Literature for darunavir (A02.001 inhibitor)

Summary Structure Literature

(Topics flags: S Structure, I Inhibitor, V Review. To select only the references relevant to a single topic, click the link above. See explanation.)

    2019
  1. Lockbaum,G.J., Leidner,F., Rusere,L.N., Henes,M., Kosovrasti,K., Nachum,G.S., Nalivaika,E.A., Ali,A., Yilmaz,N.K. and Schiffer,C.A.
    Structural adaptation of darunavir analogues against primary mutations in HIV-1 protease
    ACS Infect Dis5, 316-325. PubMed  Europe PubMed DOI  I
  2. Pawar,S., Wang,Y.F., Wong-Sam,A., Agniswamy,J., Ghosh,A.K., Harrison,R.W. and Weber,I.T.
    Structural studies of antiviral inhibitor with HIV-1 protease bearing drug resistant substitutions of V32I, I47V and V82I
    Biochem Biophys Res Commun514, 974-978. PubMed  Europe PubMed DOI  S  I
  3. Takamatsu,Y., Aoki,M., Bulut,H., Das,D., Amano,M., Sheri,V.R., Kovari,L.C., Hayashi,H., Delino,N.S., Ghosh,A.K. and Mitsuya,H.
    Novel protease inhibitors containing C-5-modified bis-THF and aminobenzothiazole as P2 and P2' ligands that exert potent antiviral activity against highly multidrug-resistant HIV-1 with high genetic barrier against the emergence of drug resistance
    Antimicrob Agents Chemother63, e00372-19-e00372-19. PubMed  Europe PubMed DOI  I
  4. 2018
  5. Aoki,M., Das,D., Hayashi,H., Aoki-Ogata,H., Takamatsu,Y., Ghosh,A.K. and Mitsuya,H.
    Mechanism of Darunavir (DRV)'s high genetic barrier to HIV-1 resistance: a key V32I substitution in protease rarely occurs, but once it occurs, it predisposes HIV-1 to develop DRV resistance
    MBio9, PubMed  Europe PubMed DOI  I
  6. Windsor,I.W., Palte,M.J., Lukesh JC 3rd, Gold,B., Forest,K.T. and Raines,R.T.
    Sub-picomolar inhibition of HIV-1 protease with a boronic acid
    J Am Chem Soc140, 14015-14018. PubMed  Europe PubMed DOI  S  I
  7. 2017
  8. Ghosh,A.K., Fyvie,W.S., Brindisi,M., Steffey,M., Agniswamy,J., Wang,Y.F., Aoki,M., Amano,M., Weber,I.T. and Mitsuya,H.
    Design, synthesis, biological evaluation, and X-ray studies of HIV-1 protease inhibitors with modified P2' ligands of Darunavir
    ChemMedChem12, 1942-1952. PubMed  Europe PubMed DOI  I
  9. 2016
  10. Gerlits,O., Wymore,T., Das,A., Shen,C.H., Parks,J.M., Smith,J.C., Weiss,K.L., Keen,D.A., Blakeley,M.P., Louis,J.M., Langan,P., Weber,I.T. and Kovalevsky,A.
    Long-range electrostatics-induced two-proton transfer captured by neutron crystallography in an enzyme catalytic site
    Angew Chem Int Ed Engl55, 4924-4927. PubMed  Europe PubMed DOI  S  I
  11. Nakashima,M., Ode,H., Suzuki,K., Fujino,M., Maejima,M., Kimura,Y., Masaoka,T., Hattori,J., Matsuda,M., Hachiya,A., Yokomaku,Y., Suzuki,A., Watanabe,N., Sugiura,W. and Iwatani,Y.
    Unique flap conformation in an HIV-1 protease with high-level darunavir resistance
    Front Microbiol7, 61-61. PubMed  Europe PubMed DOI  I
  12. 2015
  13. Hohlfeld,K., Wegner,J.K., Kesteleyn,B., Linclau,B. and Unge,J.
    Disubstituted bis-THF moieties as new P2 ligands in nonpeptidal HIV-1 protease inhibitors (II)
    J Med Chem58, 4029-4038. PubMed  Europe PubMed DOI  I
  14. Meher,B.R. and Wang,Y.
    Exploring the drug resistance of V32I and M46L mutant HIV-1 protease to inhibitor TMC114: flap dynamics and binding mechanism
    J Mol Graph Model56C, 60-73. PubMed  Europe PubMed DOI  I
  15. Yang,Z.H., Bai,X.G., Zhou,L., Wang,J.X., Liu,H.T. and Wang,Y.C.
    Synthesis and biological evaluation of novel HIV-1 protease inhibitors using tertiary amine as P2-ligands
    Bioorg Med Chem Lett25, 1880-1883. PubMed  Europe PubMed DOI  I
  16. Yu,Y., Wang,J., Shao,Q., Shi,J. and Zhu,W.
    Effects of drug-resistant mutations on the dynamic properties of HIV-1 protease and inhibition by amprenavir and darunavir
    Sci Rep5, 10517-10517. PubMed  Europe PubMed DOI  I
  17. 2014
  18. Chen,J., Liang,Z., Wang,W., Yi,C., Zhang,S. and Zhang,Q.
    Revealing origin of decrease in potency of darunavir and amprenavir against HIV-2 relative to HIV-1 protease by molecular dynamics simulations
    Sci Rep4, 6872-6872. PubMed  Europe PubMed DOI  I
  19. Hayashi,H., Takamune,N., Nirasawa,T., Aoki,M., Morishita,Y., Das,D., Koh,Y., Ghosh,A.K., Misumi,S. and Mitsuya,H.
    Dimerization of HIV-1 protease occurs through two steps relating to the mechanism of protease dimerization inhibition by darunavir
    Proc Natl Acad Sci U S A111, 12234-12239. PubMed  Europe PubMed DOI  I
  20. Kozisek,M., Lepsik,M., Grantz Saskova,K., Brynda,J., Konvalinka,J. and Rezacova,P.
    Thermodynamic and structural analysis of HIV protease resistance to darunavir - analysis of heavily mutated patient-derived HIV-1 proteases
    FEBS J281, 1834-1847. PubMed  Europe PubMed DOI  I
  21. Li,D., Zhang,Y., Zhao,R.N., Fan,S. and Han,J.G.
    Investigation on the mechanism for the binding and drug resistance of wild type and mutations of G86 residue in HIV-1 protease complexed with Darunavir by molecular dynamic simulation and free energy calculation
    J Mol Model20, 2122-2122. PubMed  Europe PubMed DOI  I
  22. Zhang,Y., Chang,Y.C., Louis,J.M., Wang,Y.F., Harrison,R.W. and Weber,I.T.
    Structures of Darunavir-Resistant HIV-1 Protease Mutant Reveal Atypical Binding of Darunavir to Wide Open Flaps
    ACS Chem Biol9, 1351-1358. PubMed  Europe PubMed DOI  S  I
  23. 2013
  24. Asahchop,E.L., Oliveira,M., Quashie,P.K., Moisi,D., Martinez-Cajas,J.L., Brenner,B.G., Tremblay,C.L. and Wainberg,M.A.
    In vitro and structural evaluation of PL-100 as a potential second-generation HIV-1 protease inhibitor
    J Antimicrob Chemother68, 105-112. PubMed  Europe PubMed DOI  I
  25. Ghosh,A.K. and Chapsal,B.D.
    Design of the anti-HIV protease inhibitor darunavir
    Introd to Bio and Small Molecule Drug Res and Develop2013, 355-384. DOI  I
  26. 2012
  27. Agniswamy,J., Shen,C.H., Aniana,A., Sayer,J.M., Louis,J.M. and Weber,I.T.
    HIV-1 protease with 20 mutations exhibits extreme resistance to clinical inhibitors through coordinated structural rearrangements
    Biochemistry51, 2819-2828. PubMed  Europe PubMed DOI  I
  28. Agniswamy,J., Sayer,J.M., Weber,I.T. and Louis,J.M.
    Terminal Interface Conformations Modulate Dimer Stability Prior to Amino Terminal Autoprocessing of HIV-1 Protease
    Biochemistry51, 1041-1050. PubMed  Europe PubMed DOI  I
  29. Cai,Y. and Schiffer,C.
    Decomposing the energetic impact of drug-resistant mutations: the example of HIV-1 protease-DRV binding
    Methods Mol Biol819, 551-560. PubMed  Europe PubMed DOI  I
  30. Davis,D.A., Soule,E.E., Davidoff,K.S., Daniels,S.I., Naiman,N.E. and Yarchoan,R.
    Activity of human immunodeficiency virus type 1 protease inhibitors against the initial autocleavage in Gag-Pol polyprotein processing
    Antimicrob Agents Chemother56, 3620-3628. PubMed  Europe PubMed DOI  I
  31. Huang,D. and Caflisch,A.
    How does darunavir prevent HIV-1 protease dimerization?
    J Chem Theory Comput8, 1786-1794. PubMed  Europe PubMed DOI  I
  32. Kar,P. and Knecht,V.
    Origin of decrease in potency of darunavir and two related antiviral inhibitors against HIV-2 compared to HIV-1 protease
    J Phys Chem B116, 2605-2614. PubMed  Europe PubMed DOI  I
  33. 2011
  34. Elgadi,M.M. and Piliero,P.J.
    Boosted tipranavir versus darunavir in treatment-experienced patients: observational data from the randomized POTENT trial
    Drugs R D11, 295-302. PubMed  Europe PubMed DOI  I
  35. Koh,Y., Aoki,M., Danish,M.L., Aoki-Ogata,H., Amano,M., Das,D., Shafer,R.W., Ghosh,A.K. and Mitsuya,H.
    Loss of protease dimerization inhibition activity of darunavir is associated with the acquisition of resistance to darunavir by HIV-1
    J Virol85, 10079-10089. PubMed  Europe PubMed DOI  I
  36. Lin,Y.C., Perryman,A.L., Olson,A.J., Torbett,B.E., Elder,J.H. and Stout,C.D.
    Structural basis for drug and substrate specificity exhibited by FIV encoding a chimeric FIV/HIV protease
    Acta Crystallogr D Biol Crystallogr67, 540-548. PubMed  Europe PubMed DOI  S  I
  37. Purohit,R., Rajendran,V. and Sethumadhavan,R.
    Studies on adaptability of binding residues and flap region of TMC-114 resistance HIV-1 protease mutants
    J Biomol Struct Dyn29, 137-152. PubMed  Europe PubMed DOI  I
  38. Wang,Y., Liu,Z., Brunzelle,J.S., Kovari,I.A., Dewdney,T.G., Reiter,S.J. and Kovari,L.C.
    The higher barrier of darunavir and tipranavir resistance for HIV-1 protease
    Biochem Biophys Res Commun412, 737-742. PubMed  Europe PubMed DOI  I
  39. 2010
  40. Chen,J., Zhang,S., Liu,X. and Zhang,Q.
    Insights into drug resistance of mutations D30N and I50V to HIV-1 protease inhibitor TMC-114: free energy calculation and molecular dynamic simulation
    J Mol Model16, 459-468. PubMed  Europe PubMed DOI  I
  41. 2009
  42. Purohit,R. and Sethumadhavan,R.
    Structural basis for the resilience of Darunavir (TMC114) resistance major flap mutations of HIV-1 protease
    Interdiscip Sci1, 320-328. PubMed  Europe PubMed DOI  I
  43. Saskova,K.G., Kozisek,M., Rezacova,P., Brynda,J., Yashina,T., Kagan,R.M. and Konvalinka,J.
    Molecular characterization of clinical isolates of human immunodeficiency virus resistant to the protease inhibitor darunavir
    J Virol83, 8810-8818. PubMed  Europe PubMed DOI  I
  44. 2008
  45. Coffinier,C., Hudon,S.E., Lee,R., Farber,E.A., Nobumori,C., Miner,J.H., Andres,D.A., Spielmann,H.P., Hrycyna,C.A., Fong,L.G. and Young,S.G.
    A potent HIV protease inhibitor, darunavir, does not inhibit ZMPSTE24 or lead to an accumulation of farnesyl-prelamin A in cells
    J Biol Chem283, 9797-9804. PubMed  Europe PubMed DOI  I
  46. Ghosh,A.K., Chapsal,B.D., Weber,I.T. and Mitsuya,H.
    Design of HIV protease inhibitors targeting protein backbone: an effective strategy for combating drug resistance
    Acc Chem Res41, 78-86. PubMed  Europe PubMed DOI  I
  47. Kovalevsky,A.Y., Ghosh,A.K. and Weber,I.T.
    Solution Kinetics Measurements Suggest HIV-1 Protease Has Two Binding Sites for Darunavir and Amprenavir
    J Med Chem51, 6599-6603. PubMed  Europe PubMed DOI  I
  48. Kovalevsky,A.Y., Louis,J.M., Aniana,A., Ghosh,A.K. and Weber,I.T.
    Structural evidence for effectiveness of darunavir and two related antiviral inhibitors against HIV-2 protease
    J Mol Biol384, 178-192. PubMed  Europe PubMed DOI  S  I
  49. Lambert-Niclot,S., Flandre,P., Canestri,A., Peytavin,G., Blanc,C., Agher,R., Soulie,C., Wirden,M., Katlama,C., Calvez,V. and Marcelin,A.G.
    Factors associated with the selection of mutations conferring resistance to protease inhibitors (PIs) in PI-experienced patients displaying treatment failure on darunavir
    Antimicrob Agents Chemother52, 491-496. PubMed  Europe PubMed DOI  I
  50. Liu,F., Kovalevsky,A.Y., Tie,Y., Ghosh,A.K., Harrison,R.W. and Weber,I.T.
    Effect of flap mutations on structure of HIV-1 protease and inhibition by saquinavir and darunavir
    J Mol Biol381, 102-115. PubMed  Europe PubMed DOI  S  I
  51. 2007
  52. Dierynck,I., De Wit,M., Gustin,E., Keuleers,I., Vandersmissen,J., Hallenberger,S. and Hertogs,K.
    Binding kinetics of darunavir to human immunodeficiency virus type 1 protease explain the potent antiviral activity and high genetic barrier
    J Virol81, 13845-13851. PubMed  Europe PubMed DOI  I
  53. Hou,T. and Yu,R.
    Molecular dynamics and free energy studies on the wild-type and double mutant HIV-1 protease complexed with Amprenavir and two Amprenavir-related inhibitors: mechanism for binding and drug resistance
    J Med Chem50, 1177-1188. PubMed  Europe PubMed DOI  I
  54. 2006
  55. [YEAR:4-8-2006]Kovalevsky,A.Y., Liu,F., Leshchenko,S., Ghosh,A.K., Louis,J.M., Harrison,R.W. and Weber,I.T.
    Ultra-high resolution crystal structure of HIV-1 protease mutant reveals two binding sites for clinical inhibitor TMC114
    J Mol Biol363, 161-173. PubMed  Europe PubMed DOI  S  I
  56. [YEAR:23-2-2006]Kovalevsky,A.Y., Tie,Y., Liu,F., Boross,P.I., Wang,Y.F., Leshchenko,S., Ghosh,A.K., Harrison,R.W. and Weber,I.T.
    Effectiveness of nonpeptide clinical inhibitor TMC-114 on HIV-1 protease with highly drug resistant mutations D30N, I50V, and L90M
    J Med Chem49, 1379-1387. PubMed  Europe PubMed DOI  I
  57. Mastrolorenzo,A., Rusconi,S., Scozzafava,A. and Supuran,C.T.
    Inhibitors of HIV-1 protease: 10 years after
    Expert Opin Ther Pat16, 1067-1091. DOI  V  I
  58. 2005
  59. De Meyer,S., Azijn,H., Surleraux,D., Jochmans,D., Tahri,A., Pauwels,R., Wigerinck,P. and de Bethune,M.P.
    TMC114, a novel human immunodeficiency virus type 1 protease inhibitor active against protease inhibitor-resistant viruses, including a broad range of clinical isolates
    Antimicrob Agents Chemother49, 2314-2321. PubMed  Europe PubMed DOI  I
  60. [YEAR:24-3-2005]Surleraux,D.L., Tahri,A., Verschueren,W.G., Pille,G.M., de Kock,H.A., Jonckers,T.H., Peeters,A., De Meyer,S., Azijn,H., Pauwels,R., de Bethune,M.P., King,N.M., Prabu-Jeyabalan,M., Schiffer,C.A. and Wigerinck,P.B.
    Discovery and selection of TMC114, a next generation HIV-1 protease inhibitor
    J Med Chem48, 1813-1822. PubMed  Europe PubMed DOI  I
  61. Tie,Y., Boross,P.I., Wang,Y.F., Gaddis,L., Liu,F., Chen,X., Tozser,J., Harrison,R.W. and Weber,I.T.
    Molecular basis for substrate recognition and drug resistance from 1.1 to 1.6 angstroms resolution crystal structures of HIV-1 protease mutants with substrate analogs
    FEBS J272, 5265-5277. PubMed  Europe PubMed DOI  S  I
  62. 2004
  63. King,N.M., Prabu-Jeyabalan,M., Nalivaika,E.A., Wigerinck,P., de Bethune,M.P. and Schiffer,C.A.
    Structural and thermodynamic basis for the binding of TMC114, a next-generation human immunodeficiency virus type 1 protease inhibitor
    J Virol78, 12012-12021. PubMed  Europe PubMed DOI  S  I
  64. [YEAR:23-4-2004]Tie,Y., Boross,P.I., Wang,Y.F., Gaddis,L., Hussain,A.K., Leshchenko,S., Ghosh,A.K., Louis,J.M., Harrison,R.W. and Weber,I.T.
    High resolution crystal structures of HIV-1 protease with a potent non-peptide inhibitor (UIC-94017) active against multi-drug-resistant clinical strains
    J Mol Biol338, 341-352. PubMed  Europe PubMed DOI  S  I