|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Mol Cell
5:865-876
(2000)
|
|
PubMed id:
|
|
|
|
|
| |
|
Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast.
|
|
E.Mossessova,
C.D.Lima.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
Modification of cellular proteins by the ubiquitin-like protein SUMO is
essential for nuclear processes and cell cycle progression in yeast. The Ulp1
protease catalyzes two essential functions in the SUMO pathway: (1) processing
of full-length SUMO to its mature form and (2) deconjugation of SUMO from
targeted proteins. Selective reduction of the proteolytic reaction produced a
covalent thiohemiacetal transition state complex between a Ulp1 C-terminal
fragment and its cellular substrate Smt3, the yeast SUMO homolog. The Ulp1-Smt3
crystal structure and functional testing of elements within the conserved
interface elucidate determinants of SUMO recognition, processing, and
deconjugation. Genetic analysis guided by the structure further reveals a
regulatory element N-terminal to the proteolytic domain that is required for
cell growth in yeast.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 3.
Figure 3. Structure of the Ulp1-Smt3 ComplexUlp1 is colored
blue; Smt3 is colored red.(A) View looking into a side of the
complex.(B) A perpendicular view of the complex looking onto the
active site. β strands are numbered; α helices are lettered.
The C-terminal Smt3 Gly-Gly motif is located above Ulp1 helix
F.(C) Stereo representation of the Ulp1-Smt3 complex in an
orientation approximately 45° from (A) or (B). Cα positions
are numbered every ten residues with Smt3 denoted by a thicker
line. Graphics prepared using SETOR unless otherwise noted ([9]).
|
 |
Figure 5.
Figure 5. Ulp1 Motifs and the Smt3 InterfaceThe Ulp1
polypeptide backbone is depicted in ribbon representation, while
the Smt3 peptide is depicted in stick representation. Ulp1
color-coded motifs as in Figure 1. (A) Ulp1 motif 1 (pink); (B)
motif 2 (blue); (C) motif 3 (red); and (D) motif 4 (green).
Views approximate a close-up for each motif as it appears in
Figure 4B. Hydrogen bonds are denoted by black spheres. Waters
are depicted by red spheres. Amino acid residues discussed in
the text are numbered.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Cell Press:
Mol Cell
(2000,
5,
865-876)
copyright 2000.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
Y.M.Abbas,
A.Pichlmair,
M.W.Górna,
G.Superti-Furga,
and
B.Nagar
(2013).
Structural basis for viral 5'-PPP-RNA recognition by human IFIT proteins.
|
| |
Nature,
494,
60-64.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.A.Armstrong,
F.Mohideen,
and
C.D.Lima
(2012).
Recognition of SUMO-modified PCNA requires tandem receptor motifs in Srs2.
|
| |
Nature,
483,
59-63.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.M.Hickey,
N.R.Wilson,
and
M.Hochstrasser
(2012).
Function and regulation of SUMO proteases.
|
| |
Nat Rev Mol Cell Biol,
13,
755-766.
|
 |
|
|
|
|
 |
J.Nandakumar,
C.F.Bell,
I.Weidenfeld,
A.J.Zaug,
L.A.Leinwand,
and
T.R.Cech
(2012).
The TEL patch of telomere protein TPP1 mediates telomerase recruitment and processivity.
|
| |
Nature,
492,
285-289.
|
 |
|
|
|
|
 |
N.Singla,
H.Erdjument-Bromage,
J.P.Himanen,
T.W.Muir,
and
D.B.Nikolov
(2011).
A semisynthetic Eph receptor tyrosine kinase provides insight into ligand-induced kinase activation.
|
| |
Chem Biol,
18,
361-371.
|
 |
|
|
|
|
 |
A.J.Zaug,
E.R.Podell,
J.Nandakumar,
and
T.R.Cech
(2010).
Functional interaction between telomere protein TPP1 and telomerase.
|
| |
Genes Dev,
24,
613-622.
|
 |
|
|
|
|
 |
A.R.Cole,
L.P.Lewis,
and
H.Walden
(2010).
The structure of the catalytic subunit FANCL of the Fanconi anemia core complex.
|
| |
Nat Struct Mol Biol,
17,
294-298.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.Sandu,
H.D.Ryoo,
and
H.Steller
(2010).
Drosophila IAP antagonists form multimeric complexes to promote cell death.
|
| |
J Cell Biol,
190,
1039-1052.
|
 |
|
|
|
|
 |
C.Wang,
I.Protasevich,
Z.Yang,
D.Seehausen,
T.Skalak,
X.Zhao,
S.Atwell,
J.Spencer Emtage,
D.R.Wetmore,
C.G.Brouillette,
and
J.F.Hunt
(2010).
Integrated biophysical studies implicate partial unfolding of NBD1 of CFTR in the molecular pathogenesis of F508del cystic fibrosis.
|
| |
Protein Sci,
19,
1932-1947.
|
 |
|
|
|
|
 |
D.Benarroch,
M.Jankowska-Anyszka,
J.Stepinski,
E.Darzynkiewicz,
and
S.Shuman
(2010).
Cap analog substrates reveal three clades of cap guanine-N2 methyltransferases with distinct methyl acceptor specificities.
|
| |
RNA,
16,
211-220.
|
 |
|
|
|
|
 |
D.Roymans,
H.L.De Bondt,
E.Arnoult,
P.Geluykens,
T.Gevers,
M.Van Ginderen,
N.Verheyen,
H.Kim,
R.Willebrords,
J.F.Bonfanti,
W.Bruinzeel,
M.D.Cummings,
H.van Vlijmen,
and
K.Andries
(2010).
Binding of a potent small-molecule inhibitor of six-helix bundle formation requires interactions with both heptad-repeats of the RSV fusion protein.
|
| |
Proc Natl Acad Sci U S A,
107,
308-313.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
F.Frank,
N.Sonenberg,
and
B.Nagar
(2010).
Structural basis for 5'-nucleotide base-specific recognition of guide RNA by human AGO2.
|
| |
Nature,
465,
818-822.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
F.Wang,
Y.Yang,
T.R.Singh,
V.Busygina,
R.Guo,
K.Wan,
W.Wang,
P.Sung,
A.R.Meetei,
and
M.Lei
(2010).
Crystal structures of RMI1 and RMI2, two OB-fold regulatory subunits of the BLM complex.
|
| |
Structure,
18,
1159-1170.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.Berry,
C.Savva,
A.Holzenburg,
and
R.Young
(2010).
The lambda spanin components Rz and Rz1 undergo tertiary and quaternary rearrangements upon complex formation.
|
| |
Protein Sci,
19,
1967-1977.
|
 |
|
|
|
|
 |
L.P.de Carvalho,
H.Zhao,
C.E.Dickinson,
N.M.Arango,
C.D.Lima,
S.M.Fischer,
O.Ouerfelli,
C.Nathan,
and
K.Y.Rhee
(2010).
Activity-based metabolomic profiling of enzymatic function: identification of Rv1248c as a mycobacterial 2-hydroxy-3-oxoadipate synthase.
|
| |
Chem Biol,
17,
323-332.
|
 |
|
|
|
|
 |
M.Gu,
K.R.Rajashankar,
and
C.D.Lima
(2010).
Structure of the Saccharomyces cerevisiae Cet1-Ceg1 mRNA capping apparatus.
|
| |
Structure,
18,
216-227.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.Bryk,
N.Arango,
A.Venugopal,
J.D.Warren,
Y.H.Park,
M.S.Patel,
C.D.Lima,
and
C.Nathan
(2010).
Triazaspirodimethoxybenzoyls as selective inhibitors of mycobacterial lipoamide dehydrogenase .
|
| |
Biochemistry,
49,
1616-1627.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.Huether,
Q.Mao,
W.L.Duax,
and
T.C.Umland
(2010).
The short-chain oxidoreductase Q9HYA2 from Pseudomonas aeruginosa PAO1 contains an atypical catalytic center.
|
| |
Protein Sci,
19,
1097-1103.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.K.Olsen,
A.D.Capili,
X.Lu,
D.S.Tan,
and
C.D.Lima
(2010).
Active site remodelling accompanies thioester bond formation in the SUMO E1.
|
| |
Nature,
463,
906-912.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Yamada,
M.Hatta,
B.L.Staker,
S.Watanabe,
M.Imai,
K.Shinya,
Y.Sakai-Tagawa,
M.Ito,
M.Ozawa,
T.Watanabe,
S.Sakabe,
C.Li,
J.H.Kim,
P.J.Myler,
I.Phan,
A.Raymond,
E.Smith,
R.Stacy,
C.A.Nidom,
S.M.Lank,
R.W.Wiseman,
B.N.Bimber,
D.H.O'Connor,
G.Neumann,
L.J.Stewart,
and
Y.Kawaoka
(2010).
Biological and structural characterization of a host-adapting amino acid in influenza virus.
|
| |
PLoS Pathog,
6,
0.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.Uehara,
K.R.Parzych,
T.Dinh,
and
T.G.Bernhardt
(2010).
Daughter cell separation is controlled by cytokinetic ring-activated cell wall hydrolysis.
|
| |
EMBO J,
29,
1412-1422.
|
 |
|
|
|
|
 |
V.Kanelis,
R.P.Hudson,
P.H.Thibodeau,
P.J.Thomas,
and
J.D.Forman-Kay
(2010).
NMR evidence for differential phosphorylation-dependent interactions in WT and DeltaF508 CFTR.
|
| |
EMBO J,
29,
263-277.
|
 |
|
|
|
|
 |
Y.C.Shin,
B.Y.Liu,
J.Y.Tsai,
J.T.Wu,
L.K.Chang,
and
S.C.Chang
(2010).
Biochemical characterization of the small ubiquitin-like modifiers of Chlamydomonas reinhardtii.
|
| |
Planta,
232,
649-662.
|
 |
|
|
|
|
 |
A.A.Yunus,
and
C.D.Lima
(2009).
Purification of SUMO conjugating enzymes and kinetic analysis of substrate conjugation.
|
| |
Methods Mol Biol,
497,
167-186.
|
 |
|
|
|
|
 |
A.A.Yunus,
and
C.D.Lima
(2009).
Structure of the Siz/PIAS SUMO E3 ligase Siz1 and determinants required for SUMO modification of PCNA.
|
| |
Mol Cell,
35,
669-682.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.G.Komarov,
K.M.Linn,
J.J.Devereaux,
and
F.I.Valiyaveetil
(2009).
Modular strategy for the semisynthesis of a K+ channel: investigating interactions of the pore helix.
|
| |
ACS Chem Biol,
4,
1029-1038.
|
 |
|
|
|
|
 |
A.S.Aranko,
S.Züger,
E.Buchinger,
and
H.Iwaï
(2009).
In vivo and in vitro protein ligation by naturally occurring and engineered split DnaE inteins.
|
| |
PLoS ONE,
4,
e5185.
|
 |
|
|
|
|
 |
C.D.Lee,
Y.P.Yan,
S.M.Liang,
and
T.F.Wang
(2009).
Production of FMDV virus-like particles by a SUMO fusion protein approach in Escherichia coli.
|
| |
J Biomed Sci,
16,
69.
|
 |
|
|
|
|
 |
D.Benarroch,
Z.R.Qiu,
B.Schwer,
and
S.Shuman
(2009).
Characterization of a mimivirus RNA cap guanine-N2 methyltransferase.
|
| |
RNA,
15,
666-674.
|
 |
|
|
|
|
 |
D.Reverter,
and
C.D.Lima
(2009).
Preparation of SUMO proteases and kinetic analysis using endogenous substrates.
|
| |
Methods Mol Biol,
497,
225-239.
|
 |
|
|
|
|
 |
E.T.Yeh
(2009).
SUMOylation and De-SUMOylation: Wrestling with Life's Processes.
|
| |
J Biol Chem,
284,
8223-8227.
|
 |
|
|
|
|
 |
H.Motejadded,
and
J.Altenbuchner
(2009).
Construction of a dual-tag system for gene expression, protein affinity purification and fusion protein processing.
|
| |
Biotechnol Lett,
31,
543-549.
|
 |
|
|
|
|
 |
K.M.Sinha,
M.C.Unciuleac,
M.S.Glickman,
and
S.Shuman
(2009).
AdnAB: a new DSB-resecting motor-nuclease from mycobacteria.
|
| |
Genes Dev,
23,
1423-1437.
|
 |
|
|
|
|
 |
M.B.Kroetz,
D.Su,
and
M.Hochstrasser
(2009).
Essential role of nuclear localization for yeast Ulp2 SUMO protease function.
|
| |
Mol Biol Cell,
20,
2196-2206.
|
 |
|
|
|
|
 |
M.Ingaramo,
and
D.Beckett
(2009).
Distinct amino termini of two human HCS isoforms influence biotin acceptor substrate recognition.
|
| |
J Biol Chem,
284,
30862-30870.
|
 |
|
|
|
|
 |
N.Keppetipola,
R.Jain,
B.Meineke,
M.Diver,
and
S.Shuman
(2009).
Structure-activity relationships in Kluyveromyces lactis gamma-toxin, a eukaryal tRNA anticodon nuclease.
|
| |
RNA,
15,
1036-1044.
|
 |
|
|
|
|
 |
N.LaRonde-LeBlanc,
M.Resto,
and
B.Gerratana
(2009).
Regulation of active site coupling in glutamine-dependent NAD(+) synthetase.
|
| |
Nat Struct Mol Biol,
16,
421-429.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
N.Tanaka,
and
S.Shuman
(2009).
Structure-activity relationships in human RNA 3'-phosphate cyclase.
|
| |
RNA,
15,
1865-1874.
|
 |
|
|
|
|
 |
Q.Shang,
C.Xu,
J.Zhang,
X.Zhang,
and
X.Tu
(2009).
Solution structure of SUMO from Trypanosoma brucei and its interaction with Ubc9.
|
| |
Proteins,
76,
266-269.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.Jain,
and
S.Shuman
(2009).
Characterization of a thermostable archaeal polynucleotide kinase homologous to human Clp1.
|
| |
RNA,
15,
923-931.
|
 |
|
|
|
|
 |
R.K.McGinty,
M.Köhn,
C.Chatterjee,
K.P.Chiang,
M.R.Pratt,
and
T.W.Muir
(2009).
Structure-activity analysis of semisynthetic nucleosomes: mechanistic insights into the stimulation of Dot1L by ubiquitylated histone H2B.
|
| |
ACS Chem Biol,
4,
958-968.
|
 |
|
|
|
|
 |
S.Hare,
F.Di Nunzio,
A.Labeja,
J.Wang,
A.Engelman,
and
P.Cherepanov
(2009).
Structural basis for functional tetramerization of lentiviral integrase.
|
| |
PLoS Pathog,
5,
e1000515.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Hare,
M.C.Shun,
S.S.Gupta,
E.Valkov,
A.Engelman,
and
P.Cherepanov
(2009).
A novel co-crystal structure affords the design of gain-of-function lentiviral integrase mutants in the presence of modified PSIP1/LEDGF/p75.
|
| |
PLoS Pathog,
5,
e1000259.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Zhu,
J.Goeres,
K.M.Sixt,
M.Békés,
X.D.Zhang,
G.S.Salvesen,
and
M.J.Matunis
(2009).
Protection from isopeptidase-mediated deconjugation regulates paralog-selective sumoylation of RanGAP1.
|
| |
Mol Cell,
33,
570-580.
|
 |
|
|
|
|
 |
V.Cody,
J.Pace,
J.Makin,
J.Piraino,
S.F.Queener,
and
A.Rosowsky
(2009).
Correlations of inhibitor kinetics for Pneumocystis jirovecii and human dihydrofolate reductase with structural data for human active site mutant enzyme complexes.
|
| |
Biochemistry,
48,
1702-1711.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
W.Wang,
Y.Yang,
Y.Gao,
Q.Xu,
F.Wang,
S.Zhu,
W.Old,
K.Resing,
N.Ahn,
M.Lei,
and
X.Liu
(2009).
Structural and mechanistic insights into Mps1 kinase activation.
|
| |
J Cell Mol Med,
13,
1679-1694.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Y.Wang,
and
M.Dasso
(2009).
SUMOylation and deSUMOylation at a glance.
|
| |
J Cell Sci,
122,
4249-4252.
|
 |
|
|
|
|
 |
Z.Xu,
H.Y.Chan,
W.L.Lam,
K.H.Lam,
L.S.Lam,
T.B.Ng,
and
S.W.Au
(2009).
SUMO proteases: redox regulation and biological consequences.
|
| |
Antioxid Redox Signal,
11,
1453-1484.
|
 |
|
|
|
|
 |
B.Palancade,
and
V.Doye
(2008).
Sumoylating and desumoylating enzymes at nuclear pores: underpinning their unexpected duties?
|
| |
Trends Cell Biol,
18,
174-183.
|
 |
|
|
|
|
 |
C.D.Lee,
H.C.Sun,
S.M.Hu,
C.F.Chiu,
A.Homhuan,
S.M.Liang,
C.H.Leng,
and
T.F.Wang
(2008).
An improved SUMO fusion protein system for effective production of native proteins.
|
| |
Protein Sci,
17,
1241-1248.
|
 |
|
|
|
|
 |
C.D.Lima,
and
D.Reverter
(2008).
Structure of the Human SENP7 Catalytic Domain and Poly-SUMO Deconjugation Activities for SENP6 and SENP7.
|
| |
J Biol Chem,
283,
32045-32055.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.M.Lightcap,
S.Sun,
J.D.Lear,
U.Rodeck,
T.Polenova,
and
J.C.Williams
(2008).
Biochemical and Structural Characterization of the Pak1-LC8 Interaction.
|
| |
J Biol Chem,
283,
27314-27324.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.Benarroch,
P.Smith,
and
S.Shuman
(2008).
Characterization of a trifunctional mimivirus mRNA capping enzyme and crystal structure of the RNA triphosphatase domain.
|
| |
Structure,
16,
501-512.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.C.Greimann,
and
C.D.Lima
(2008).
Reconstitution of RNA exosomes from human and Saccharomyces cerevisiae cloning, expression, purification, and activity assays.
|
| |
Methods Enzymol,
448,
185-210.
|
 |
|
|
|
|
 |
J.D.Mancias,
and
J.Goldberg
(2008).
Structural basis of cargo membrane protein discrimination by the human COPII coat machinery.
|
| |
EMBO J,
27,
2918-2928.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
L.Cunha,
M.Kuti,
D.F.Bishop,
M.Mezei,
L.Zeng,
M.M.Zhou,
and
R.J.Desnick
(2008).
Human uroporphyrinogen III synthase: NMR-based mapping of the active site.
|
| |
Proteins,
71,
855-873.
|
 |
|
|
|
|
 |
L.Zhu,
J.O.Wrabl,
A.P.Hayashi,
L.S.Rose,
and
P.J.Thomas
(2008).
The torsin-family AAA+ protein OOC-5 contains a critical disulfide adjacent to Sensor-II that couples redox state to nucleotide binding.
|
| |
Mol Biol Cell,
19,
3599-3612.
|
 |
|
|
|
|
 |
M.Drag,
and
G.S.Salvesen
(2008).
DeSUMOylating enzymes--SENPs.
|
| |
IUBMB Life,
60,
734-742.
|
 |
|
|
|
|
 |
M.R.Dorwart,
N.Shcheynikov,
J.M.Baker,
J.D.Forman-Kay,
S.Muallem,
and
P.J.Thomas
(2008).
Congenital chloride-losing diarrhea causing mutations in the STAS domain result in misfolding and mistrafficking of SLC26A3.
|
| |
J Biol Chem,
283,
8711-8722.
|
 |
|
|
|
|
 |
M.Spínola-Amilibia,
J.Rivera,
and
J.Bravo
(2008).
Crystallization and preliminary X-ray diffraction analysis of a breast cancer metastasis suppressor 1 predicted coiled-coil region.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
64,
1156-1158.
|
 |
|
|
|
|
 |
P.Knipscheer,
A.Flotho,
H.Klug,
J.V.Olsen,
W.J.van Dijk,
A.Fish,
E.S.Johnson,
M.Mann,
T.K.Sixma,
and
A.Pichler
(2008).
Ubc9 sumoylation regulates SUMO target discrimination.
|
| |
Mol Cell,
31,
371-382.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.A.van der Hoorn
(2008).
Plant proteases: from phenotypes to molecular mechanisms.
|
| |
Annu Rev Plant Biol,
59,
191-223.
|
 |
|
|
|
|
 |
R.Warrier,
B.R.Linger,
B.L.Golden,
and
R.J.Kuhn
(2008).
Role of sindbis virus capsid protein region II in nucleocapsid core assembly and encapsidation of genomic RNA.
|
| |
J Virol,
82,
4461-4470.
|
 |
|
|
|
|
 |
V.Cody,
Q.Mao,
and
S.F.Queener
(2008).
Recombinant bovine dihydrofolate reductase produced by mutagenesis and nested PCR of murine dihydrofolate reductase cDNA.
|
| |
Protein Expr Purif,
62,
104-110.
|
 |
|
|
|
|
 |
Z.Tang,
C.M.Hecker,
A.Scheschonka,
and
H.Betz
(2008).
Protein interactions in the sumoylation cascade: lessons from X-ray structures.
|
| |
FEBS J,
275,
3003-3015.
|
 |
|
|
|
|
 |
A.D.Capili,
and
C.D.Lima
(2007).
Taking it step by step: mechanistic insights from structural studies of ubiquitin/ubiquitin-like protein modification pathways.
|
| |
Curr Opin Struct Biol,
17,
726-735.
|
 |
|
|
|
|
 |
A.Lewis,
R.Felberbaum,
and
M.Hochstrasser
(2007).
A nuclear envelope protein linking nuclear pore basket assembly, SUMO protease regulation, and mRNA surveillance.
|
| |
J Cell Biol,
178,
813-827.
|
 |
|
|
|
|
 |
A.M.Burroughs,
S.Balaji,
L.M.Iyer,
and
L.Aravind
(2007).
A novel superfamily containing the beta-grasp fold involved in binding diverse soluble ligands.
|
| |
Biol Direct,
2,
4.
|
 |
|
|
|
|
 |
D.M.Duda,
R.C.van Waardenburg,
L.A.Borg,
S.McGarity,
A.Nourse,
M.B.Waddell,
M.A.Bjornsti,
and
B.A.Schulman
(2007).
Structure of a SUMO-binding-motif mimic bound to Smt3p-Ubc9p: conservation of a non-covalent ubiquitin-like protein-E2 complex as a platform for selective interactions within a SUMO pathway.
|
| |
J Mol Biol,
369,
619-630.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.Mukhopadhyay,
and
M.Dasso
(2007).
Modification in reverse: the SUMO proteases.
|
| |
Trends Biochem Sci,
32,
286-295.
|
 |
|
|
|
|
 |
H.Zhu,
P.Smith,
L.K.Wang,
and
S.Shuman
(2007).
Structure-function analysis of the 3' phosphatase component of T4 polynucleotide kinase/phosphatase.
|
| |
Virology,
366,
126-136.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.D.Mancias,
and
J.Goldberg
(2007).
The transport signal on Sec22 for packaging into COPII-coated vesicles is a conformational epitope.
|
| |
Mol Cell,
26,
403-414.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.Mikolajczyk,
M.Drag,
M.Békés,
J.T.Cao,
Z.Ronai,
and
G.S.Salvesen
(2007).
Small ubiquitin-related modifier (SUMO)-specific proteases: profiling the specificities and activities of human SENPs.
|
| |
J Biol Chem,
282,
26217-26224.
|
 |
|
|
|
|
 |
L.Huaping,
L.Jie,
W.Zhifeng,
Z.Yingchang,
and
L.Yuhuan
(2007).
Cloning and functional expression of ubiquitin-like protein specific proteases genes from Candida albicans.
|
| |
Biol Pharm Bull,
30,
1851-1855.
|
 |
|
|
|
|
 |
M.E.Hahn,
J.P.Pellois,
M.Vila-Perelló,
and
T.W.Muir
(2007).
Tunable photoactivation of a post-translationally modified signaling protein and its unmodified counterpart in live cells.
|
| |
Chembiochem,
8,
2100-2105.
|
 |
|
|
|
|
 |
M.Ihara,
H.Koyama,
Y.Uchimura,
H.Saitoh,
and
A.Kikuchi
(2007).
Noncovalent binding of small ubiquitin-related modifier (SUMO) protease to SUMO is necessary for enzymatic activities and cell growth.
|
| |
J Biol Chem,
282,
16465-16475.
|
 |
|
|
|
|
 |
R.Chosed,
D.R.Tomchick,
C.A.Brautigam,
S.Mukherjee,
V.S.Negi,
M.Machius,
and
K.Orth
(2007).
Structural analysis of Xanthomonas XopD provides insights into substrate specificity of ubiquitin-like protein proteases.
|
| |
J Biol Chem,
282,
6773-6782.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
R.Geiss-Friedlander,
and
F.Melchior
(2007).
Concepts in sumoylation: a decade on.
|
| |
Nat Rev Mol Cell Biol,
8,
947-956.
|
 |
|
|
|
|
 |
S.D.Weeks,
M.Drinker,
and
P.J.Loll
(2007).
Ligation independent cloning vectors for expression of SUMO fusions.
|
| |
Protein Expr Purif,
53,
40-50.
|
 |
|
|
|
|
 |
S.Mukherjee,
Y.H.Hao,
and
K.Orth
(2007).
A newly discovered post-translational modification--the acetylation of serine and threonine residues.
|
| |
Trends Biochem Sci,
32,
210-216.
|
 |
|
|
|
|
 |
V.Katritch,
C.M.Byrd,
V.Tseitin,
D.Dai,
E.Raush,
M.Totrov,
R.Abagyan,
R.Jordan,
and
D.E.Hruby
(2007).
Discovery of small molecule inhibitors of ubiquitin-like poxvirus proteinase I7L using homology modeling and covalent docking approaches.
|
| |
J Comput Aided Mol Des,
21,
549-558.
|
 |
|
|
|
|
 |
Y.Chen
(2007).
The enzymes in ubiquitin-like post-translational modifications.
|
| |
Biosci Trends,
1,
16-25.
|
 |
|
|
|
|
 |
A.A.Yunus,
and
C.D.Lima
(2006).
Lysine activation and functional analysis of E2-mediated conjugation in the SUMO pathway.
|
| |
Nat Struct Mol Biol,
13,
491-499.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
B.M.Kessler
(2006).
Putting proteomics on target: activity-based profiling of ubiquitin and ubiquitin-like processing enzymes.
|
| |
Expert Rev Proteomics,
3,
213-221.
|
 |
|
|
|
|
 |
C.H.Gross,
N.Abdul-Manan,
J.Fulghum,
J.Lippke,
X.Liu,
P.Prabhakar,
D.Brennan,
M.S.Willis,
C.Faerman,
P.Connelly,
S.Raybuck,
and
J.Moore
(2006).
Nucleotide-binding domains of cystic fibrosis transmembrane conductance regulator, an ABC transporter, catalyze adenylate kinase activity but not ATP hydrolysis.
|
| |
J Biol Chem,
281,
4058-4068.
|
 |
|
|
|
|
 |
D.Benarroch,
J.M.Claverie,
D.Raoult,
and
S.Shuman
(2006).
Characterization of mimivirus DNA topoisomerase IB suggests horizontal gene transfer between eukaryal viruses and bacteria.
|
| |
J Virol,
80,
314-321.
|
 |
|
|
|
|
 |
D.Reverter,
and
C.D.Lima
(2006).
Structural basis for SENP2 protease interactions with SUMO precursors and conjugated substrates.
|
| |
Nat Struct Mol Biol,
13,
1060-1068.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.T.Huang,
and
B.A.Schulman
(2006).
Breaking up with a kinky SUMO.
|
| |
Nat Struct Mol Biol,
13,
1045-1047.
|
 |
|
|
|
|
 |
H.Zhu,
J.Nandakumar,
J.Aniukwu,
L.K.Wang,
M.S.Glickman,
C.D.Lima,
and
S.Shuman
(2006).
Atomic structure and nonhomologous end-joining function of the polymerase component of bacterial DNA ligase D.
|
| |
Proc Natl Acad Sci U S A,
103,
1711-1716.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.G.Marblestone,
S.C.Edavettal,
Y.Lim,
P.Lim,
X.Zuo,
and
T.R.Butt
(2006).
Comparison of SUMO fusion technology with traditional gene fusion systems: enhanced expression and solubility with SUMO.
|
| |
Protein Sci,
15,
182-189.
|
 |
|
|
|
|
 |
J.J.Arnold,
A.Bernal,
U.Uche,
D.E.Sterner,
T.R.Butt,
C.E.Cameron,
and
M.R.Mattern
(2006).
Small ubiquitin-like modifying protein isopeptidase assay based on poliovirus RNA polymerase activity.
|
| |
Anal Biochem,
350,
214-221.
|
 |
|
|
|
|
 |
L.Shen,
M.H.Tatham,
C.Dong,
A.Zagórska,
J.H.Naismith,
and
R.T.Hay
(2006).
SUMO protease SENP1 induces isomerization of the scissile peptide bond.
|
| |
Nat Struct Mol Biol,
13,
1069-1077.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
L.Song,
S.Bhattacharya,
A.A.Yunus,
C.D.Lima,
and
C.Schindler
(2006).
Stat1 and SUMO modification.
|
| |
Blood,
108,
3237-3244.
|
 |
|
|
|
|
 |
M.S.Macauley,
W.J.Errington,
M.Schärpf,
C.D.Mackereth,
A.G.Blaszczak,
B.J.Graves,
and
L.P.McIntosh
(2006).
Beads-on-a-string, characterization of ETS-1 sumoylated within its flexible N-terminal sequence.
|
| |
J Biol Chem,
281,
4164-4172.
|
 |
|
|
|
|
 |
Q.Liu,
J.C.Greimann,
and
C.D.Lima
(2006).
Reconstitution, activities, and structure of the eukaryotic RNA exosome.
|
| |
Cell,
127,
1223-1237.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Zheng,
S.Hausmann,
Q.Liu,
A.Ghosh,
B.Schwer,
C.D.Lima,
and
S.Shuman
(2006).
Mutational analysis of Encephalitozoon cuniculi mRNA cap (guanine-N7) methyltransferase, structure of the enzyme bound to sinefungin, and evidence that cap methyltransferase is the target of sinefungin's antifungal activity.
|
| |
J Biol Chem,
281,
35904-35913.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.Sulea,
H.A.Lindner,
and
R.Ménard
(2006).
Structural aspects of recently discovered viral deubiquitinating activities.
|
| |
Biol Chem,
387,
853-862.
|
 |
|
|
|
|
 |
A.Borodovsky,
H.Ovaa,
W.J.Meester,
E.S.Venanzi,
M.S.Bogyo,
B.G.Hekking,
H.L.Ploegh,
B.M.Kessler,
and
H.S.Overkleeft
(2005).
Small-molecule inhibitors and probes for ubiquitin- and ubiquitin-like-specific proteases.
|
| |
Chembiochem,
6,
287-291.
|
 |
|
|
|
|
 |
A.Changela,
A.Martins,
S.Shuman,
and
A.Mondragón
(2005).
Crystal structure of baculovirus RNA triphosphatase complexed with phosphate.
|
| |
J Biol Chem,
280,
17848-17856.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.K.Padyana,
H.Qiu,
A.Roll-Mecak,
A.G.Hinnebusch,
and
S.K.Burley
(2005).
Structural basis for autoinhibition and mutational activation of eukaryotic initiation factor 2alpha protein kinase GCN2.
|
| |
J Biol Chem,
280,
29289-29299.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Pichler,
P.Knipscheer,
E.Oberhofer,
W.J.van Dijk,
R.Körner,
J.V.Olsen,
S.Jentsch,
F.Melchior,
and
T.K.Sixma
(2005).
SUMO modification of the ubiquitin-conjugating enzyme E2-25K.
|
| |
Nat Struct Mol Biol,
12,
264-269.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.Baba,
N.Maita,
J.G.Jee,
Y.Uchimura,
H.Saitoh,
K.Sugasawa,
F.Hanaoka,
H.Tochio,
H.Hiroaki,
and
M.Shirakawa
(2005).
Crystal structure of thymine DNA glycosylase conjugated to SUMO-1.
|
| |
Nature,
435,
979-982.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.Zhu,
L.K.Wang,
and
S.Shuman
(2005).
Essential constituents of the 3'-phosphoesterase domain of bacterial DNA ligase D, a nonhomologous end-joining enzyme.
|
| |
J Biol Chem,
280,
33707-33715.
|
 |
|
|
|
|
 |
J.M.Desterro,
L.P.Keegan,
E.Jaffray,
R.T.Hay,
M.A.O'Connell,
and
M.Carmo-Fonseca
(2005).
SUMO-1 modification alters ADAR1 editing activity.
|
| |
Mol Biol Cell,
16,
5115-5126.
|
 |
|
|
|
|
 |
K.R.Rajashankar,
R.Bryk,
R.Kniewel,
J.A.Buglino,
C.F.Nathan,
and
C.D.Lima
(2005).
Crystal structure and functional analysis of lipoamide dehydrogenase from Mycobacterium tuberculosis.
|
| |
J Biol Chem,
280,
33977-33983.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.Sugawara,
N.N.Suzuki,
Y.Fujioka,
N.Mizushima,
Y.Ohsumi,
and
F.Inagaki
(2005).
Structural basis for the specificity and catalysis of human Atg4B responsible for mammalian autophagy.
|
| |
J Biol Chem,
280,
40058-40065.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
L.M.Lois,
and
C.D.Lima
(2005).
Structures of the SUMO E1 provide mechanistic insights into SUMO activation and E2 recruitment to E1.
|
| |
EMBO J,
24,
439-451.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
L.N.Shen,
H.Liu,
C.Dong,
D.Xirodimas,
J.H.Naismith,
and
R.T.Hay
(2005).
Structural basis of NEDD8 ubiquitin discrimination by the deNEDDylating enzyme NEDP1.
|
| |
EMBO J,
24,
1341-1351.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.J.Dobson,
A.J.Pickett,
S.Velmurugan,
J.B.Pinder,
L.A.Barrett,
M.Jayaram,
and
J.S.Chew
(2005).
The 2 microm plasmid causes cell death in Saccharomyces cerevisiae with a mutation in Ulp1 protease.
|
| |
Mol Cell Biol,
25,
4299-4310.
|
 |
|
|
|
|
 |
P.H.Thibodeau,
C.A.Brautigam,
M.Machius,
and
P.J.Thomas
(2005).
Side chain and backbone contributions of Phe508 to CFTR folding.
|
| |
Nat Struct Mol Biol,
12,
10-16.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
R.T.Hay
(2005).
SUMO: a history of modification.
|
| |
Mol Cell,
18,
1.
|
 |
|
|
|
|
 |
S.Chupreta,
S.Holmstrom,
L.Subramanian,
and
J.A.Iñiguez-Lluhí
(2005).
A small conserved surface in SUMO is the critical structural determinant of its transcriptional inhibitory properties.
|
| |
Mol Cell Biol,
25,
4272-4282.
|
 |
|
|
|
|
 |
S.Hausmann,
M.A.Altura,
M.Witmer,
S.M.Singer,
H.G.Elmendorf,
and
S.Shuman
(2005).
Yeast-like mRNA capping apparatus in Giardia lamblia.
|
| |
J Biol Chem,
280,
12077-12086.
|
 |
|
|
|
|
 |
A.Rosendorff,
D.Illanes,
G.David,
J.Lin,
E.Kieff,
and
E.Johannsen
(2004).
EBNA3C coactivation with EBNA2 requires a SUMO homology domain.
|
| |
J Virol,
78,
367-377.
|
 |
|
|
|
|
 |
B.R.Linger,
L.Kunovska,
R.J.Kuhn,
and
B.L.Golden
(2004).
Sindbis virus nucleocapsid assembly: RNA folding promotes capsid protein dimerization.
|
| |
RNA,
10,
128-138.
|
 |
|
|
|
|
 |
C.Soustelle,
L.Vernis,
K.Fréon,
A.Reynaud-Angelin,
R.Chanet,
F.Fabre,
and
M.Heude
(2004).
A new Saccharomyces cerevisiae strain with a mutant Smt3-deconjugating Ulp1 protein is affected in DNA replication and requires Srs2 and homologous recombination for its viability.
|
| |
Mol Cell Biol,
24,
5130-5143.
|
 |
|
|
|
|
 |
D.Bailey,
and
P.O'Hare
(2004).
Characterization of the localization and proteolytic activity of the SUMO-specific protease, SENP1.
|
| |
J Biol Chem,
279,
692-703.
|
 |
|
|
|
|
 |
D.Reverter,
and
C.D.Lima
(2004).
A basis for SUMO protease specificity provided by analysis of human Senp2 and a Senp2-SUMO complex.
|
| |
Structure,
12,
1519-1531.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.T.Huang,
D.W.Miller,
R.Mathew,
R.Cassell,
J.M.Holton,
M.F.Roussel,
and
B.A.Schulman
(2004).
A unique E1-E2 interaction required for optimal conjugation of the ubiquitin-like protein NEDD8.
|
| |
Nat Struct Mol Biol,
11,
927-935.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.W.Girdwood,
M.H.Tatham,
and
R.T.Hay
(2004).
SUMO and transcriptional regulation.
|
| |
Semin Cell Dev Biol,
15,
201-210.
|
 |
|
|
|
|
 |
E.S.Johnson
(2004).
Protein modification by SUMO.
|
| |
Annu Rev Biochem,
73,
355-382.
|
 |
|
|
|
|
 |
H.A.Lewis,
S.G.Buchanan,
S.K.Burley,
K.Conners,
M.Dickey,
M.Dorwart,
R.Fowler,
X.Gao,
W.B.Guggino,
W.A.Hendrickson,
J.F.Hunt,
M.C.Kearins,
D.Lorimer,
P.C.Maloney,
K.W.Post,
K.R.Rajashankar,
M.E.Rutter,
J.M.Sauder,
S.Shriver,
P.H.Thibodeau,
P.J.Thomas,
M.Zhang,
X.Zhao,
and
S.Emtage
(2004).
Structure of nucleotide-binding domain 1 of the cystic fibrosis transmembrane conductance regulator.
|
| |
EMBO J,
23,
282-293.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.Buglino,
K.C.Onwueme,
J.A.Ferreras,
L.E.Quadri,
and
C.D.Lima
(2004).
Crystal structure of PapA5, a phthiocerol dimycocerosyl transferase from Mycobacterium tuberculosis.
|
| |
J Biol Chem,
279,
30634-30642.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Hemelaar,
A.Borodovsky,
B.M.Kessler,
D.Reverter,
J.Cook,
N.Kolli,
T.Gan-Erdene,
K.D.Wilkinson,
G.Gill,
C.D.Lima,
H.L.Ploegh,
and
H.Ovaa
(2004).
Specific and covalent targeting of conjugating and deconjugating enzymes of ubiquitin-like proteins.
|
| |
Mol Cell Biol,
24,
84-95.
|
 |
|
|
|
|
 |
K.C.Onwueme,
J.A.Ferreras,
J.Buglino,
C.D.Lima,
and
L.E.Quadri
(2004).
Mycobacterial polyketide-associated proteins are acyltransferases: proof of principle with Mycobacterium tuberculosis PapA5.
|
| |
Proc Natl Acad Sci U S A,
101,
4608-4613.
|
 |
|
|
|
|
 |
M.S.Macauley,
W.J.Errington,
M.Okon,
M.Schärpf,
C.D.Mackereth,
B.A.Schulman,
and
L.P.McIntosh
(2004).
Structural and dynamic independence of isopeptide-linked RanGAP1 and SUMO-1.
|
| |
J Biol Chem,
279,
49131-49137.
|
 |
|
|
|
|
 |
S.W.Liu,
X.Jiao,
H.Liu,
M.Gu,
C.D.Lima,
and
M.Kiledjian
(2004).
Functional analysis of mRNA scavenger decapping enzymes.
|
| |
RNA,
10,
1412-1422.
|
 |
|
|
|
|
 |
T.L.Chung,
H.H.Hsiao,
Y.Y.Yeh,
H.L.Shia,
Y.L.Chen,
P.H.Liang,
A.H.Wang,
K.H.Khoo,
and
S.Shoei-Lung Li
(2004).
In vitro modification of human centromere protein CENP-C fragments by small ubiquitin-like modifier (SUMO) protein: definitive identification of the modification sites by tandem mass spectrometry analysis of the isopeptides.
|
| |
J Biol Chem,
279,
39653-39662.
|
 |
|
|
|
|
 |
V.Subramanian,
A.Rothenberg,
C.Gomez,
A.W.Cohen,
A.Garcia,
S.Bhattacharyya,
L.Shapiro,
G.Dolios,
R.Wang,
M.P.Lisanti,
and
D.L.Brasaemle
(2004).
Perilipin A mediates the reversible binding of CGI-58 to lipid droplets in 3T3-L1 adipocytes.
|
| |
J Biol Chem,
279,
42062-42071.
|
 |
|
|
|
|
 |
W.C.Huang,
T.P.Ko,
S.S.Li,
and
A.H.Wang
(2004).
Crystal structures of the human SUMO-2 protein at 1.6 A and 1.2 A resolution: implication on the functional differences of SUMO proteins.
|
| |
Eur J Biochem,
271,
4114-4122.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Gogos,
H.Mu,
F.Bahna,
C.A.Gomez,
and
L.Shapiro
(2003).
Crystal structure of YdcE protein from Bacillus subtilis.
|
| |
Proteins,
53,
320-322.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.Hotson,
R.Chosed,
H.Shu,
K.Orth,
and
M.B.Mudgett
(2003).
Xanthomonas type III effector XopD targets SUMO-conjugated proteins in planta.
|
| |
Mol Microbiol,
50,
377-389.
|
 |
|
|
|
|
 |
B.R.Wong,
F.Parlati,
K.Qu,
S.Demo,
T.Pray,
J.Huang,
D.G.Payan,
and
M.K.Bennett
(2003).
Drug discovery in the ubiquitin regulatory pathway.
|
| |
Drug Discov Today,
8,
746-754.
|
 |
|
|
|
|
 |
C.D.Lima
(2003).
Regulating UBP-mediated ubiquitin deconjugation.
|
| |
Structure,
11,
3-4.
|
 |
|
|
|
|
 |
C.Fabrega,
V.Shen,
S.Shuman,
and
C.D.Lima
(2003).
Structure of an mRNA capping enzyme bound to the phosphorylated carboxy-terminal domain of RNA polymerase II.
|
| |
Mol Cell,
11,
1549-1561.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.Gong,
A.Martins,
and
S.Shuman
(2003).
Structure-function analysis of Trypanosoma brucei RNA triphosphatase and evidence for a two-metal mechanism.
|
| |
J Biol Chem,
278,
50843-50852.
|
 |
|
|
|
|
 |
E.Mossessova,
L.C.Bickford,
and
J.Goldberg
(2003).
SNARE selectivity of the COPII coat.
|
| |
Cell,
114,
483-495.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.He,
Y.Dang,
F.Dai,
Z.Guo,
J.Wu,
X.She,
Y.Pei,
Y.Chen,
W.Ling,
C.Wu,
S.Zhao,
J.O.Liu,
and
L.Yu
(2003).
Post-translational modifications of three members of the human MAP1LC3 family and detection of a novel type of modification for MAP1LC3B.
|
| |
J Biol Chem,
278,
29278-29287.
|
 |
|
|
|
|
 |
H.M.Mendoza,
L.N.Shen,
C.Botting,
A.Lewis,
J.Chen,
B.Ink,
and
R.T.Hay
(2003).
NEDP1, a highly conserved cysteine protease that deNEDDylates Cullins.
|
| |
J Biol Chem,
278,
25637-25643.
|
 |
|
|
|
|
 |
J.Hemelaar,
V.S.Lelyveld,
B.M.Kessler,
and
H.L.Ploegh
(2003).
A single protease, Apg4B, is specific for the autophagy-related ubiquitin-like proteins GATE-16, MAP1-LC3, GABARAP, and Apg8L.
|
| |
J Biol Chem,
278,
51841-51850.
|
 |
|
|
|
|
 |
K.Wu,
K.Yamoah,
G.Dolios,
T.Gan-Erdene,
P.Tan,
A.Chen,
C.G.Lee,
N.Wei,
K.D.Wilkinson,
R.Wang,
and
Z.Q.Pan
(2003).
DEN1 is a dual function protease capable of processing the C terminus of Nedd8 and deconjugating hyper-neddylated CUL1.
|
| |
J Biol Chem,
278,
28882-28891.
|
 |
|
|
|
|
 |
P.Y.Wu,
M.Hanlon,
M.Eddins,
C.Tsui,
R.S.Rogers,
J.P.Jensen,
M.J.Matunis,
A.M.Weissman,
A.M.Weisman,
A.M.Weissman,
C.Wolberger,
C.P.Wolberger,
and
C.M.Pickart
(2003).
A conserved catalytic residue in the ubiquitin-conjugating enzyme family.
|
| |
EMBO J,
22,
5241-5250.
|
 |
|
|
|
|
 |
S.J.Li,
and
M.Hochstrasser
(2003).
The Ulp1 SUMO isopeptidase: distinct domains required for viability, nuclear envelope localization, and substrate specificity.
|
| |
J Cell Biol,
160,
1069-1081.
|
 |
|
|
|
|
 |
S.Yoon,
Z.Liu,
Y.Eyobo,
and
K.Orth
(2003).
Yersinia effector YopJ inhibits yeast MAPK signaling pathways by an evolutionarily conserved mechanism.
|
| |
J Biol Chem,
278,
2131-2135.
|
 |
|
|
|
|
 |
T.Gan-Erdene,
K.Nagamalleswari,
L.Yin,
K.Wu,
Z.Q.Pan,
and
K.D.Wilkinson
(2003).
Identification and characterization of DEN1, a deneddylase of the ULP family.
|
| |
J Biol Chem,
278,
28892-28900.
|
 |
|
|
|
|
 |
V.Anantharaman,
and
L.Aravind
(2003).
Evolutionary history, structural features and biochemical diversity of the NlpC/P60 superfamily of enzymes.
|
| |
Genome Biol,
4,
R11.
|
 |
|
|
|
|
 |
V.G.Panse,
B.Küster,
T.Gerstberger,
and
E.Hurt
(2003).
Unconventional tethering of Ulp1 to the transport channel of the nuclear pore complex by karyopherins.
|
| |
Nat Cell Biol,
5,
21-27.
|
 |
|
|
|
|
 |
J.L.Best,
S.Ganiatsas,
S.Agarwal,
A.Changou,
P.Salomoni,
O.Shirihai,
P.B.Meluh,
P.P.Pandolfi,
and
L.I.Zon
(2002).
SUMO-1 protease-1 regulates gene transcription through PML.
|
| |
Mol Cell,
10,
843-855.
|
 |
|
|
|
|
 |
K.I.Kim,
S.H.Baek,
and
C.H.Chung
(2002).
Versatile protein tag, SUMO: its enzymology and biological function.
|
| |
J Cell Physiol,
191,
257-268.
|
 |
|
|
|
|
 |
M.Hu,
P.Li,
M.Li,
W.Li,
T.Yao,
J.W.Wu,
W.Gu,
R.E.Cohen,
and
Y.Shi
(2002).
Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde.
|
| |
Cell,
111,
1041-1054.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.R.Chance,
A.R.Bresnick,
S.K.Burley,
J.S.Jiang,
C.D.Lima,
A.Sali,
S.C.Almo,
J.B.Bonanno,
J.A.Buglino,
S.Boulton,
H.Chen,
N.Eswar,
G.He,
R.Huang,
V.Ilyin,
L.McMahan,
U.Pieper,
S.Ray,
M.Vidal,
and
L.K.Wang
(2002).
Structural genomics: a pipeline for providing structures for the biologist.
|
| |
Protein Sci,
11,
723-738.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Y.Balakirev,
M.Jaquinod,
A.L.Haas,
and
J.Chroboczek
(2002).
Deubiquitinating function of adenovirus proteinase.
|
| |
J Virol,
76,
6323-6331.
|
 |
|
|
|
|
 |
T.Kadoya,
H.Yamamoto,
T.Suzuki,
A.Yukita,
A.Fukui,
T.Michiue,
T.Asahara,
K.Tanaka,
M.Asashima,
and
A.Kikuchi
(2002).
Desumoylation activity of Axam, a novel Axin-binding protein, is involved in downregulation of beta-catenin.
|
| |
Mol Cell Biol,
22,
3803-3819.
|
 |
|
|
|
|
 |
V.Bhaskar,
M.Smith,
and
A.J.Courey
(2002).
Conjugation of Smt3 to dorsal may potentiate the Drosophila immune response.
|
| |
Mol Cell Biol,
22,
492-504.
|
 |
|
|
|
|
 |
W.Sheng,
and
X.Liao
(2002).
Solution structure of a yeast ubiquitin-like protein Smt3: the role of structurally less defined sequences in protein-protein recognitions.
|
| |
Protein Sci,
11,
1482-1491.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Y.Pei,
and
S.Shuman
(2002).
Interactions between fission yeast mRNA capping enzymes and elongation factor Spt5.
|
| |
J Biol Chem,
277,
19639-19648.
|
 |
|
|
|
|
 |
A.Martins,
and
S.Shuman
(2001).
Mutational analysis of baculovirus capping enzyme Lef4 delineates an autonomous triphosphatase domain and structural determinants of divalent cation specificity.
|
| |
J Biol Chem,
276,
45522-45529.
|
 |
|
|
|
|
 |
C.K.Ho,
and
S.Shuman
(2001).
Trypanosoma brucei RNA triphosphatase. Antiprotozoal drug target and guide to eukaryotic phylogeny.
|
| |
J Biol Chem,
276,
46182-46186.
|
 |
|
|
|
|
 |
C.M.Pickart
(2001).
Mechanisms underlying ubiquitination.
|
| |
Annu Rev Biochem,
70,
503-533.
|
 |
|
|
|
|
 |
A.Y.Amerik,
S.J.Li,
and
M.Hochstrasser
(2000).
Analysis of the deubiquitinating enzymes of the yeast Saccharomyces cerevisiae.
|
| |
Biol Chem,
381,
981-992.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |