spacer
spacer

PDBsum entry 2gz8

Go to PDB code: 
protein ligands links
Hydrolase PDB id
2gz8

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
306 a.a. *
Ligands
F3F
Waters ×194
* Residue conservation analysis
PDB id:
2gz8
Name: Hydrolase
Title: Structure-based drug design and structural biology study of novel nonpeptide inhibitors of sars-cov main protease
Structure: Replicase polyprotein 1ab. Chain: a. Fragment: 3c-like proteinase. Synonym: sars-cov main protease, pp1ab, orf1ab. Engineered: yes
Source: Sars coronavirus. Organism_taxid: 227859. Strain: sars. Expressed in: escherichia coli bl21. Expression_system_taxid: 511693.
Biol. unit: Dimer (from PDB file)
Resolution:
1.97Å     R-factor:   0.216     R-free:   0.241
Authors: I.L.Lu,S.Y.Wu
Key ref: I.L.Lu et al. (2006). Structure-based drug design and structural biology study of novel nonpeptide inhibitors of severe acute respiratory syndrome coronavirus main protease. J Med Chem, 49, 5154-5161. PubMed id: 16913704 DOI: 10.1021/jm060207o
Date:
11-May-06     Release date:   29-Aug-06    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P0C6X7  (R1AB_CVHSA) -  Replicase polyprotein 1ab from Severe acute respiratory syndrome coronavirus
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
7073 a.a.
306 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class 2: E.C.2.1.1.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 3: E.C.2.1.1.56  - mRNA (guanine-N(7))-methyltransferase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: a 5'-end (5'-triphosphoguanosine)-ribonucleoside in mRNA + S-adenosyl-L- methionine = a 5'-end (N(7)-methyl 5'-triphosphoguanosine)-ribonucleoside in mRNA + S-adenosyl-L-homocysteine
5'-end (5'-triphosphoguanosine)-ribonucleoside in mRNA
+ S-adenosyl-L- methionine
= 5'-end (N(7)-methyl 5'-triphosphoguanosine)-ribonucleoside in mRNA
+ S-adenosyl-L-homocysteine
   Enzyme class 4: E.C.2.1.1.57  - methyltransferase cap1.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: a 5'-end (N(7)-methyl 5'-triphosphoguanosine)-ribonucleoside in mRNA + S-adenosyl-L-methionine = a 5'-end (N(7)-methyl 5'-triphosphoguanosine)- (2'-O-methyl-ribonucleoside) in mRNA + S-adenosyl-L-homocysteine + H+
5'-end (N(7)-methyl 5'-triphosphoguanosine)-ribonucleoside in mRNA
+ S-adenosyl-L-methionine
= 5'-end (N(7)-methyl 5'-triphosphoguanosine)- (2'-O-methyl-ribonucleoside) in mRNA
+ S-adenosyl-L-homocysteine
+ H(+)
   Enzyme class 5: E.C.2.7.7.48  - RNA-directed Rna polymerase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: RNA(n) + a ribonucleoside 5'-triphosphate = RNA(n+1) + diphosphate
RNA(n)
+ ribonucleoside 5'-triphosphate
= RNA(n+1)
+ diphosphate
   Enzyme class 6: E.C.2.7.7.50  - mRNA guanylyltransferase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: a 5'-end diphospho-ribonucleoside in mRNA + GTP + H+ = a 5'-end (5'-triphosphoguanosine)-ribonucleoside in mRNA + diphosphate
5'-end diphospho-ribonucleoside in mRNA
+ GTP
+ H(+)
= 5'-end (5'-triphosphoguanosine)-ribonucleoside in mRNA
+ diphosphate
   Enzyme class 7: E.C.3.1.13.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 8: E.C.3.4.19.12  - ubiquitinyl hydrolase 1.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Thiol-dependent hydrolysis of ester, thiolester, amide, peptide and isopeptide bonds formed by the C-terminal Gly of ubiquitin (a 76-residue protein attached to proteins as an intracellular targeting signal).
   Enzyme class 9: E.C.3.4.22.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 10: E.C.3.4.22.69  - Sars coronavirus main proteinase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 11: E.C.3.6.4.12  - Dna helicase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: ATP + H2O = ADP + phosphate + H+
ATP
+ H2O
= ADP
+ phosphate
+ H(+)
   Enzyme class 12: E.C.3.6.4.13  - Rna helicase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: ATP + H2O = ADP + phosphate + H+
ATP
+ H2O
= ADP
+ phosphate
+ H(+)
   Enzyme class 13: E.C.4.6.1.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1021/jm060207o J Med Chem 49:5154-5161 (2006)
PubMed id: 16913704  
 
 
Structure-based drug design and structural biology study of novel nonpeptide inhibitors of severe acute respiratory syndrome coronavirus main protease.
I.L.Lu, N.Mahindroo, P.H.Liang, Y.H.Peng, C.J.Kuo, K.C.Tsai, H.P.Hsieh, Y.S.Chao, S.Y.Wu.
 
  ABSTRACT  
 
Severe acute respiratory syndrome coronavirus (SARS-CoV) main protease (M(pro)), a protein required for the maturation of SARS-CoV, is vital for its life cycle, making it an attractive target for structure-based drug design of anti-SARS drugs. The structure-based virtual screening of a chemical database containing 58,855 compounds followed by the testing of potential compounds for SARS-CoV M(pro) inhibition leads to two hit compounds. The core structures of these two hits, defined by the docking study, are used for further analogue search. Twenty-one analogues derived from these two hits exhibited IC50 values below 50 microM, with the most potent one showing 0.3 microM. Furthermore, the complex structures of two potent inhibitors with SARS-CoV M(pro) were solved by X-ray crystallography. They bind to the protein in a distinct manner compared to all published SARS-CoV M(pro) complex structures. They inhibit SARS-CoV M(pro) activity via intensive H-bond network and hydrophobic interactions, without the formation of a covalent bond. Interestingly, the most potent inhibitor induces protein conformational changes, and the inhibition mechanisms, particularly the disruption of catalytic dyad (His41 and Cys145), are elaborated.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
19183238 V.Zoete, A.Grosdidier, and O.Michielin (2009).
Docking, virtual high throughput screening and in silico fragment-based drug design.
  J Cell Mol Med, 13, 238-248.  
18427249 A.Golda, and K.Pyrc (2008).
Recent antiviral strategies against human coronavirus-related respiratory illnesses.
  Curr Opin Pulm Med, 14, 248-253.  
17931870 C.Niu, J.Yin, J.Zhang, J.C.Vederas, and M.N.James (2008).
Molecular docking identifies the binding of 3-chloropyridine moieties specifically to the S1 pocket of SARS-CoV Mpro.
  Bioorg Med Chem, 16, 293-302.  
18156685 M.Bartlam, X.Xue, and Z.Rao (2008).
The search for a structural basis for therapeutic intervention against the SARS coronavirus.
  Acta Crystallogr A, 64, 204-213.  
17461975 D.Plewczynski, M.Hoffmann, M.von Grotthuss, K.Ginalski, and L.Rychewski (2007).
In silico prediction of SARS protease inhibitors by virtual high throughput screening.
  Chem Biol Drug Des, 69, 269-279.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time.

 

spacer

spacer