spacer
spacer

PDBsum entry 2acf

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Viral protein PDB id
2acf

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
172 a.a. *
Ligands
GOL ×12
Waters ×950
* Residue conservation analysis
PDB id:
2acf
Name: Viral protein
Title: Nmr structure of sars-cov non-structural protein nsp3a (sars1) from sars coronavirus
Structure: Replicase polyprotein 1ab. Chain: a, b, c, d. Fragment: adrp domain of nsp-3. Engineered: yes
Source: Sars coronavirus tor2. Organism_taxid: 227984. Strain: tor-2. Expressed in: escherichia coli. Expression_system_taxid: 562
Resolution:
1.40Å     R-factor:   0.165     R-free:   0.189
Authors: K.S.Saikatendu,J.S.Joseph,V.Subramanian,B.W.Neuman,M.J.Buchmeier, R.C.Stevens,P.Kuhn,Joint Center For Structural Genomics (Jcsg)
Key ref:
K.S.Saikatendu et al. (2005). Structural basis of severe acute respiratory syndrome coronavirus ADP-ribose-1''-phosphate dephosphorylation by a conserved domain of nsP3. Structure (Camb), 13, 1665-1675. PubMed id: 16271890 DOI: 10.1016/j.str.2005.07.022
Date:
18-Jul-05     Release date:   14-Feb-06    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P0C6X7  (R1AB_CVHSA) -  Replicase polyprotein 1ab from Severe acute respiratory syndrome coronavirus
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
7073 a.a.
172 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 4 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class 2: E.C.2.1.1.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 3: E.C.2.1.1.56  - mRNA (guanine-N(7))-methyltransferase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: a 5'-end (5'-triphosphoguanosine)-ribonucleoside in mRNA + S-adenosyl-L- methionine = a 5'-end (N(7)-methyl 5'-triphosphoguanosine)-ribonucleoside in mRNA + S-adenosyl-L-homocysteine
5'-end (5'-triphosphoguanosine)-ribonucleoside in mRNA
+ S-adenosyl-L- methionine
= 5'-end (N(7)-methyl 5'-triphosphoguanosine)-ribonucleoside in mRNA
+ S-adenosyl-L-homocysteine
   Enzyme class 4: E.C.2.1.1.57  - methyltransferase cap1.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: a 5'-end (N(7)-methyl 5'-triphosphoguanosine)-ribonucleoside in mRNA + S-adenosyl-L-methionine = a 5'-end (N(7)-methyl 5'-triphosphoguanosine)- (2'-O-methyl-ribonucleoside) in mRNA + S-adenosyl-L-homocysteine + H+
5'-end (N(7)-methyl 5'-triphosphoguanosine)-ribonucleoside in mRNA
+ S-adenosyl-L-methionine
= 5'-end (N(7)-methyl 5'-triphosphoguanosine)- (2'-O-methyl-ribonucleoside) in mRNA
+ S-adenosyl-L-homocysteine
+ H(+)
   Enzyme class 5: E.C.2.7.7.48  - RNA-directed Rna polymerase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: RNA(n) + a ribonucleoside 5'-triphosphate = RNA(n+1) + diphosphate
RNA(n)
+ ribonucleoside 5'-triphosphate
= RNA(n+1)
+ diphosphate
   Enzyme class 6: E.C.2.7.7.50  - mRNA guanylyltransferase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: a 5'-end diphospho-ribonucleoside in mRNA + GTP + H+ = a 5'-end (5'-triphosphoguanosine)-ribonucleoside in mRNA + diphosphate
5'-end diphospho-ribonucleoside in mRNA
+ GTP
+ H(+)
= 5'-end (5'-triphosphoguanosine)-ribonucleoside in mRNA
+ diphosphate
   Enzyme class 7: E.C.3.1.13.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 8: E.C.3.4.19.12  - ubiquitinyl hydrolase 1.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Thiol-dependent hydrolysis of ester, thiolester, amide, peptide and isopeptide bonds formed by the C-terminal Gly of ubiquitin (a 76-residue protein attached to proteins as an intracellular targeting signal).
   Enzyme class 9: E.C.3.4.22.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 10: E.C.3.4.22.69  - Sars coronavirus main proteinase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 11: E.C.3.6.4.12  - Dna helicase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: ATP + H2O = ADP + phosphate + H+
ATP
+ H2O
= ADP
+ phosphate
+ H(+)
   Enzyme class 12: E.C.3.6.4.13  - Rna helicase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: ATP + H2O = ADP + phosphate + H+
ATP
+ H2O
= ADP
+ phosphate
+ H(+)
   Enzyme class 13: E.C.4.6.1.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1016/j.str.2005.07.022 Structure (Camb) 13:1665-1675 (2005)
PubMed id: 16271890  
 
 
Structural basis of severe acute respiratory syndrome coronavirus ADP-ribose-1''-phosphate dephosphorylation by a conserved domain of nsP3.
K.S.Saikatendu, J.S.Joseph, V.Subramanian, T.Clayton, M.Griffith, K.Moy, J.Velasquez, B.W.Neuman, M.J.Buchmeier, R.C.Stevens, P.Kuhn.
 
  ABSTRACT  
 
The crystal structure of a conserved domain of nonstructural protein 3 (nsP3) from severe acute respiratory syndrome coronavirus (SARS-CoV) has been solved by single-wavelength anomalous dispersion to 1.4 A resolution. The structure of this "X" domain, seen in many single-stranded RNA viruses, reveals a three-layered alpha/beta/alpha core with a macro-H2A-like fold. The putative active site is a solvent-exposed cleft that is conserved in its three structural homologs, yeast Ymx7, Archeoglobus fulgidus AF1521, and Er58 from E. coli. Its sequence is similar to yeast YBR022W (also known as Poa1P), a known phosphatase that acts on ADP-ribose-1''-phosphate (Appr-1''-p). The SARS nsP3 domain readily removes the 1'' phosphate group from Appr-1''-p in in vitro assays, confirming its phosphatase activity. Sequence and structure comparison of all known macro-H2A domains combined with available functional data suggests that proteins of this superfamily form an emerging group of nucleotide phosphatases that dephosphorylate Appr-1''-p.
 
  Selected figure(s)  
 
Figure 2.
Figure 2. Structure of SARS ADRP
(A) Ribbon representation of the SARS nsP3 ADRP monomer. The two glycine-rich loops are shown in yellow. Secondary structures are colored from blue (N) to red (C terminus). Helices are numbered H1-H6, and b strands are numbered from 1 to 8.
(B) The SARS ADRP dimer observed between the B and D subunits in the asymmetric unit. The four conserved segments are colored red in each subunit; the conserved histidines and asparagines at the active site are shown as ball-and-sticks.
 
  The above figure is reprinted by permission from Cell Press: Structure (Camb) (2005, 13, 1665-1675) copyright 2005.  
  Figure was selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20976195 B.F.Beitzel, R.R.Bakken, J.M.Smith, and C.S.Schmaljohn (2010).
High-resolution functional mapping of the venezuelan equine encephalitis virus genome by insertional mutagenesis and massively parallel sequencing.
  PLoS Pathog, 6, e1001146.  
19052085 A.Chatterjee, M.A.Johnson, P.Serrano, B.Pedrini, J.S.Joseph, B.W.Neuman, K.Saikatendu, M.J.Buchmeier, P.Kuhn, and K.Wüthrich (2009).
Nuclear magnetic resonance structure shows that the severe acute respiratory syndrome coronavirus-unique domain contains a macrodomain fold.
  J Virol, 83, 1823-1836.
PDB codes: 2jzd 2jze 2jzf 2rnk
19395054 E.Park, and D.E.Griffin (2009).
The nsP3 macro domain is important for Sindbis virus replication in neurons and neurovirulence in mice.
  Virology, 388, 305-314.  
19386706 H.Malet, B.Coutard, S.Jamal, H.Dutartre, N.Papageorgiou, M.Neuvonen, T.Ahola, N.Forrester, E.A.Gould, D.Lafitte, F.Ferron, J.Lescar, A.E.Gorbalenya, X.de Lamballerie, and B.Canard (2009).
The crystal structures of Chikungunya and Venezuelan equine encephalitis virus nsP3 macro domains define a conserved adenosine binding pocket.
  J Virol, 83, 6534-6545.
PDB codes: 3gpg 3gpo 3gpq 3gqe 3gqo
19966415 J.A.Wojdyla, I.Manolaridis, E.J.Snijder, A.E.Gorbalenya, B.Coutard, Y.Piotrowski, R.Hilgenfeld, and P.A.Tucker (2009).
Structure of the X (ADRP) domain of nsp3 from feline coronavirus.
  Acta Crystallogr D Biol Crystallogr, 65, 1292-1300.
PDB codes: 3eti 3ew5 3jzt
19436709 J.Tan, C.Vonrhein, O.S.Smart, G.Bricogne, M.Bollati, Y.Kusov, G.Hansen, J.R.Mesters, C.L.Schmidt, and R.Hilgenfeld (2009).
The SARS-Unique Domain (SUD) of SARS Coronavirus Contains Two Macrodomains That Bind G-Quadruplexes.
  PLoS Pathog, 5, e1000428.
PDB codes: 2w2g 2wct
19828617 P.Serrano, M.A.Johnson, A.Chatterjee, B.W.Neuman, J.S.Joseph, M.J.Buchmeier, P.Kuhn, and K.Wüthrich (2009).
Nuclear magnetic resonance structure of the nucleic acid-binding domain of severe acute respiratory syndrome coronavirus nonstructural protein 3.
  J Virol, 83, 12998-13008.
PDB code: 2k87
19430490 S.Perlman, and J.Netland (2009).
Coronaviruses post-SARS: update on replication and pathogenesis.
  Nat Rev Microbiol, 7, 439-450.  
19176617 W.P.Tzeng, and T.K.Frey (2009).
Functional replacement of a domain in the rubella virus p150 replicase protein by the virus capsid protein.
  J Virol, 83, 3549-3555.  
  19177346 Y.Piotrowski, G.Hansen, A.L.Boomaars-van der Zanden, E.J.Snijder, A.E.Gorbalenya, and R.Hilgenfeld (2009).
Crystal structures of the X-domains of a Group-1 and a Group-3 coronavirus reveal that ADP-ribose-binding may not be a conserved property.
  Protein Sci, 18, 6.
PDB codes: 3ejf 3ejg 3eke
18987156 Y.Xu, L.Cong, C.Chen, L.Wei, Q.Zhao, X.Xu, Y.Ma, M.Bartlam, and Z.Rao (2009).
Crystal structures of two coronavirus ADP-ribose-1''-monophosphatases and their complexes with ADP-Ribose: a systematic structural analysis of the viral ADRP domain.
  J Virol, 83, 1083-1092.
PDB codes: 3ewo 3ewp 3ewq 3ewr
18054092 B.Canard, J.S.Joseph, and P.Kuhn (2008).
International research networks in viral structural proteomics: again, lessons from SARS.
  Antiviral Res, 78, 47-50.  
18367524 B.W.Neuman, J.S.Joseph, K.S.Saikatendu, P.Serrano, A.Chatterjee, M.A.Johnson, L.Liao, J.P.Klaus, J.R.Yates, K.Wüthrich, R.C.Stevens, M.J.Buchmeier, and P.Kuhn (2008).
Proteomics analysis unravels the functional repertoire of coronavirus nonstructural protein 3.
  J Virol, 82, 5279-5294.  
17984082 C.Zhang, O.Crasta, S.Cammer, R.Will, R.Kenyon, D.Sullivan, Q.Yu, W.Sun, R.Jha, D.Liu, T.Xue, Y.Zhang, M.Moore, P.McGarvey, H.Huang, Y.Chen, J.Zhang, R.Mazumder, C.Wu, and B.Sobral (2008).
An emerging cyberinfrastructure for biodefense pathogen and pathogen-host data.
  Nucleic Acids Res, 36, D884-D891.  
18922871 K.K.Eriksson, L.Cervantes-Barragán, B.Ludewig, and V.Thiel (2008).
Mouse hepatitis virus liver pathology is dependent on ADP-ribose-1''-phosphatase, a viral function conserved in the alpha-like supergroup.
  J Virol, 82, 12325-12334.  
18156685 M.Bartlam, X.Xue, and Z.Rao (2008).
The search for a structural basis for therapeutic intervention against the SARS coronavirus.
  Acta Crystallogr A, 64, 204-213.  
19636888 P.Serrano, M.A.Johnson, A.Chatterjee, B.Pedrini, and K.Wüthrich (2008).
NMR assignment of the nonstructural protein nsp3(1066-1181) from SARS-CoV.
  Biomol NMR Assign, 2, 135-138.  
17397959 R.L.Graham, J.S.Sparks, L.D.Eckerle, A.C.Sims, and M.R.Denison (2008).
SARS coronavirus replicase proteins in pathogenesis.
  Virus Res, 133, 88.  
17222884 A.Kanjanahaluethai, Z.Chen, D.Jukneliene, and S.C.Baker (2007).
Membrane topology of murine coronavirus replicase nonstructural protein 3.
  Virology, 361, 391-401.  
17634238 D.J.Deming, R.L.Graham, M.R.Denison, and R.S.Baric (2007).
Processing of open reading frame 1a replicase proteins nsp7 to nsp10 in murine hepatitis virus strain A59 replication.
  J Virol, 81, 10280-10291.  
17251282 J.Ziebuhr, B.Schelle, N.Karl, E.Minskaia, S.Bayer, S.G.Siddell, A.E.Gorbalenya, and V.Thiel (2007).
Human coronavirus 229E papain-like proteases have overlapping specificities but distinct functions in viral replication.
  J Virol, 81, 3922-3932.  
17680348 M.Bartlam, Y.Xu, and Z.Rao (2007).
Structural proteomics of the SARS coronavirus: a model response to emerging infectious diseases.
  J Struct Funct Genomics, 8, 85-97.  
17202208 M.S.Almeida, M.A.Johnson, T.Herrmann, M.Geralt, and K.Wüthrich (2007).
Novel beta-barrel fold in the nuclear magnetic resonance structure of the replicase nonstructural protein 1 from the severe acute respiratory syndrome coronavirus.
  J Virol, 81, 3151-3161.
PDB codes: 2gdt 2hsx
17728234 P.Serrano, M.A.Johnson, M.S.Almeida, R.Horst, T.Herrmann, J.S.Joseph, B.W.Neuman, V.Subramanian, K.S.Saikatendu, M.J.Buchmeier, R.C.Stevens, P.Kuhn, and K.Wüthrich (2007).
Nuclear magnetic resonance structure of the N-terminal domain of nonstructural protein 3 from the severe acute respiratory syndrome coronavirus.
  J Virol, 81, 12049-12060.
PDB codes: 2gri 2idy
17392370 Z.Chen, Y.Wang, K.Ratia, A.D.Mesecar, K.D.Wilkinson, and S.C.Baker (2007).
Proteolytic processing and deubiquitinating activity of papain-like proteases of human coronavirus NL63.
  J Virol, 81, 6007-6018.  
16503362 A.E.Gorbalenya, L.Enjuanes, J.Ziebuhr, and E.J.Snijder (2006).
Nidovirales: evolving the largest RNA virus genome.
  Virus Res, 117, 17-37.  
  16582497 H.Malet, K.Dalle, N.Brémond, F.Tocque, S.Blangy, V.Campanacci, B.Coutard, S.Grisel, J.Lichière, V.Lantez, C.Cambillau, B.Canard, and M.P.Egloff (2006).
Expression, purification and crystallization of the SARS-CoV macro domain.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 62, 405-408.  
16987966 H.Schütze, R.Ulferts, B.Schelle, S.Bayer, H.Granzow, B.Hoffmann, T.C.Mettenleiter, and J.Ziebuhr (2006).
Characterization of White bream virus reveals a novel genetic cluster of nidoviruses.
  J Virol, 80, 11598-11609.  
17085042 J.R.Mesters, J.Tan, and R.Hilgenfeld (2006).
Viral enzymes.
  Curr Opin Struct Biol, 16, 776-786.  
16912299 M.P.Egloff, H.Malet, A.Putics, M.Heinonen, H.Dutartre, A.Frangeul, A.Gruez, V.Campanacci, C.Cambillau, J.Ziebuhr, T.Ahola, and B.Canard (2006).
Structural and functional basis for ADP-ribose and poly(ADP-ribose) binding by viral macro domains.
  J Virol, 80, 8493-8502.
PDB code: 2fav
16971428 R.L.Graham, and M.R.Denison (2006).
Replication of murine hepatitis virus is regulated by papain-like proteinase 1 processing of nonstructural proteins 1, 2, and 3.
  J Virol, 80, 11610-11620.  
16271880 E.Garman (2005).
SARS proteomics reveals viral secrets.
  Structure, 13, 1582-1583.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer