spacer
spacer

PDBsum entry 2fe8

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Hydrolase PDB id
2fe8

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
315 a.a. *
Ligands
SO4 ×3
Metals
_ZN ×3
_BR ×9
Waters ×530
* Residue conservation analysis
PDB id:
2fe8
Name: Hydrolase
Title: Sars coronavirus papain-like protease: structure of a viral deubiquitinating enzyme
Structure: Replicase polyprotein 1ab. Chain: a, b, c. Fragment: papain like proteinase, residues 1541-1854. Synonym: pp1ab, orf1ab. Engineered: yes
Source: Sars coronavirus. Organism_taxid: 227859. Strain: sars. Expressed in: escherichia coli bl21. Expression_system_taxid: 511693.
Biol. unit: Hexamer (from PQS)
Resolution:
1.85Å     R-factor:   0.201     R-free:   0.229
Authors: K.Ratia,B.D.Santarsiero,A.D.Mesecar
Key ref:
K.Ratia et al. (2006). Severe acute respiratory syndrome coronavirus papain-like protease: structure of a viral deubiquitinating enzyme. Proc Natl Acad Sci U S A, 103, 5717-5722. PubMed id: 16581910 DOI: 10.1073/pnas.0510851103
Date:
15-Dec-05     Release date:   21-Mar-06    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P0C6X7  (R1AB_CVHSA) -  Replicase polyprotein 1ab from Severe acute respiratory syndrome coronavirus
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
7073 a.a.
315 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class 2: E.C.2.1.1.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 3: E.C.2.1.1.56  - mRNA (guanine-N(7))-methyltransferase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: a 5'-end (5'-triphosphoguanosine)-ribonucleoside in mRNA + S-adenosyl-L- methionine = a 5'-end (N(7)-methyl 5'-triphosphoguanosine)-ribonucleoside in mRNA + S-adenosyl-L-homocysteine
5'-end (5'-triphosphoguanosine)-ribonucleoside in mRNA
+ S-adenosyl-L- methionine
= 5'-end (N(7)-methyl 5'-triphosphoguanosine)-ribonucleoside in mRNA
+ S-adenosyl-L-homocysteine
   Enzyme class 4: E.C.2.1.1.57  - methyltransferase cap1.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: a 5'-end (N(7)-methyl 5'-triphosphoguanosine)-ribonucleoside in mRNA + S-adenosyl-L-methionine = a 5'-end (N(7)-methyl 5'-triphosphoguanosine)- (2'-O-methyl-ribonucleoside) in mRNA + S-adenosyl-L-homocysteine + H+
5'-end (N(7)-methyl 5'-triphosphoguanosine)-ribonucleoside in mRNA
+ S-adenosyl-L-methionine
= 5'-end (N(7)-methyl 5'-triphosphoguanosine)- (2'-O-methyl-ribonucleoside) in mRNA
+ S-adenosyl-L-homocysteine
+ H(+)
   Enzyme class 5: E.C.2.7.7.48  - RNA-directed Rna polymerase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: RNA(n) + a ribonucleoside 5'-triphosphate = RNA(n+1) + diphosphate
RNA(n)
+ ribonucleoside 5'-triphosphate
= RNA(n+1)
+ diphosphate
   Enzyme class 6: E.C.2.7.7.50  - mRNA guanylyltransferase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: a 5'-end diphospho-ribonucleoside in mRNA + GTP + H+ = a 5'-end (5'-triphosphoguanosine)-ribonucleoside in mRNA + diphosphate
5'-end diphospho-ribonucleoside in mRNA
+ GTP
+ H(+)
= 5'-end (5'-triphosphoguanosine)-ribonucleoside in mRNA
+ diphosphate
   Enzyme class 7: E.C.3.1.13.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 8: E.C.3.4.19.12  - ubiquitinyl hydrolase 1.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Thiol-dependent hydrolysis of ester, thiolester, amide, peptide and isopeptide bonds formed by the C-terminal Gly of ubiquitin (a 76-residue protein attached to proteins as an intracellular targeting signal).
   Enzyme class 9: E.C.3.4.22.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 10: E.C.3.4.22.69  - Sars coronavirus main proteinase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 11: E.C.3.6.4.12  - Dna helicase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: ATP + H2O = ADP + phosphate + H+
ATP
+ H2O
= ADP
+ phosphate
+ H(+)
   Enzyme class 12: E.C.3.6.4.13  - Rna helicase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: ATP + H2O = ADP + phosphate + H+
ATP
+ H2O
= ADP
+ phosphate
+ H(+)
   Enzyme class 13: E.C.4.6.1.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1073/pnas.0510851103 Proc Natl Acad Sci U S A 103:5717-5722 (2006)
PubMed id: 16581910  
 
 
Severe acute respiratory syndrome coronavirus papain-like protease: structure of a viral deubiquitinating enzyme.
K.Ratia, K.S.Saikatendu, B.D.Santarsiero, N.Barretto, S.C.Baker, R.C.Stevens, A.D.Mesecar.
 
  ABSTRACT  
 
Replication of severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) requires proteolytic processing of the replicase polyprotein by two viral cysteine proteases, a chymotrypsin-like protease (3CLpro) and a papain-like protease (PLpro). These proteases are important targets for development of antiviral drugs that would inhibit viral replication and reduce mortality associated with outbreaks of SARS-CoV. In this work, we describe the 1.85-A crystal structure of the catalytic core of SARS-CoV PLpro and show that the overall architecture adopts a fold closely resembling that of known deubiquitinating enzymes. Key features, however, distinguish PLpro from characterized deubiquitinating enzymes, including an intact zinc-binding motif, an unobstructed catalytically competent active site, and the presence of an intriguing, ubiquitin-like N-terminal domain. To gain insight into the active-site recognition of the C-terminal tail of ubiquitin and the related LXGG motif, we propose a model of PLpro in complex with ubiquitin-aldehyde that reveals well defined sites within the catalytic cleft that help to account for strict substrate-recognition motifs.
 
  Selected figure(s)  
 
Figure 4.
Fig. 4. The SARS-CoV PLpro and USP14 active sites. (A) SARS-CoV PLpro catalytic triad residues, C112, H273, and D287, and other important active-site residues. Distances between residues are indicated in angstroms. The hydrogen bond between D109 and W97 is indicated by an arrow. (B) Comparison of USP14 and SARS-CoV PLpro BL1 and BL2 loop regions. Corresponding regions of unbound USP14 (red), Ubal-complexed USP14 (yellow), and PLpro (blue) are shown superimposed. The BL1 and BL2 loop regions are indicated. The BL1 loop region of PLpro is colored in green. The catalytic triad residues are shown by a ball-and-stick representation.
Figure 5.
Fig. 5. Comparison of the ubiquitin-binding surfaces of HAUSP, USP14, and PLpro based on modeling studies. For modeling ubiquitin into the SARS-CoV PLpro active site, the structures of the Ubal-bound forms of HAUSP (1nbf) and USP14 (2ayo) were superimposed onto the PLpro structure and analyzed. Contacts at the C-terminal tail of ubiquitin and two interacting surfaces of the PLpro palm domain were manually edited and minimized by using CNS. The ubiquitin molecule is shown as a ribbon diagram.
 
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21270289 S.W.Li, C.C.Lai, J.F.Ping, F.J.Tsai, L.Wan, Y.J.Lin, S.H.Kung, and C.W.Lin (2011).
Severe acute respiratory syndrome coronavirus papain-like protease suppressed alpha interferon-induced responses through downregulation of extracellular signal-regulated kinase 1-mediated signalling pathways.
  J Gen Virol, 92, 1127-1140.  
20668092 J.A.Wojdyla, I.Manolaridis, P.B.van Kasteren, M.Kikkert, E.J.Snijder, A.E.Gorbalenya, and P.A.Tucker (2010).
Papain-like protease 1 from transmissible gastroenteritis virus: crystal structure and enzymatic activity toward viral and cellular substrates.
  J Virol, 84, 10063-10073.
PDB code: 3mp2
20660183 K.R.Hurst, R.Ye, S.J.Goebel, P.Jayaraman, and P.S.Masters (2010).
An interaction between the nucleocapsid protein and a component of the replicase-transcriptase complex is crucial for the infectivity of coronavirus genomic RNA.
  J Virol, 84, 10276-10288.  
20181693 M.A.Clementz, Z.Chen, B.S.Banach, Y.Wang, L.Sun, K.Ratia, Y.M.Baez-Santos, J.Wang, J.Takayama, A.K.Ghosh, K.Li, A.D.Mesecar, and S.C.Baker (2010).
Deubiquitinating and interferon antagonism activities of coronavirus papain-like proteases.
  J Virol, 84, 4619-4629.  
20427532 M.J.Gadlage, and M.R.Denison (2010).
Exchange of the coronavirus replicase polyprotein cleavage sites alters protease specificity and processing.
  J Virol, 84, 6894-6898.  
20484504 M.Raaben, C.C.Posthuma, M.H.Verheije, E.G.te Lintelo, M.Kikkert, J.W.Drijfhout, E.J.Snijder, P.J.Rottier, and C.A.de Haan (2010).
The ubiquitin-proteasome system plays an important role during various stages of the coronavirus infection cycle.
  J Virol, 84, 7869-7879.  
20587646 M.Y.Tsai, W.H.Chang, J.Y.Liang, L.L.Lin, G.G.Chang, and H.P.Chang (2010).
Essential covalent linkage between the chymotrypsin-like domain and the extra domain of the SARS-CoV main protease.
  J Biochem, 148, 349-358.  
20504120 R.N.Kostoff (2010).
The highly cited SARS research literature.
  Crit Rev Microbiol, 36, 299-317.  
19052085 A.Chatterjee, M.A.Johnson, P.Serrano, B.Pedrini, J.S.Joseph, B.W.Neuman, K.Saikatendu, M.J.Buchmeier, P.Kuhn, and K.Wüthrich (2009).
Nuclear magnetic resonance structure shows that the severe acute respiratory syndrome coronavirus-unique domain contains a macrodomain fold.
  J Virol, 83, 1823-1836.
PDB codes: 2jzd 2jze 2jzf 2rnk
19622868 I.Manolaridis, J.A.Wojdyla, S.Panjikar, E.J.Snijder, A.E.Gorbalenya, H.Berglind, P.Nordlund, B.Coutard, and P.A.Tucker (2009).
Structure of the C-terminal domain of nsp4 from feline coronavirus.
  Acta Crystallogr D Biol Crystallogr, 65, 839-846.
PDB code: 3gzf
19587037 J.Han, M.S.Rutherford, and K.S.Faaberg (2009).
The porcine reproductive and respiratory syndrome virus nsp2 cysteine protease domain possesses both trans- and cis-cleavage activities.
  J Virol, 83, 9449-9463.  
19436709 J.Tan, C.Vonrhein, O.S.Smart, G.Bricogne, M.Bollati, Y.Kusov, G.Hansen, J.R.Mesters, C.L.Schmidt, and R.Hilgenfeld (2009).
The SARS-Unique Domain (SUD) of SARS Coronavirus Contains Two Macrodomains That Bind G-Quadruplexes.
  PLoS Pathog, 5, e1000428.
PDB codes: 2w2g 2wct
19369340 M.Frieman, K.Ratia, R.E.Johnston, A.D.Mesecar, and R.S.Baric (2009).
Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling.
  J Virol, 83, 6689-6705.  
19828617 P.Serrano, M.A.Johnson, A.Chatterjee, B.W.Neuman, J.S.Joseph, M.J.Buchmeier, P.Kuhn, and K.Wüthrich (2009).
Nuclear magnetic resonance structure of the nucleic acid-binding domain of severe acute respiratory syndrome coronavirus nonstructural protein 3.
  J Virol, 83, 12998-13008.
PDB code: 2k87
19430490 S.Perlman, and J.Netland (2009).
Coronaviruses post-SARS: update on replication and pathogenesis.
  Nat Rev Microbiol, 7, 439-450.  
18795894 Y.Zhou, W.P.Tzeng, Y.Ye, Y.Huang, S.Li, Y.Chen, T.K.Frey, and J.J.Yang (2009).
A cysteine-rich metal-binding domain from rubella virus non-structural protein is essential for viral protease activity and virus replication.
  Biochem J, 417, 477-483.  
18054092 B.Canard, J.S.Joseph, and P.Kuhn (2008).
International research networks in viral structural proteomics: again, lessons from SARS.
  Antiviral Res, 78, 47-50.  
18367524 B.W.Neuman, J.S.Joseph, K.S.Saikatendu, P.Serrano, A.Chatterjee, M.A.Johnson, L.Liao, J.P.Klaus, J.R.Yates, K.Wüthrich, R.C.Stevens, M.J.Buchmeier, and P.Kuhn (2008).
Proteomics analysis unravels the functional repertoire of coronavirus nonstructural protein 3.
  J Virol, 82, 5279-5294.  
17984082 C.Zhang, O.Crasta, S.Cammer, R.Will, R.Kenyon, D.Sullivan, Q.Yu, W.Sun, R.Jha, D.Liu, T.Xue, Y.Zhang, M.Moore, P.McGarvey, H.Huang, Y.Chen, J.Zhang, R.Mazumder, C.Wu, and B.Sobral (2008).
An emerging cyberinfrastructure for biodefense pathogen and pathogen-host data.
  Nucleic Acids Res, 36, D884-D891.  
18827877 J.Pan, X.Peng, Y.Gao, Z.Li, X.Lu, Y.Chen, M.Ishaq, D.Liu, M.L.Dediego, L.Enjuanes, and D.Guo (2008).
Genome-wide analysis of protein-protein interactions and involvement of viral proteins in SARS-CoV replication.
  PLoS ONE, 3, e3299.  
18852458 K.Ratia, S.Pegan, J.Takayama, K.Sleeman, M.Coughlin, S.Baliji, R.Chaudhuri, W.Fu, B.S.Prabhakar, M.E.Johnson, S.C.Baker, A.K.Ghosh, and A.D.Mesecar (2008).
A noncovalent class of papain-like protease/deubiquitinase inhibitors blocks SARS virus replication.
  Proc Natl Acad Sci U S A, 105, 16119-16124.  
18156685 M.Bartlam, X.Xue, and Z.Rao (2008).
The search for a structural basis for therapeutic intervention against the SARS coronavirus.
  Acta Crystallogr A, 64, 204-213.  
18601651 M.Drag, J.Mikolajczyk, M.Bekes, F.E.Reyes-Turcu, J.A.Ellman, K.D.Wilkinson, and G.S.Salvesen (2008).
Positional-scanning fluorigenic substrate libraries reveal unexpected specificity determinants of DUBs (deubiquitinating enzymes).
  Biochem J, 415, 367-375.  
19636888 P.Serrano, M.A.Johnson, A.Chatterjee, B.Pedrini, and K.Wüthrich (2008).
NMR assignment of the nonstructural protein nsp3(1066-1181) from SARS-CoV.
  Biomol NMR Assign, 2, 135-138.  
17397959 R.L.Graham, J.S.Sparks, L.D.Eckerle, A.C.Sims, and M.R.Denison (2008).
SARS coronavirus replicase proteins in pathogenesis.
  Virus Res, 133, 88.  
18463149 Z.Li, D.Barajas, T.Panavas, D.A.Herbst, and P.D.Nagy (2008).
Cdc34p ubiquitin-conjugating enzyme is a component of the tombusvirus replicase complex and ubiquitinates p33 replication protein.
  J Virol, 82, 6911-6926.  
17651432 A.Fernández-Montalván, T.Bouwmeester, G.Joberty, R.Mader, M.Mahnke, B.Pierrat, J.M.Schlaeppi, S.Worpenberg, and B.Gerhartz (2007).
Biochemical characterization of USP7 reveals post-translational modification sites and structural requirements for substrate processing and subcellular localization.
  FEBS J, 274, 4256-4270.  
17222884 A.Kanjanahaluethai, Z.Chen, D.Jukneliene, and S.C.Baker (2007).
Membrane topology of murine coronavirus replicase nonstructural protein 3.
  Virology, 361, 391-401.  
17349955 C.Schlieker, W.A.Weihofen, E.Frijns, L.M.Kattenhorn, R.Gaudet, and H.L.Ploegh (2007).
Structure of a herpesvirus-encoded cysteine protease reveals a unique class of deubiquitinating enzymes.
  Mol Cell, 25, 677-687.
PDB code: 2j7q
17251282 J.Ziebuhr, B.Schelle, N.Karl, E.Minskaia, S.Bayer, S.G.Siddell, A.E.Gorbalenya, and V.Thiel (2007).
Human coronavirus 229E papain-like proteases have overlapping specificities but distinct functions in viral replication.
  J Virol, 81, 3922-3932.  
17554050 K.L.Maxwell, and L.Frappier (2007).
Viral proteomics.
  Microbiol Mol Biol Rev, 71, 398-411.  
17680348 M.Bartlam, Y.Xu, and Z.Rao (2007).
Structural proteomics of the SARS coronavirus: a model response to emerging infectious diseases.
  J Struct Funct Genomics, 8, 85-97.  
17202208 M.S.Almeida, M.A.Johnson, T.Herrmann, M.Geralt, and K.Wüthrich (2007).
Novel beta-barrel fold in the nuclear magnetic resonance structure of the replicase nonstructural protein 1 from the severe acute respiratory syndrome coronavirus.
  J Virol, 81, 3151-3161.
PDB codes: 2gdt 2hsx
  18078692 N.Frias-Staheli, N.V.Giannakopoulos, M.Kikkert, S.L.Taylor, A.Bridgen, J.Paragas, J.A.Richt, R.R.Rowland, C.S.Schmaljohn, D.J.Lenschow, E.J.Snijder, A.García-Sastre, and H.W.Virgin (2007).
Ovarian tumor domain-containing viral proteases evade ubiquitin- and ISG15-dependent innate immune responses.
  Cell Host Microbe, 2, 404-416.  
17728234 P.Serrano, M.A.Johnson, M.S.Almeida, R.Horst, T.Herrmann, J.S.Joseph, B.W.Neuman, V.Subramanian, K.S.Saikatendu, M.J.Buchmeier, R.C.Stevens, P.Kuhn, and K.Wüthrich (2007).
Nuclear magnetic resonance structure of the N-terminal domain of nonstructural protein 3 from the severe acute respiratory syndrome coronavirus.
  J Virol, 81, 12049-12060.
PDB codes: 2gri 2idy
17761676 S.G.Devaraj, N.Wang, Z.Chen, Z.Chen, M.Tseng, N.Barretto, R.Lin, C.J.Peters, C.T.Tseng, S.C.Baker, and K.Li (2007).
Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus.
  J Biol Chem, 282, 32208-32221.  
16928755 S.G.Sawicki, D.L.Sawicki, and S.G.Siddell (2007).
A contemporary view of coronavirus transcription.
  J Virol, 81, 20-29.  
17934078 V.C.Cheng, S.K.Lau, P.C.Woo, and K.Y.Yuen (2007).
Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection.
  Clin Microbiol Rev, 20, 660-694.  
17597129 X.Zhu, R.Ménard, and T.Sulea (2007).
High incidence of ubiquitin-like domains in human ubiquitin-specific proteases.
  Proteins, 69, 1-7.  
17392370 Z.Chen, Y.Wang, K.Ratia, A.D.Mesecar, K.D.Wilkinson, and S.C.Baker (2007).
Proteolytic processing and deubiquitinating activity of papain-like proteases of human coronavirus NL63.
  J Virol, 81, 6007-6018.  
17009921 E.M.Hol, D.F.Fischer, H.Ovaa, and W.Scheper (2006).
Ubiquitin proteasome system as a pharmacological target in neurodegeneration.
  Expert Rev Neurother, 6, 1337-1347.  
16987966 H.Schütze, R.Ulferts, B.Schelle, S.Bayer, H.Granzow, B.Hoffmann, T.C.Mettenleiter, and J.Ziebuhr (2006).
Characterization of White bream virus reveals a novel genetic cluster of nidoviruses.
  J Virol, 80, 11598-11609.  
17085042 J.R.Mesters, J.Tan, and R.Hilgenfeld (2006).
Viral enzymes.
  Curr Opin Struct Biol, 16, 776-786.  
16905103 M.Renatus, S.G.Parrado, A.D'Arcy, U.Eidhoff, B.Gerhartz, U.Hassiepen, B.Pierrat, R.Riedl, D.Vinzenz, S.Worpenberg, and M.Kroemer (2006).
Structural basis of ubiquitin recognition by the deubiquitinating protease USP2.
  Structure, 14, 1293-1302.
PDB code: 2hd5
16971428 R.L.Graham, and M.R.Denison (2006).
Replication of murine hepatitis virus is regulated by papain-like proteinase 1 processing of nonstructural proteins 1, 2, and 3.
  J Virol, 80, 11610-11620.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer