|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
1398 a.a.
|
 |
|
|
|
|
|
|
|
1096 a.a.
|
 |
|
|
|
|
|
|
|
266 a.a.
|
 |
|
|
|
|
|
|
|
193 a.a.
|
 |
|
|
|
|
|
|
|
83 a.a.
|
 |
|
|
|
|
|
|
|
133 a.a.
|
 |
|
|
|
|
|
|
|
119 a.a.
|
 |
|
|
|
|
|
|
|
65 a.a.
|
 |
|
|
|
|
|
|
|
114 a.a.
|
 |
|
|
|
|
|
|
|
46 a.a.
|
 |
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Transcription,transferase/DNA-RNA hybrid
|
 |
|
Title:
|
 |
RNA polymerase ii elongation complex at 5 mm mg2+ with gtp
|
|
Structure:
|
 |
5'-r( Ap Up Cp Gp Ap Gp Ap Gp Gp A)-3'. Chain: r. Engineered: yes. 28-mer DNA template strand. Chain: t. Engineered: yes. 5'-d( Cp Tp Gp Cp Tp Tp Ap Tp Cp Gp Gp Tp Ap G)-3'. Chain: n. Engineered: yes.
|
|
Source:
|
 |
Synthetic: yes. Saccharomyces cerevisiae. Baker's yeast. Organism_taxid: 4932. Strain: delta-rpb4. Strain: delta-rpb4
|
|
Biol. unit:
|
 |
13mer (from
)
|
|
Resolution:
|
 |
|
3.95Å
|
R-factor:
|
0.294
|
R-free:
|
0.368
|
|
|
Authors:
|
 |
D.Wang,D.A.Bushnell,K.D.Westover,C.D.Kaplan,R.D.Kornberg
|
Key ref:
|
 |
D.Wang
et al.
(2006).
Structural basis of transcription: role of the trigger loop in substrate specificity and catalysis.
Cell,
127,
941-954.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
14-Nov-06
|
Release date:
|
12-Dec-06
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
P04050
(RPB1_YEAST) -
DNA-directed RNA polymerase II subunit RPB1 from Saccharomyces cerevisiae (strain ATCC 204508 / S288c)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
1733 a.a.
1398 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P08518
(RPB2_YEAST) -
DNA-directed RNA polymerase II subunit RPB2 from Saccharomyces cerevisiae (strain ATCC 204508 / S288c)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
1224 a.a.
1096 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P16370
(RPB3_YEAST) -
DNA-directed RNA polymerase II subunit RPB3 from Saccharomyces cerevisiae (strain ATCC 204508 / S288c)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
318 a.a.
266 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P20434
(RPAB1_YEAST) -
DNA-directed RNA polymerases I, II, and III subunit RPABC1 from Saccharomyces cerevisiae (strain ATCC 204508 / S288c)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
215 a.a.
193 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P20435
(RPAB2_YEAST) -
DNA-directed RNA polymerases I, II, and III subunit RPABC2 from Saccharomyces cerevisiae (strain ATCC 204508 / S288c)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
155 a.a.
83 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P20436
(RPAB3_YEAST) -
DNA-directed RNA polymerases I, II, and III subunit RPABC3 from Saccharomyces cerevisiae (strain ATCC 204508 / S288c)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
146 a.a.
133 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P27999
(RPB9_YEAST) -
DNA-directed RNA polymerase II subunit RPB9 from Saccharomyces cerevisiae (strain ATCC 204508 / S288c)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
122 a.a.
119 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P22139
(RPAB5_YEAST) -
DNA-directed RNA polymerases I, II, and III subunit RPABC5 from Saccharomyces cerevisiae (strain ATCC 204508 / S288c)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
70 a.a.
65 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
 |
|
|
 |
 |
 |
 |
Enzyme class:
|
 |
Chains A, B, C, E, F, H, I, J, K, L:
E.C.2.7.7.6
- DNA-directed Rna polymerase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
RNA(n) + a ribonucleoside 5'-triphosphate = RNA(n+1) + diphosphate
|
 |
 |
 |
 |
 |
RNA(n)
|
+
|
ribonucleoside 5'-triphosphate
|
=
|
RNA(n+1)
|
+
|
diphosphate
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Molecule diagrams generated from .mol files obtained from the
KEGG ftp site
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
| |
|
DOI no:
|
Cell
127:941-954
(2006)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structural basis of transcription: role of the trigger loop in substrate specificity and catalysis.
|
|
D.Wang,
D.A.Bushnell,
K.D.Westover,
C.D.Kaplan,
R.D.Kornberg.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
New structures of RNA polymerase II (pol II) transcribing complexes reveal a
likely key to transcription. The trigger loop swings beneath a correct
nucleoside triphosphate (NTP) in the nucleotide addition site, closing off the
active center and forming an extensive network of interactions with the NTP
base, sugar, phosphates, and additional pol II residues. A histidine side chain
in the trigger loop, precisely positioned by these interactions, may literally
"trigger" phosphodiester bond formation. Recognition and catalysis are
thus coupled, ensuring the fidelity of transcription.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 1.
Figure 1. A and E Sites in the Pol II Transcribing Complex
|
 |
Figure 5.
Figure 5. Proposed Role of His1085 in Phosphodiester Bond
Formation
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Cell Press:
Cell
(2006,
127,
941-954)
copyright 2006.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
S.Sainsbury,
J.Niesser,
and
P.Cramer
(2013).
Structure and function of the initially transcribing RNA polymerase II-TFIIB complex.
|
| |
Nature,
493,
437-440.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.W.Kellinger,
C.X.Song,
J.Chong,
X.Y.Lu,
C.He,
and
D.Wang
(2012).
5-formylcytosine and 5-carboxylcytosine reduce the rate and substrate specificity of RNA polymerase II transcription.
|
| |
Nat Struct Mol Biol,
19,
831-833.
|
 |
|
|
|
|
 |
A.C.Cheung,
and
P.Cramer
(2011).
Structural basis of RNA polymerase II backtracking, arrest and reactivation.
|
| |
Nature,
471,
249-253.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
B.Albert,
I.Léger-Silvestre,
C.Normand,
M.K.Ostermaier,
J.Pérez-Fernández,
K.I.Panov,
J.C.Zomerdijk,
P.Schultz,
and
O.Gadal
(2011).
RNA polymerase I-specific subunits promote polymerase clustering to enhance the rRNA gene transcription cycle.
|
| |
J Cell Biol,
192,
277-293.
|
 |
|
|
|
|
 |
H.Heindl,
P.Greenwell,
N.Weingarten,
T.Kiss,
G.Terstyanszky,
and
R.O.Weinzierl
(2011).
Cation-Ï€ interactions induce kinking of a molecular hinge in the RNA polymerase bridge-helix domain.
|
| |
Biochem Soc Trans,
39,
31-35.
|
 |
|
|
|
|
 |
H.Zhao,
Y.Yang,
and
Y.Zhou
(2011).
Structure-based prediction of RNA-binding domains and RNA-binding sites and application to structural genomics targets.
|
| |
Nucleic Acids Res,
39,
3017-3025.
|
 |
|
|
|
|
 |
M.L.Gleghorn,
E.K.Davydova,
R.Basu,
L.B.Rothman-Denes,
and
K.S.Murakami
(2011).
X-ray crystal structures elucidate the nucleotidyl transfer reaction of transcript initiation using two nucleotides.
|
| |
Proc Natl Acad Sci U S A,
108,
3566-3571.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.R.Kennedy,
and
D.A.Erie
(2011).
Templated nucleoside triphosphate binding to a noncatalytic site on RNA polymerase regulates transcription.
|
| |
Proc Natl Acad Sci U S A,
108,
6079-6084.
|
 |
|
|
|
|
 |
C.D.Kaplan
(2010).
The architecture of RNA polymerase fidelity.
|
| |
BMC Biol,
8,
85.
|
 |
|
|
|
|
 |
C.Domecq,
M.Kireeva,
J.Archambault,
M.Kashlev,
B.Coulombe,
and
Z.F.Burton
(2010).
Site-directed mutagenesis, purification and assay of Saccharomyces cerevisiae RNA polymerase II.
|
| |
Protein Expr Purif,
69,
83-90.
|
 |
|
|
|
|
 |
D.Elmlund,
R.Davis,
and
H.Elmlund
(2010).
Ab initio structure determination from electron microscopic images of single molecules coexisting in different functional states.
|
| |
Structure,
18,
777-786.
|
 |
|
|
|
|
 |
D.Pupov,
N.Miropolskaya,
A.Sevostyanova,
I.Bass,
I.Artsimovitch,
and
A.Kulbachinskiy
(2010).
Multiple roles of the RNA polymerase {beta}' SW2 region in transcription initiation, promoter escape, and RNA elongation.
|
| |
Nucleic Acids Res,
38,
5784-5796.
|
 |
|
|
|
|
 |
D.Wang,
G.Zhu,
X.Huang,
and
S.J.Lippard
(2010).
X-ray structure and mechanism of RNA polymerase II stalled at an antineoplastic monofunctional platinum-DNA adduct.
|
| |
Proc Natl Acad Sci U S A,
107,
9584-9589.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
G.A.Kassavetis,
P.Prakash,
and
E.Shim
(2010).
The C53/C37 subcomplex of RNA polymerase III lies near the active site and participates in promoter opening.
|
| |
J Biol Chem,
285,
2695-2706.
|
 |
|
|
|
|
 |
H.Koyama,
T.Ueda,
T.Ito,
and
K.Sekimizu
(2010).
Novel RNA polymerase II mutation suppresses transcriptional fidelity and oxidative stress sensitivity in rpb9Delta yeast.
|
| |
Genes Cells,
15,
151-159.
|
 |
|
|
|
|
 |
J.Zhang,
M.Palangat,
and
R.Landick
(2010).
Role of the RNA polymerase trigger loop in catalysis and pausing.
|
| |
Nat Struct Mol Biol,
17,
99.
|
 |
|
|
|
|
 |
L.A.Selth,
S.Sigurdsson,
and
J.Q.Svejstrup
(2010).
Transcript Elongation by RNA Polymerase II.
|
| |
Annu Rev Biochem,
79,
271-293.
|
 |
|
|
|
|
 |
N.Miropolskaya,
V.Nikiforov,
S.Klimašauskas,
I.Artsimovitch,
and
A.Kulbachinskiy
(2010).
Modulation of RNA polymerase activity through trigger loop folding.
|
| |
Transcr,
1,
89-94.
|
 |
|
|
|
|
 |
N.Opalka,
J.Brown,
W.J.Lane,
K.A.Twist,
R.Landick,
F.J.Asturias,
and
S.A.Darst
(2010).
Complete structural model of Escherichia coli RNA polymerase from a hybrid approach.
|
| |
PLoS Biol,
8,
0.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
P.Cramer
(2010).
Towards molecular systems biology of gene transcription and regulation.
|
| |
Biol Chem,
391,
731-735.
|
 |
|
|
|
|
 |
P.Gong,
and
O.B.Peersen
(2010).
Structural basis for active site closure by the poliovirus RNA-dependent RNA polymerase.
|
| |
Proc Natl Acad Sci U S A,
107,
22505-22510.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
P.P.Hein,
and
R.Landick
(2010).
The bridge helix coordinates movements of modules in RNA polymerase.
|
| |
BMC Biol,
8,
141.
|
 |
|
|
|
|
 |
R.O.Weinzierl
(2010).
The nucleotide addition cycle of RNA polymerase is controlled by two molecular hinges in the Bridge Helix domain.
|
| |
BMC Biol,
8,
134.
|
 |
|
|
|
|
 |
S.De Carlo,
S.C.Lin,
D.J.Taatjes,
and
A.Hoenger
(2010).
Molecular basis of transcription initiation in Archaea.
|
| |
Transcr,
1,
103-111.
|
 |
|
|
|
|
 |
S.Grünberg,
C.Reich,
M.E.Zeller,
M.S.Bartlett,
and
M.Thomm
(2010).
Rearrangement of the RNA polymerase subunit H and the lower jaw in archaeal elongation complexes.
|
| |
Nucleic Acids Res,
38,
1950-1963.
|
 |
|
|
|
|
 |
S.Tagami,
S.Sekine,
T.Kumarevel,
N.Hino,
Y.Murayama,
S.Kamegamori,
M.Yamamoto,
K.Sakamoto,
and
S.Yokoyama
(2010).
Crystal structure of bacterial RNA polymerase bound with a transcription inhibitor protein.
|
| |
Nature,
468,
978-982.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
V.Epshtein,
D.Dutta,
J.Wade,
and
E.Nudler
(2010).
An allosteric mechanism of Rho-dependent transcription termination.
|
| |
Nature,
463,
245-249.
|
 |
|
|
|
|
 |
W.J.Lane,
and
S.A.Darst
(2010).
Molecular evolution of multisubunit RNA polymerases: structural analysis.
|
| |
J Mol Biol,
395,
686-704.
|
 |
|
|
|
|
 |
W.J.Lane,
and
S.A.Darst
(2010).
Molecular evolution of multisubunit RNA polymerases: sequence analysis.
|
| |
J Mol Biol,
395,
671-685.
|
 |
|
|
|
|
 |
X.Huang,
D.Wang,
D.R.Weiss,
D.A.Bushnell,
R.D.Kornberg,
and
M.Levitt
(2010).
RNA polymerase II trigger loop residues stabilize and position the incoming nucleotide triphosphate in transcription.
|
| |
Proc Natl Acad Sci U S A,
107,
15745-15750.
|
 |
|
|
|
|
 |
Y.Yuzenkova,
A.Bochkareva,
V.R.Tadigotla,
M.Roghanian,
S.Zorov,
K.Severinov,
and
N.Zenkin
(2010).
Stepwise mechanism for transcription fidelity.
|
| |
BMC Biol,
8,
54.
|
 |
|
|
|
|
 |
Y.Yuzenkova,
and
N.Zenkin
(2010).
Central role of the RNA polymerase trigger loop in intrinsic RNA hydrolysis.
|
| |
Proc Natl Acad Sci U S A,
107,
10878-10883.
|
 |
|
|
|
|
 |
B.P.Hudson,
J.Quispe,
S.Lara-González,
Y.Kim,
H.M.Berman,
E.Arnold,
R.H.Ebright,
and
C.L.Lawson
(2009).
Three-dimensional EM structure of an intact activator-dependent transcription initiation complex.
|
| |
Proc Natl Acad Sci U S A,
106,
19830-19835.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.Castro,
E.D.Smidansky,
J.J.Arnold,
K.R.Maksimchuk,
I.Moustafa,
A.Uchida,
M.Götte,
W.Konigsberg,
and
C.E.Cameron
(2009).
Nucleic acid polymerases use a general acid for nucleotidyl transfer.
|
| |
Nat Struct Mol Biol,
16,
212-218.
|
 |
|
|
|
|
 |
C.E.Cameron,
I.M.Moustafa,
and
J.J.Arnold
(2009).
Dynamics: the missing link between structure and function of the viral RNA-dependent RNA polymerase?
|
| |
Curr Opin Struct Biol,
19,
768-774.
|
 |
|
|
|
|
 |
C.W.Carter
(2009).
E pluribus tres: the 2009 nobel prize in chemistry.
|
| |
Structure,
17,
1558-1561.
|
 |
|
|
|
|
 |
C.Walmacq,
M.L.Kireeva,
J.Irvin,
Y.Nedialkov,
L.Lubkowska,
F.Malagon,
J.N.Strathern,
and
M.Kashlev
(2009).
Rpb9 Subunit Controls Transcription Fidelity by Delaying NTP Sequestration in RNA Polymerase II.
|
| |
J Biol Chem,
284,
19601-19612.
|
 |
|
|
|
|
 |
D.Wang,
D.A.Bushnell,
X.Huang,
K.D.Westover,
M.Levitt,
and
R.D.Kornberg
(2009).
Structural basis of transcription: backtracked RNA polymerase II at 3.4 angstrom resolution.
|
| |
Science,
324,
1203-1206.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
E.Nudler
(2009).
RNA polymerase active center: the molecular engine of transcription.
|
| |
Annu Rev Biochem,
78,
335-361.
|
 |
|
|
|
|
 |
F.Brueckner,
J.Ortiz,
and
P.Cramer
(2009).
A movie of the RNA polymerase nucleotide addition cycle.
|
| |
Curr Opin Struct Biol,
19,
294-299.
|
 |
|
|
|
|
 |
F.Brueckner,
K.J.Armache,
A.Cheung,
G.E.Damsma,
H.Kettenberger,
E.Lehmann,
J.Sydow,
and
P.Cramer
(2009).
Structure-function studies of the RNA polymerase II elongation complex.
|
| |
Acta Crystallogr D Biol Crystallogr,
65,
112-120.
|
 |
|
|
|
|
 |
H.Saeki,
and
J.Q.Svejstrup
(2009).
Stability, flexibility, and dynamic interactions of colliding RNA polymerase II elongation complexes.
|
| |
Mol Cell,
35,
191-205.
|
 |
|
|
|
|
 |
H.Spåhr,
G.Calero,
D.A.Bushnell,
and
R.D.Kornberg
(2009).
Schizosacharomyces pombe RNA polymerase II at 3.6-A resolution.
|
| |
Proc Natl Acad Sci U S A,
106,
9185-9190.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.F.Sydow,
F.Brueckner,
A.C.Cheung,
G.E.Damsma,
S.Dengl,
E.Lehmann,
D.Vassylyev,
and
P.Cramer
(2009).
Structural basis of transcription: mismatch-specific fidelity mechanisms and paused RNA polymerase II with frayed RNA.
|
| |
Mol Cell,
34,
710-721.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Kireeva,
Y.A.Nedialkov,
X.Q.Gong,
C.Zhang,
Y.Xiong,
W.Moon,
Z.F.Burton,
and
M.Kashlev
(2009).
Millisecond phase kinetic analysis of elongation catalyzed by human, yeast, and Escherichia coli RNA polymerase.
|
| |
Methods,
48,
333-345.
|
 |
|
|
|
|
 |
M.L.Kireeva,
and
M.Kashlev
(2009).
Mechanism of sequence-specific pausing of bacterial RNA polymerase.
|
| |
Proc Natl Acad Sci U S A,
106,
8900-8905.
|
 |
|
|
|
|
 |
M.Sologub,
D.Litonin,
M.Anikin,
A.Mustaev,
and
D.Temiakov
(2009).
TFB2 is a transient component of the catalytic site of the human mitochondrial RNA polymerase.
|
| |
Cell,
139,
934-944.
|
 |
|
|
|
|
 |
M.X.Ho,
B.P.Hudson,
K.Das,
E.Arnold,
and
R.H.Ebright
(2009).
Structures of RNA polymerase-antibiotic complexes.
|
| |
Curr Opin Struct Biol,
19,
715-723.
|
 |
|
|
|
|
 |
N.Miropolskaya,
I.Artsimovitch,
S.Klimasauskas,
V.Nikiforov,
and
A.Kulbachinskiy
(2009).
Allosteric control of catalysis by the F loop of RNA polymerase.
|
| |
Proc Natl Acad Sci U S A,
106,
18942-18947.
|
 |
|
|
|
|
 |
P.A.Meyer,
P.Ye,
M.H.Suh,
M.Zhang,
and
J.Fu
(2009).
Structure of the 12-Subunit RNA Polymerase II Refined with the Aid of Anomalous Diffraction Data.
|
| |
J Biol Chem,
284,
12933-12939.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.C.Todd,
and
S.J.Lippard
(2009).
Inhibition of transcription by platinum antitumor compounds.
|
| |
Metallomics,
1,
280-291.
|
 |
|
|
|
|
 |
R.Landick
(2009).
Functional divergence in the growing family of RNA polymerases.
|
| |
Structure,
17,
323-325.
|
 |
|
|
|
|
 |
W.Hwang,
and
M.J.Lang
(2009).
Mechanical design of translocating motor proteins.
|
| |
Cell Biochem Biophys,
54,
11-22.
|
 |
|
|
|
|
 |
Y.H.Lo,
K.L.Tsai,
Y.J.Sun,
W.T.Chen,
C.Y.Huang,
and
C.D.Hsiao
(2009).
The crystal structure of a replicative hexameric helicase DnaC and its complex with single-stranded DNA.
|
| |
Nucleic Acids Res,
37,
804-814.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Dimitri,
A.K.Goodenough,
F.P.Guengerich,
S.Broyde,
and
D.A.Scicchitano
(2008).
Transcription processing at 1,N2-ethenoguanine by human RNA polymerase II and bacteriophage T7 RNA polymerase.
|
| |
J Mol Biol,
375,
353-366.
|
 |
|
|
|
|
 |
A.Dimitri,
J.A.Burns,
S.Broyde,
and
D.A.Scicchitano
(2008).
Transcription elongation past O6-methylguanine by human RNA polymerase II and bacteriophage T7 RNA polymerase.
|
| |
Nucleic Acids Res,
36,
6459-6471.
|
 |
|
|
|
|
 |
A.Dimitri,
L.Jia,
V.Shafirovich,
N.E.Geacintov,
S.Broyde,
and
D.A.Scicchitano
(2008).
Transcription of DNA containing the 5-guanidino-4-nitroimidazole lesion by human RNA polymerase II and bacteriophage T7 RNA polymerase.
|
| |
DNA Repair (Amst),
7,
1276-1288.
|
 |
|
|
|
|
 |
A.Hirata,
B.J.Klein,
and
K.S.Murakami
(2008).
The X-ray crystal structure of RNA polymerase from Archaea.
|
| |
Nature,
451,
851-854.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.D.Kaplan,
K.M.Larsson,
and
R.D.Kornberg
(2008).
The RNA polymerase II trigger loop functions in substrate selection and is directly targeted by alpha-amanitin.
|
| |
Mol Cell,
30,
547-556.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.D.Kaplan,
and
R.D.Kornberg
(2008).
A bridge to transcription by RNA polymerase.
|
| |
J Biol,
7,
39.
|
 |
|
|
|
|
 |
C.E.Vrentas,
T.Gaal,
M.B.Berkmen,
S.T.Rutherford,
S.P.Haugen,
D.G.Vassylyev,
W.Ross,
and
R.L.Gourse
(2008).
Still looking for the magic spot: the crystallographically defined binding site for ppGpp on RNA polymerase is unlikely to be responsible for rRNA transcription regulation.
|
| |
J Mol Biol,
377,
551-564.
|
 |
|
|
|
|
 |
F.Brueckner,
and
P.Cramer
(2008).
Structural basis of transcription inhibition by alpha-amanitin and implications for RNA polymerase II translocation.
|
| |
Nat Struct Mol Biol,
15,
811-818.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
F.Werner
(2008).
Structural evolution of multisubunit RNA polymerases.
|
| |
Trends Microbiol,
16,
247-250.
|
 |
|
|
|
|
 |
J.Gerber,
A.Reiter,
R.Steinbauer,
S.Jakob,
C.D.Kuhn,
P.Cramer,
J.Griesenbeck,
P.Milkereit,
and
H.Tschochner
(2008).
Site specific phosphorylation of yeast RNA polymerase I.
|
| |
Nucleic Acids Res,
36,
793-802.
|
 |
|
|
|
|
 |
K.S.Lovejoy,
R.C.Todd,
S.Zhang,
M.S.McCormick,
J.A.D'Aquino,
J.T.Reardon,
A.Sancar,
K.M.Giacomini,
and
S.J.Lippard
(2008).
cis-Diammine(pyridine)chloroplatinum(II), a monofunctional platinum(II) antitumor agent: Uptake, structure, function, and prospects.
|
| |
Proc Natl Acad Sci U S A,
105,
8902-8907.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.Wittayanarakul,
S.Hannongbua,
and
M.Feig
(2008).
Accurate prediction of protonation state as a prerequisite for reliable MM-PB(GB)SA binding free energy calculations of HIV-1 protease inhibitors.
|
| |
J Comput Chem,
29,
673-685.
|
 |
|
|
|
|
 |
L.Tan,
S.Wiesler,
D.Trzaska,
H.C.Carney,
and
R.O.Weinzierl
(2008).
Bridge helix and trigger loop perturbations generate superactive RNA polymerases.
|
| |
J Biol,
7,
40.
|
 |
|
|
|
|
 |
M.Kwapisz,
F.Beckouët,
and
P.Thuriaux
(2008).
Early evolution of eukaryotic DNA-dependent RNA polymerases.
|
| |
Trends Genet,
24,
211-215.
|
 |
|
|
|
|
 |
M.L.Kireeva,
Y.A.Nedialkov,
G.H.Cremona,
Y.A.Purtov,
L.Lubkowska,
F.Malagon,
Z.F.Burton,
J.N.Strathern,
and
M.Kashlev
(2008).
Transient reversal of RNA polymerase II active site closing controls fidelity of transcription elongation.
|
| |
Mol Cell,
30,
557-566.
|
 |
|
|
|
|
 |
P.Cramer,
K.J.Armache,
S.Baumli,
S.Benkert,
F.Brueckner,
C.Buchen,
G.E.Damsma,
S.Dengl,
S.R.Geiger,
A.J.Jasiak,
A.Jawhari,
S.Jennebach,
T.Kamenski,
H.Kettenberger,
C.D.Kuhn,
E.Lehmann,
K.Leike,
J.F.Sydow,
and
A.Vannini
(2008).
Structure of eukaryotic RNA polymerases.
|
| |
Annu Rev Biophys,
37,
337-352.
|
 |
|
|
|
|
 |
S.Borukhov,
and
E.Nudler
(2008).
RNA polymerase: the vehicle of transcription.
|
| |
Trends Microbiol,
16,
126-134.
|
 |
|
|
|
|
 |
S.M.Soltis,
A.E.Cohen,
A.Deacon,
T.Eriksson,
A.González,
S.McPhillips,
H.Chui,
P.Dunten,
M.Hollenbeck,
I.Mathews,
M.Miller,
P.Moorhead,
R.P.Phizackerley,
C.Smith,
J.Song,
H.van dem Bedem,
P.Ellis,
P.Kuhn,
T.McPhillips,
N.Sauter,
K.Sharp,
I.Tsyba,
and
G.Wolf
(2008).
New paradigm for macromolecular crystallography experiments at SSRL: automated crystal screening and remote data collection.
|
| |
Acta Crystallogr D Biol Crystallogr,
64,
1210-1221.
|
 |
|
|
|
|
 |
S.Nottebaum,
L.Tan,
D.Trzaska,
H.C.Carney,
and
R.O.Weinzierl
(2008).
The RNA polymerase factory: a robotic in vitro assembly platform for high-throughput production of recombinant protein complexes.
|
| |
Nucleic Acids Res,
36,
245-252.
|
 |
|
|
|
|
 |
T.F.Cheng,
X.Hu,
A.Gnatt,
and
P.J.Brooks
(2008).
Differential Blocking Effects of the Acetaldehyde-derived DNA Lesion N2-Ethyl-2'-deoxyguanosine on Transcription by Multisubunit and Single Subunit RNA Polymerases.
|
| |
J Biol Chem,
283,
27820-27828.
|
 |
|
|
|
|
 |
V.Svetlov,
and
E.Nudler
(2008).
Jamming the ratchet of transcription.
|
| |
Nat Struct Mol Biol,
15,
777-779.
|
 |
|
|
|
|
 |
D.G.Vassylyev,
M.N.Vassylyeva,
A.Perederina,
T.H.Tahirov,
and
I.Artsimovitch
(2007).
Structural basis for transcription elongation by bacterial RNA polymerase.
|
| |
Nature,
448,
157-162.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.G.Vassylyev,
M.N.Vassylyeva,
J.Zhang,
M.Palangat,
I.Artsimovitch,
and
R.Landick
(2007).
Structural basis for substrate loading in bacterial RNA polymerase.
|
| |
Nature,
448,
163-168.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
E.Kashkina,
M.Anikin,
F.Brueckner,
E.Lehmann,
S.N.Kochetkov,
W.T.McAllister,
P.Cramer,
and
D.Temiakov
(2007).
Multisubunit RNA polymerases melt only a single DNA base pair downstream of the active site.
|
| |
J Biol Chem,
282,
21578-21582.
|
 |
|
|
|
|
 |
E.Zamora-Sillero,
A.V.Shapovalov,
and
F.J.Esteban
(2007).
Formation, control, and dynamics of N localized structures in the Peyrard-Bishop model.
|
| |
Phys Rev E Stat Nonlin Soft Matter Phys,
76,
066603.
|
 |
|
|
|
|
 |
I.Toulokhonov,
J.Zhang,
M.Palangat,
and
R.Landick
(2007).
A central role of the RNA polymerase trigger loop in active-site rearrangement during transcriptional pausing.
|
| |
Mol Cell,
27,
406-419.
|
 |
|
|
|
|
 |
N.Alic,
N.Ayoub,
E.Landrieux,
E.Favry,
P.Baudouin-Cornu,
M.Riva,
and
C.Carles
(2007).
Selectivity and proofreading both contribute significantly to the fidelity of RNA polymerase III transcription.
|
| |
Proc Natl Acad Sci U S A,
104,
10400-10405.
|
 |
|
|
|
|
 |
P.Cramer
(2007).
Gene transcription: extending the message.
|
| |
Nature,
448,
142-143.
|
 |
|
|
|
|
 |
R.D.Kornberg
(2007).
The molecular basis of eukaryotic transcription.
|
| |
Proc Natl Acad Sci U S A,
104,
12955-12961.
|
 |
|
|
|
|
 |
V.Epshtein,
C.J.Cardinale,
A.E.Ruckenstein,
S.Borukhov,
and
E.Nudler
(2007).
An allosteric path to transcription termination.
|
| |
Mol Cell,
28,
991.
|
 |
|
|
|
|
 |
V.Svetlov,
G.A.Belogurov,
E.Shabrova,
D.G.Vassylyev,
and
I.Artsimovitch
(2007).
Allosteric control of the RNA polymerase by the elongation factor RfaH.
|
| |
Nucleic Acids Res,
35,
5694-5705.
|
 |
|
|
|
|
 |
Y.Xiong,
and
Z.F.Burton
(2007).
A tunable ratchet driving human RNA polymerase II translocation adjusted by accurately templated nucleoside triphosphates loaded at downstream sites and by elongation factors.
|
| |
J Biol Chem,
282,
36582-36592.
|
 |
|
|
|
|
 |
R.Landick,
and
R.Kornberg
(2006).
A long time in the making--the Nobel Prize for RNA polymerase.
|
| |
Cell,
127,
1087-1090.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
| |