ribonucleoside in mRNA
+ S-adenosyl-L- methionine
= 5'-end (N(7)-methyl 5'-triphosphoguanosine)-ribonucleoside in mRNA
+ S-adenosyl-L-homocysteine
   Enzyme class 4: Chains A, B, C: E.C.2.1.1.57  - methyltransferase cap1.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: a 5'-end (N(7)-methyl 5'-triphosphoguanosine)-ribonucleoside in mRNA + S-adenosyl-L-methionine = a 5'-end (N(7)-methyl 5'-triphosphoguanosine)- (2'-O-methyl-ribonucleoside) in mRNA + S-adenosyl-L-homocysteine + H+
5'-end (N(7)-methyl 5'-triphosphoguanosine)-ribonucleoside in mRNA
+ S-adenosyl-L-methionine
= 5'-end (N(7)-methyl 5'-triphosphoguanosine)- (2'-O-methyl-ribonucleoside) in mRNA
+ S-adenosyl-L-homocysteine
+ H(+)
   Enzyme class 5: Chains A, B, C: E.C.2.7.7.48  - RNA-directed Rna polymerase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: RNA(n) + a ribonucleoside 5'-triphosphate = RNA(n+1) + diphosphate
RNA(n)
+ ribonucleoside 5'-triphosphate
= RNA(n+1)
+ diphosphate
   Enzyme class 6: Chains A, B, C: E.C.2.7.7.50  - mRNA guanylyltransferase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: a 5'-end diphospho-ribonucleoside in mRNA + GTP + H+ = a 5'-end (5'-triphosphoguanosine)-ribonucleoside in mRNA + diphosphate
5'-end diphospho-ribonucleoside in mRNA
+ GTP
+ H(+)
= 5'-end (5'-triphosphoguanosine)-ribonucleoside in mRNA
+ diphosphate
   Enzyme class 7: Chains A, B, C: E.C.3.1.13.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 8: Chains A, B, C: E.C.3.4.19.12  - ubiquitinyl hydrolase 1.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Thiol-dependent hydrolysis of ester, thiolester, amide, peptide and isopeptide bonds formed by the C-terminal Gly of ubiquitin (a 76-residue protein attached to proteins as an intracellular targeting signal).
   Enzyme class 9: Chains A, B, C: E.C.3.4.22.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 10: Chains A, B, C: E.C.3.4.22.69  - Sars coronavirus main proteinase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 11: Chains A, B, C: E.C.3.6.4.12  - Dna helicase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: ATP + H2O = ADP + phosphate + H+
ATP
+ H2O
= ADP
+ phosphate
+ H(+)
   Enzyme class 12: Chains A, B, C: E.C.3.6.4.13  - Rna helicase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: ATP + H2O = ADP + phosphate + H+
ATP
+ H2O
= ADP
+ phosphate
+ H(+)
   Enzyme class 13: Chains A, B, C: E.C.4.6.1.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
J Virol 82:2515-2527 (2008)
PubMed id: 18094151  
 
 
Structures of two coronavirus main proteases: implications for substrate binding and antiviral drug design.
X.Xue, H.Yu, H.Yang, F.Xue, Z.Wu, W.Shen, J.Li, Z.Zhou, Y.Ding, Q.Zhao, X.C.Zhang, M.Liao, M.Bartlam, Z.Rao.
 
  ABSTRACT  
 
Coronaviruses (CoVs) can infect humans and multiple species of animals, causing a wide spectrum of diseases. The coronavirus main protease (M(pro)), which plays a pivotal role in viral gene expression and replication through the proteolytic processing of replicase polyproteins, is an attractive target for anti-CoV drug design. In this study, the crystal structures of infectious bronchitis virus (IBV) M(pro) and a severe acute respiratory syndrome CoV (SARS-CoV) M(pro) mutant (H41A), in complex with an N-terminal autocleavage substrate, were individually determined to elucidate the structural flexibility and substrate binding of M(pro). A monomeric form of IBV M(pro) was identified for the first time in CoV M(pro) structures. A comparison of these two structures to other available M(pro) structures provides new insights for the design of substrate-based inhibitors targeting CoV M(pro)s. Furthermore, a Michael acceptor inhibitor (named N3) was cocrystallized with IBV M(pro) and was found to demonstrate in vitro inactivation of IBV M(pro) and potent antiviral activity against IBV in chicken embryos. This provides a feasible animal model for designing wide-spectrum inhibitors against CoV-associated diseases. The structure-based optimization of N3 has yielded two more efficacious lead compounds, N27 and H16, with potent inhibition against SARS-CoV M(pro).
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
22705789 X.Jia, R.Singh, S.Homann, H.Yang, J.Guatelli, and Y.Xiong (2012).
Structural basis of evasion of cellular adaptive immunity by HIV-1 Nef.
  Nat Struct Mol Biol, 19, 701-706.
PDB codes: 4emz 4en2
21390281 J.Shi, N.Han, L.Lim, S.Lua, J.Sivaraman, L.Wang, Y.Mu, and J.Song (2011).
Dynamically-driven inactivation of the catalytic machinery of the SARS 3C-like protease by the N214A mutation on the extra domain.
  PLoS Comput Biol, 7, e1001084.  
20949131 C.P.Chuck, L.T.Chong, C.Chen, H.F.Chow, D.C.Wan, and K.B.Wong (2010).
Profiling of substrate specificity of SARS-CoV 3CL.
  PLoS One, 5, e13197.  
20587646 M.Y.Tsai, W.H.Chang, J.Y.Liang, L.L.Lin, G.G.Chang, and H.P.Chang (2010).
Essential covalent linkage between the chymotrypsin-like domain and the extra domain of the SARS-CoV main protease.
  J Biochem, 148, 349-358.  
  20504120 R.N.Kostoff (2010).
The highly cited SARS research literature.
  Crit Rev Microbiol, 36, 299-317.  
20371333 S.C.Cheng, G.G.Chang, and C.Y.Chou (2010).
Mutation of Glu-166 blocks the substrate-induced dimerization of SARS coronavirus main protease.
  Biophys J, 98, 1327-1336.  
20444893 S.Fang, H.Shen, J.Wang, F.P.Tay, and D.X.Liu (2010).
Functional and genetic studies of the substrate specificity of coronavirus infectious bronchitis virus 3C-like proteinase.
  J Virol, 84, 7325-7336.  
  19177346 Y.Piotrowski, G.Hansen, A.L.Boomaars-van der Zanden, E.J.Snijder, A.E.Gorbalenya, and R.Hilgenfeld (2009).
Crystal structures of the X-domains of a Group-1 and a Group-3 coronavirus reveal that ADP-ribose-binding may not be a conserved property.
  Protein Sci, 18, 6.
PDB codes: 3ejf 3ejg 3eke
18987156 Y.Xu, L.Cong, C.Chen, L.Wei, Q.Zhao, X.Xu, Y.Ma, M.Bartlam, and Z.Rao (2009).
Crystal structures of two coronavirus ADP-ribose-1''-monophosphatases and their complexes with ADP-Ribose: a systematic structural analysis of the viral ADRP domain.
  J Virol, 83, 1083-1092.
PDB codes: 3ewo 3ewp 3ewq 3ewr
18305031 J.Shi, J.Sivaraman, and J.Song (2008).
Mechanism for controlling the dimer-monomer switch and coupling dimerization to catalysis of the severe acute respiratory syndrome coronavirus 3C-like protease.
  J Virol, 82, 4620-4629.
PDB code: 2qcy
18562531 Q.Zhao, S.Li, F.Xue, Y.Zou, C.Chen, M.Bartlam, and Z.Rao (2008).
Structure of the main protease from a global infectious human coronavirus, HCoV-HKU1.
  J Virol, 82, 8647-8655.
PDB code: 3d23
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer