spacer
spacer

PDBsum entry 1z1i

Go to PDB code: 
protein links
Hydrolase PDB id
1z1i

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
301 a.a. *
Waters ×140
* Residue conservation analysis
PDB id:
1z1i
Name: Hydrolase
Title: Crystal structure of native sars clpro
Structure: 3c-like proteinase. Chain: a. Fragment: residues 1-306. Synonym: 3cl-pro, 3clp, replicase polyprotein 1ab. Engineered: yes
Source: Sars coronavirus. Organism_taxid: 227859
Biol. unit: Dimer (from PQS)
Resolution:
2.80Å     R-factor:   0.241     R-free:   0.288
Authors: P.H.Liang,A.H.Wang
Key ref:
M.F.Hsu et al. (2005). Mechanism of the maturation process of SARS-CoV 3CL protease. J Biol Chem, 280, 31257-31266. PubMed id: 15788388 DOI: 10.1074/jbc.M502577200
Date:
04-Mar-05     Release date:   22-Nov-05    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P0C6X7  (R1AB_CVHSA) -  Replicase polyprotein 1ab from Severe acute respiratory syndrome coronavirus
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
7073 a.a.
301 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class 2: E.C.2.1.1.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 3: E.C.2.1.1.56  - mRNA (guanine-N(7))-methyltransferase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: a 5'-end (5'-triphosphoguanosine)-ribonucleoside in mRNA + S-adenosyl-L- methionine = a 5'-end (N(7)-methyl 5'-triphosphoguanosine)-ribonucleoside in mRNA + S-adenosyl-L-homocysteine
5'-end (5'-triphosphoguanosine)-ribonucleoside in mRNA
+ S-adenosyl-L- methionine
= 5'-end (N(7)-methyl 5'-triphosphoguanosine)-ribonucleoside in mRNA
+ S-adenosyl-L-homocysteine
   Enzyme class 4: E.C.2.1.1.57  - methyltransferase cap1.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: a 5'-end (N(7)-methyl 5'-triphosphoguanosine)-ribonucleoside in mRNA + S-adenosyl-L-methionine = a 5'-end (N(7)-methyl 5'-triphosphoguanosine)- (2'-O-methyl-ribonucleoside) in mRNA + S-adenosyl-L-homocysteine + H+
5'-end (N(7)-methyl 5'-triphosphoguanosine)-ribonucleoside in mRNA
+ S-adenosyl-L-methionine
= 5'-end (N(7)-methyl 5'-triphosphoguanosine)- (2'-O-methyl-ribonucleoside) in mRNA
+ S-adenosyl-L-homocysteine
+ H(+)
   Enzyme class 5: E.C.2.7.7.48  - RNA-directed Rna polymerase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: RNA(n) + a ribonucleoside 5'-triphosphate = RNA(n+1) + diphosphate
RNA(n)
+ ribonucleoside 5'-triphosphate
= RNA(n+1)
+ diphosphate
   Enzyme class 6: E.C.2.7.7.50  - mRNA guanylyltransferase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: a 5'-end diphospho-ribonucleoside in mRNA + GTP + H+ = a 5'-end (5'-triphosphoguanosine)-ribonucleoside in mRNA + diphosphate
5'-end diphospho-ribonucleoside in mRNA
+ GTP
+ H(+)
= 5'-end (5'-triphosphoguanosine)-ribonucleoside in mRNA
+ diphosphate
   Enzyme class 7: E.C.3.1.13.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 8: E.C.3.4.19.12  - ubiquitinyl hydrolase 1.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Thiol-dependent hydrolysis of ester, thiolester, amide, peptide and isopeptide bonds formed by the C-terminal Gly of ubiquitin (a 76-residue protein attached to proteins as an intracellular targeting signal).
   Enzyme class 9: E.C.3.4.22.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 10: E.C.3.4.22.69  - Sars coronavirus main proteinase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 11: E.C.3.6.4.12  - Dna helicase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: ATP + H2O = ADP + phosphate + H+
ATP
+ H2O
= ADP
+ phosphate
+ H(+)
   Enzyme class 12: E.C.3.6.4.13  - Rna helicase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: ATP + H2O = ADP + phosphate + H+
ATP
+ H2O
= ADP
+ phosphate
+ H(+)
   Enzyme class 13: E.C.4.6.1.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1074/jbc.M502577200 J Biol Chem 280:31257-31266 (2005)
PubMed id: 15788388  
 
 
Mechanism of the maturation process of SARS-CoV 3CL protease.
M.F.Hsu, C.J.Kuo, K.T.Chang, H.C.Chang, C.C.Chou, T.P.Ko, H.L.Shr, G.G.Chang, A.H.Wang, P.H.Liang.
 
  ABSTRACT  
 
Severe acute respiratory syndrome (SARS) is an emerging infectious disease caused by a novel human coronavirus. Viral maturation requires a main protease (3CL(pro)) to cleave the virus-encoded polyproteins. We report here that the 3CL(pro) containing additional N- and/or C-terminal segments of the polyprotein sequences undergoes autoprocessing and yields the mature protease in vitro. The dimeric three-dimensional structure of the C145A mutant protease shows that the active site of one protomer binds with the C-terminal six amino acids of the protomer from another asymmetric unit, mimicking the product-bound form and suggesting a possible mechanism for maturation. The P1 pocket of the active site binds the Gln side chain specifically, and the P2 and P4 sites are clustered together to accommodate large hydrophobic side chains. The tagged C145A mutant protein served as a substrate for the wild-type protease, and the N terminus was first digested (55-fold faster) at the Gln(-1)-Ser1 site followed by the C-terminal cleavage at the Gln306-Gly307 site. Analytical ultracentrifuge of the quaternary structures of the tagged and mature proteases reveals the remarkably tighter dimer formation for the mature enzyme (K(d) = 0.35 nm) than for the mutant (C145A) containing 10 extra N-terminal (K(d) = 17.2 nM) or C-terminal amino acids (K(d) = 5.6 nM). The data indicate that immature 3CL(pro) can form dimer enabling it to undergo autoprocessing to yield the mature enzyme, which further serves as a seed for facilitated maturation. Taken together, this study provides insights into the maturation process of the SARS 3CL(pro) from the polyprotein and design of new structure-based inhibitors.
 
  Selected figure(s)  
 
Figure 5.
FIG. 5. Molecular interactions of the active site residues of protomer B with the C-terminal residues of protomer B'. A, stereo view of the electron density map of the C-terminal region (red stick) of protomer B' bound in the S pockets (cyan stick) of protomer B. B, details of the molecular interactions between the active site S1-S6 pockets of protomer B and the C-terminal residues of protomer B'. H-bonds are shown as green broken lines.
Figure 6.
FIG. 6. Superposition of 3CLpro active sites and inhibitors. A, superimposition of the active site of five 3CLpro protease structures: cyan and blue, protomer A and B of C145A; light green and gold, protomer A and B of the wild type, respectively; crimson, HCoV 229E 3CLpro (1P9S); and pink, TGEV 3CLpro (1P9U). B, superimposition of the six C-terminal residues of SARS 3CLpro (SGVTFQ) (cyan), the inhibitor of TGEV 3CLpro (1P9U, pink), the inhibitor of TGEV 3CLpro (VNSTLQ) at the active site of SARS 3CLpro (1UK4, gold), and the inhibitor of Rhinovirus 3CLpro, AG7088 at the active site (1CQQ, green).
 
  The above figures are reprinted by permission from the ASBMB: J Biol Chem (2005, 280, 31257-31266) copyright 2005.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21324206 H.H.Liao, Y.C.Wang, M.C.Chen, H.Y.Tsai, J.Lin, S.T.Chen, G.J.Tsay, and S.L.Cheng (2011).
Down-regulation of granulocyte-macrophage colony-stimulating factor by 3C-like proteinase in transfected A549 human lung carcinoma cells.
  BMC Immunol, 12, 16.  
20949131 C.P.Chuck, L.T.Chong, C.Chen, H.F.Chow, D.C.Wan, and K.B.Wong (2010).
Profiling of substrate specificity of SARS-CoV 3CL.
  PLoS One, 5, e13197.  
20021285 H.M.Wang, and P.H.Liang (2010).
Picornaviral 3C protease inhibitors and the dual 3C protease/coronaviral 3C-like protease inhibitors.
  Expert Opin Ther Pat, 20, 59-71.  
20371333 S.C.Cheng, G.G.Chang, and C.Y.Chou (2010).
Mutation of Glu-166 blocks the substrate-induced dimerization of SARS coronavirus main protease.
  Biophys J, 98, 1327-1336.  
19144641 C.C.Lee, C.J.Kuo, T.P.Ko, M.F.Hsu, Y.C.Tsui, S.C.Chang, S.Yang, S.J.Chen, H.C.Chen, M.C.Hsu, S.R.Shih, P.H.Liang, and A.H.Wang (2009).
Structural basis of inhibition specificities of 3C and 3C-like proteases by zinc-coordinating and peptidomimetic compounds.
  J Biol Chem, 284, 7646-7655.
PDB codes: 2ztx 2zty 2ztz 2zu1 2zu2 2zu3 2zu4 2zu5
18305031 J.Shi, J.Sivaraman, and J.Song (2008).
Mechanism for controlling the dimer-monomer switch and coupling dimerization to catalysis of the severe acute respiratory syndrome coronavirus 3C-like protease.
  J Virol, 82, 4620-4629.
PDB code: 2qcy
18611220 U.Bacha, J.Barrila, S.B.Gabelli, Y.Kiso, L.Mario Amzel, and E.Freire (2008).
Development of broad-spectrum halomethyl ketone inhibitors against coronavirus main protease 3CL(pro).
  Chem Biol Drug Des, 72, 34-49.
PDB code: 3d62
17142288 H.P.Chang, C.Y.Chou, and G.G.Chang (2007).
Reversible unfolding of the severe acute respiratory syndrome coronavirus main protease in guanidinium chloride.
  Biophys J, 92, 1374-1383.  
17202208 M.S.Almeida, M.A.Johnson, T.Herrmann, M.Geralt, and K.Wüthrich (2007).
Novel beta-barrel fold in the nuclear magnetic resonance structure of the replicase nonstructural protein 1 from the severe acute respiratory syndrome coronavirus.
  J Virol, 81, 3151-3161.
PDB codes: 2gdt 2hsx
17154528 J.Barrila, U.Bacha, and E.Freire (2006).
Long-range cooperative interactions modulate dimerization in SARS 3CLpro.
  Biochemistry, 45, 14908-14916.  
16478476 J.Shi, and J.Song (2006).
The catalysis of the SARS 3C-like protease is under extensive regulation by its extra domain.
  FEBS J, 273, 1035-1045.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer