spacer
spacer

PDBsum entry 2faq

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Hydrolase/transferase PDB id
2faq

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
295 a.a. *
Ligands
SO4 ×3
ATP ×2
Metals
_MN ×4
Waters ×462
* Residue conservation analysis
PDB id:
2faq
Name: Hydrolase/transferase
Title: Crystal structure of pseudomonas aeruginosa ligd polymerase domain with atp and manganese
Structure: Probable atp-dependent DNA ligase. Chain: a, b. Fragment: polymerase domain, residues 533-840. Engineered: yes
Source: Pseudomonas aeruginosa. Organism_taxid: 287. Expressed in: escherichia coli. Expression_system_taxid: 562.
Resolution:
1.90Å     R-factor:   0.198     R-free:   0.226
Authors: H.Zhu,J.Nandakumar,J.Aniukwu,L.K.Wang,M.S.Glickman,C.D.Lima,S.Shuman
Key ref:
H.Zhu et al. (2006). Atomic structure and nonhomologous end-joining function of the polymerase component of bacterial DNA ligase D. Proc Natl Acad Sci U S A, 103, 1711-1716. PubMed id: 16446439 DOI: 10.1073/pnas.0509083103
Date:
07-Dec-05     Release date:   23-May-06    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
Q9I1X7  (LIGD_PSEAE) -  Multifunctional non-homologous end joining protein LigD from Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1)
Seq:
Struc:
 
Seq:
Struc:
840 a.a.
295 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.6.5.1.1  - Dna ligase (ATP).
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: ATP + (deoxyribonucleotide)n-3'-hydroxyl + 5'-phospho- (deoxyribonucleotide)m = (deoxyribonucleotide)n+m + AMP + diphosphate
ATP
Bound ligand (Het Group name = ATP)
corresponds exactly
+ (deoxyribonucleotide)n-3'-hydroxyl
+ 5'-phospho- (deoxyribonucleotide)m
= (deoxyribonucleotide)n+m
+ AMP
+ diphosphate
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1073/pnas.0509083103 Proc Natl Acad Sci U S A 103:1711-1716 (2006)
PubMed id: 16446439  
 
 
Atomic structure and nonhomologous end-joining function of the polymerase component of bacterial DNA ligase D.
H.Zhu, J.Nandakumar, J.Aniukwu, L.K.Wang, M.S.Glickman, C.D.Lima, S.Shuman.
 
  ABSTRACT  
 
DNA ligase D (LigD) is a large polyfunctional protein that participates in a recently discovered pathway of nonhomologous end-joining in bacteria. LigD consists of an ATP-dependent ligase domain fused to a polymerase domain (Pol) and a phosphoesterase module. The Pol activity is remarkable for its dependence on manganese, its ability to perform templated and nontemplated primer extension reactions, and its preference for adding ribonucleotides to blunt DNA ends. Here we report the 1.5-A crystal structure of the Pol domain of Pseudomonas LigD and its complexes with manganese and ATP/dATP substrates, which reveal a minimized polymerase with a two-metal mechanism and a fold similar to that of archaeal DNA primase. Mutational analysis highlights the functionally relevant atomic contacts in the active site. Although distinct nucleoside conformations and contacts for ATP versus dATP are observed in the cocrystals, the functional analysis suggests that the ATP-binding mode is the productive conformation for dNMP and rNMP incorporation. We find that a mutation of Mycobacterium LigD that uniquely ablates the polymerase activity results in increased fidelity of blunt-end double-strand break repair in vivo by virtue of eliminating nucleotide insertions at the recombination junctions. Thus, LigD Pol is a direct catalyst of mutagenic nonhomologous end-joining in vivo. Our studies underscore a previously uncharacterized role for the primase-like polymerase family in DNA repair.
 
  Selected figure(s)  
 
Figure 2.
Fig. 2. Structure of the LigD Pol domain. The overall fold of the Pol domain of Pseudomonas LigD is depicted as a ribbon diagram with -helices colored magenta and -strands colored green. The N and C termini are indicated. ATP is bound within a cleft formed by two central -sheets; the cleft is viewed from the side in A and from above in B.
Figure 4.
Fig. 4. Active site of LigD Pol. Stereo views are shown of the active site constituents of the apoenzyme (A), the Mn-ATP cocrystal (B), and the Mn-dATP cocrystal (C). Potential hydrogen-bonding interactions are denoted by dashed lines. Manganese ions and waters are rendered as blue and red spheres, respectively. Amino acids and sulfate (A), ATP (B), or dATP (C) ligands are labeled and shown in stick representation.
 
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21219450 D.F.Warner, and V.Mizrahi (2011).
Making ends meet in mycobacteria.
  Mol Microbiol, 79, 283-287.  
21208981 P.Smith, P.A.Nair, U.Das, H.Zhu, and S.Shuman (2011).
Structures and activities of archaeal members of the LigD 3'-phosphoesterase DNA repair enzyme superfamily.
  Nucleic Acids Res, 39, 3310-3320.
PDB codes: 3p43 3p4h
20347845 D.T.Kha, G.Wang, N.Natrajan, L.Harrison, and K.M.Vasquez (2010).
Pathways for double-strand break repair in genetically unstable Z-DNA-forming sequences.
  J Mol Biol, 398, 471-480.  
20018881 H.Zhu, and S.Shuman (2010).
Gap filling activities of Pseudomonas DNA ligase D (LigD) polymerase and functional interactions of LigD with the DNA end-binding Ku protein.
  J Biol Chem, 285, 4815-4825.  
20616014 P.A.Nair, P.Smith, and S.Shuman (2010).
Structure of bacterial LigD 3'-phosphoesterase unveils a DNA repair superfamily.
  Proc Natl Acad Sci U S A, 107, 12822-12827.
PDB codes: 3n9b 3n9d
19416864 S.Geibel, S.Banchenko, M.Engel, E.Lanka, and W.Saenger (2009).
Structure and function of primase RepB' encoded by broad-host-range plasmid RSF1010 that replicates exclusively in leading-strand mode.
  Proc Natl Acad Sci U S A, 106, 7810-7815.
PDB codes: 3h20 3h25
18067541 H.Kobayashi, L.A.Simmons, D.S.Yuan, W.J.Broughton, and G.C.Walker (2008).
Multiple Ku orthologues mediate DNA non-homologous end-joining in the free-living form and during chronic infection of Sinorhizobium meliloti.
  Mol Microbiol, 67, 350-363.  
18203718 H.Zhu, and S.Shuman (2008).
Bacterial nonhomologous end joining ligases preferentially seal breaks with a 3'-OH monoribonucleotide.
  J Biol Chem, 283, 8331-8339.  
18281464 J.Aniukwu, M.S.Glickman, and S.Shuman (2008).
The pathways and outcomes of mycobacterial NHEJ depend on the structure of the broken DNA ends.
  Genes Dev, 22, 512-527.  
18281457 J.Gu, and M.R.Lieber (2008).
Mechanistic flexibility as a conserved theme across 3 billion years of nonhomologous DNA end-joining.
  Genes Dev, 22, 411-415.  
17130240 D.Liu, J.Bischerour, A.Siddique, N.Buisine, Y.Bigot, and R.Chalmers (2007).
The human SETMAR protein preserves most of the activities of the ancestral Hsmar1 transposase.
  Mol Cell Biol, 27, 1125-1132.  
17488851 H.Zhu, and S.Shuman (2007).
Characterization of Agrobacterium tumefaciens DNA ligases C and D.
  Nucleic Acids Res, 35, 3631-3645.  
17947582 N.C.Brissett, R.S.Pitcher, R.Juarez, A.J.Picher, A.J.Green, T.R.Dafforn, G.C.Fox, L.Blanco, and A.J.Doherty (2007).
Structure of a NHEJ polymerase-mediated DNA synaptic complex.
  Science, 318, 456-459.
PDB code: 2r9l
17496093 N.C.Stephanou, F.Gao, P.Bongiorno, S.Ehrt, D.Schnappinger, S.Shuman, and M.S.Glickman (2007).
Mycobacterial nonhomologous end joining mediates mutagenic repair of chromosomal double-strand DNA breaks.
  J Bacteriol, 189, 5237-5246.  
17506672 R.S.Pitcher, N.C.Brissett, and A.J.Doherty (2007).
Nonhomologous end-joining in bacteria: a microbial perspective.
  Annu Rev Microbiol, 61, 259-282.  
17938628 S.Shuman, and M.S.Glickman (2007).
Bacterial DNA repair by non-homologous end joining.
  Nat Rev Microbiol, 5, 852-861.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer