spacer
spacer

PDBsum entry 2op9

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Hydrolase PDB id
2op9

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
302 a.a. *
Ligands
WR1 ×2
Waters ×491
* Residue conservation analysis
PDB id:
2op9
Name: Hydrolase
Title: Substrate specificity profiling and identification of a new class of inhibitor for the major protease of the sars coronavirus
Structure: Replicase polyprotein 1ab (pp1ab, orf1ab) 3c-like proteinase (3cl-pro, 3clp). Chain: a, b. Engineered: yes
Source: Sars coronavirus. Organism_taxid: 227859. Strain: tor2. Gene: 3clpro. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008.
Resolution:
1.80Å     R-factor:   0.172     R-free:   0.207
Authors: C.S.Craik,D.H.Goetz
Key ref: D.H.Goetz et al. (2007). Substrate specificity profiling and identification of a new class of inhibitor for the major protease of the SARS coronavirus. Biochemistry, 46, 8744-8752. PubMed id: 17605471
Date:
27-Jan-07     Release date:   17-Jul-07    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P0C6X7  (R1AB_CVHSA) -  Replicase polyprotein 1ab from Severe acute respiratory syndrome coronavirus
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
7073 a.a.
302 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class 2: E.C.2.1.1.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 3: E.C.2.1.1.56  - mRNA (guanine-N(7))-methyltransferase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: a 5'-end (5'-triphosphoguanosine)-ribonucleoside in mRNA + S-adenosyl-L- methionine = a 5'-end (N(7)-methyl 5'-triphosphoguanosine)-ribonucleoside in mRNA + S-adenosyl-L-homocysteine
5'-end (5'-triphosphoguanosine)-ribonucleoside in mRNA
+ S-adenosyl-L- methionine
= 5'-end (N(7)-methyl 5'-triphosphoguanosine)-ribonucleoside in mRNA
+ S-adenosyl-L-homocysteine
   Enzyme class 4: E.C.2.1.1.57  - methyltransferase cap1.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: a 5'-end (N(7)-methyl 5'-triphosphoguanosine)-ribonucleoside in mRNA + S-adenosyl-L-methionine = a 5'-end (N(7)-methyl 5'-triphosphoguanosine)- (2'-O-methyl-ribonucleoside) in mRNA + S-adenosyl-L-homocysteine + H+
5'-end (N(7)-methyl 5'-triphosphoguanosine)-ribonucleoside in mRNA
+ S-adenosyl-L-methionine
= 5'-end (N(7)-methyl 5'-triphosphoguanosine)- (2'-O-methyl-ribonucleoside) in mRNA
+ S-adenosyl-L-homocysteine
+ H(+)
   Enzyme class 5: E.C.2.7.7.48  - RNA-directed Rna polymerase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: RNA(n) + a ribonucleoside 5'-triphosphate = RNA(n+1) + diphosphate
RNA(n)
+ ribonucleoside 5'-triphosphate
= RNA(n+1)
+ diphosphate
   Enzyme class 6: E.C.2.7.7.50  - mRNA guanylyltransferase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: a 5'-end diphospho-ribonucleoside in mRNA + GTP + H+ = a 5'-end (5'-triphosphoguanosine)-ribonucleoside in mRNA + diphosphate
5'-end diphospho-ribonucleoside in mRNA
+ GTP
+ H(+)
= 5'-end (5'-triphosphoguanosine)-ribonucleoside in mRNA
+ diphosphate
   Enzyme class 7: E.C.3.1.13.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 8: E.C.3.4.19.12  - ubiquitinyl hydrolase 1.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Thiol-dependent hydrolysis of ester, thiolester, amide, peptide and isopeptide bonds formed by the C-terminal Gly of ubiquitin (a 76-residue protein attached to proteins as an intracellular targeting signal).
   Enzyme class 9: E.C.3.4.22.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 10: E.C.3.4.22.69  - Sars coronavirus main proteinase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 11: E.C.3.6.4.12  - Dna helicase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: ATP + H2O = ADP + phosphate + H+
ATP
+ H2O
= ADP
+ phosphate
+ H(+)
   Enzyme class 12: E.C.3.6.4.13  - Rna helicase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: ATP + H2O = ADP + phosphate + H+
ATP
+ H2O
= ADP
+ phosphate
+ H(+)
   Enzyme class 13: E.C.4.6.1.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
Biochemistry 46:8744-8752 (2007)
PubMed id: 17605471  
 
 
Substrate specificity profiling and identification of a new class of inhibitor for the major protease of the SARS coronavirus.
D.H.Goetz, Y.Choe, E.Hansell, Y.T.Chen, M.McDowell, C.B.Jonsson, W.R.Roush, J.McKerrow, C.S.Craik.
 
  ABSTRACT  
 
Severe acute respiratory syndrome (SARS) is an emerging infectious disease associated with a high rate of mortality. The SARS-associated coronavirus (SARS-CoV) has been identified as the etiological agent of the disease. Although public health procedures have been effective in combating the spread of SARS, concern remains about the possibility of a recurrence. Various approaches are being pursued for the development of efficacious therapeutics. One promising approach is to develop small molecule inhibitors of the essential major polyprotein processing protease 3Clpro. Here we report a complete description of the tetrapeptide substrate specificity of 3Clpro using fully degenerate peptide libraries consisting of all 160,000 possible naturally occurring tetrapeptides. The substrate specificity data show the expected P1-Gln P2-Leu specificity and elucidate a novel preference for P1-His containing substrates equal to the expected preference for P1-Gln. These data were then used to develop optimal substrates for a high-throughput screen of a 2000 compound small-molecule inhibitor library consisting of known cysteine protease inhibitor scaffolds. We also report the 1.8 A X-ray crystal structure of 3Clpro bound to an irreversible inhibitor. This inhibitor, an alpha,beta-epoxyketone, inhibits 3Clpro with a k3/Ki of 0.002 microM(-1) s(-1) in a mode consistent with the substrate specificity data. Finally, we report the successful rational improvement of this scaffold with second generation inhibitors. These data provide the foundation for a rational small-molecule inhibitor design effort based upon the inhibitor scaffold identified, the crystal structure of the complex, and a more complete understanding of P1-P4 substrate specificity.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
20949131 C.P.Chuck, L.T.Chong, C.Chen, H.F.Chow, D.C.Wan, and K.B.Wong (2010).
Profiling of substrate specificity of SARS-CoV 3CL.
  PLoS One, 5, e13197.  
21087086 D.N.Okamoto, L.C.Oliveira, M.Y.Kondo, M.H.Cezari, Z.Szeltner, T.Juhász, M.A.Juliano, L.Polgár, L.Juliano, and I.E.Gouvea (2010).
Increase of SARS-CoV 3CL peptidase activity due to macromolecular crowding effects in the milieu composition.
  Biol Chem, 391, 1461-1468.  
20444893 S.Fang, H.Shen, J.Wang, F.P.Tay, and D.X.Liu (2010).
Functional and genetic studies of the substrate specificity of coronavirus infectious bronchitis virus 3C-like proteinase.
  J Virol, 84, 7325-7336.  
18434168 M.D.Lim, and C.S.Craik (2009).
Using specificity to strategically target proteases.
  Bioorg Med Chem, 17, 1094-1100.  
19357776 S.Subramanian, M.Hardt, Y.Choe, R.K.Niles, E.B.Johansen, J.Legac, J.Gut, I.D.Kerr, C.S.Craik, and P.J.Rosenthal (2009).
Hemoglobin cleavage site-specificity of the Plasmodium falciparum cysteine proteases falcipain-2 and falcipain-3.
  PLoS ONE, 4, e5156.  
18385240 J.S.Sparks, E.F.Donaldson, X.Lu, R.S.Baric, and M.R.Denison (2008).
A novel mutation in murine hepatitis virus nsp5, the viral 3C-like proteinase, causes temperature-sensitive defects in viral growth and protein processing.
  J Virol, 82, 5999-6008.  
19750206 N.Green, R.D.Ott, R.J.Isaacs, and H.Fang (2008).
Cell-based Assays to Identify Inhibitors of Viral Disease.
  Expert Opin Drug Discov, 3, 671-676.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time.

 

spacer

spacer