spacer
spacer

PDBsum entry 1dce

Go to PDB code: 
protein metals Protein-protein interface(s) links
Transferase PDB id
1dce

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
567 a.a. *
329 a.a. *
Metals
_ZN ×2
Waters ×829
* Residue conservation analysis
PDB id:
1dce
Name: Transferase
Title: Crystal structure of rab geranylgeranyltransferase from rat brain
Structure: Protein (rab geranylgeranyltransferase alpha subunit). Chain: a, c. Protein (rab geranylgeranyltransferase beta subunit). Chain: b, d. Ec: 2.5.1.-
Source: Rattus norvegicus. Norway rat. Organism_taxid: 10116. Organism_taxid: 10116
Biol. unit: Dimer (from PQS)
Resolution:
2.00Å     R-factor:   0.215     R-free:   0.263
Authors: H.Zhang,M.C.Seabra,H.Deisenhofer
Key ref:
H.Zhang et al. (2000). Crystal structure of Rab geranylgeranyltransferase at 2.0 A resolution. Structure, 8, 241-251. PubMed id: 10745007 DOI: 10.1016/S0969-2126(00)00102-7
Date:
04-Nov-99     Release date:   24-Mar-00    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Q08602  (PGTA_RAT) -  Geranylgeranyl transferase type-2 subunit alpha from Rattus norvegicus
Seq:
Struc:
 
Seq:
Struc:
567 a.a.
567 a.a.*
Protein chains
Q08603  (PGTB2_RAT) -  Geranylgeranyl transferase type-2 subunit beta from Rattus norvegicus
Seq:
Struc:
331 a.a.
329 a.a.
Key:    Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class: Chains A, B, C, D: E.C.2.5.1.60  - protein geranylgeranyltransferase type Ii.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: geranylgeranyl diphosphate + L-cysteinyl-[protein] = S-geranylgeranyl-L- cysteinyl-[protein] + diphosphate
geranylgeranyl diphosphate
+ L-cysteinyl-[protein]
= S-geranylgeranyl-L- cysteinyl-[protein]
+ diphosphate
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    Added reference    
 
 
DOI no: 10.1016/S0969-2126(00)00102-7 Structure 8:241-251 (2000)
PubMed id: 10745007  
 
 
Crystal structure of Rab geranylgeranyltransferase at 2.0 A resolution.
H.Zhang, M.C.Seabra, J.Deisenhofer.
 
  ABSTRACT  
 
BACKGROUND: Rab geranylgeranyltransferase (RabGGT) catalyzes the addition of two geranylgeranyl groups to the C-terminal cysteine residues of Rab proteins, which is crucial for membrane association and function of these proteins in intracellular vesicular trafficking. Unlike protein farnesyltransferase (FT) and type I geranylgeranyltransferase, which both prenylate monomeric small G proteins or short peptides, RabGGT can prenylate Rab only when Rab is in a complex with Rab escort protein (REP). RESULTS: The crystal structure of rat RabGGT at 2.0 A resolution reveals an assembly of four distinct structural modules. The beta subunit forms an alpha-alpha barrel that contains most of the residues in the active site. The alpha subunit consists of a helical domain, an immunoglobulin (Ig)-like domain, and a leucine-rich repeat (LRR) domain. The N-terminal region of the alpha subunit binds to the active site in the beta subunit; residue His2alpha directly coordinates a zinc ion. The prenyl-binding pocket of RabGGT is deeper than that in FT. CONCLUSIONS: LRR and Ig domains are often involved in protein-protein interactions; in RabGGT they might participate in the recognition and binding of REP. The binding of the N-terminal peptide of the alpha subunit to the active site suggests an autoinhibition mechanism that might contribute to the inability of RabGGT to recognize short peptides or Rab alone as its substrate. Replacement of residues Trp102beta and Tyr154beta in FT by Ser48beta and Leu99beta, respectively, in RabGGT largely determine the different lipid-binding specificities of the two enzymes.
 
  Selected figure(s)  
 
Figure 1.
Figure 1. Ribbon representation of the RabGGT structure (cyan, helical domain of the a subunit; orange, Ig-like domain; green, LRR domain; purple, b subunit; blue, 3[10] helices of all domains). (a) Complete structure of RabGGT. (b) The helical domain and LRR domain of RabGGTa in a slightly different orientation from (a). The 15 helices are numbered from a1 to a15. (c) The Ig-like domain of RabGGTa. The strands are labelled according to the convention in [34]. (d) The b subunit of RabGGT, with the zinc ion shown as a red ball and the ligands Asp238b, Cys240b and His290b in ball-and-stick representation. The helices are numbered b1-b14.
 
  The above figure is reprinted by permission from Cell Press: Structure (2000, 8, 241-251) copyright 2000.  
  Figure was selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20525292 C.Kim, J.Basner, and B.Lee (2010).
Detecting internally symmetric protein structures.
  BMC Bioinformatics, 11, 303.  
19954434 M.L.Hovlid, R.L.Edelstein, O.Henry, J.Ochocki, A.DeGraw, S.Lenevich, T.Talbot, V.G.Young, A.W.Hruza, F.Lopez-Gallego, N.P.Labello, C.L.Strickland, C.Schmidt-Dannert, and M.D.Distefano (2010).
Synthesis, properties, and applications of diazotrifluropropanoyl-containing photoactive analogs of farnesyl diphosphate containing modified linkages for enhanced stability.
  Chem Biol Drug Des, 75, 51-67.
PDB code: 3ksl
20432425 U.T.Nguyen, R.S.Goody, and K.Alexandrov (2010).
Understanding and exploiting protein prenyltransferases.
  Chembiochem, 11, 1194-1201.  
19452560 K.L.Hindle, J.Bella, and S.C.Lovell (2009).
Quantitative analysis and prediction of curvature in leucine-rich repeat proteins.
  Proteins, 77, 342-358.  
19784953 L.N.Chan, C.Hart, L.Guo, T.Nyberg, B.S.Davies, L.G.Fong, S.G.Young, B.J.Agnew, and F.Tamanoi (2009).
A novel approach to tag and identify geranylgeranylated proteins.
  Electrophoresis, 30, 3598-3606.  
19074143 R.A.Baron, R.Tavaré, A.C.Figueiredo, K.M.Blazewska, B.A.Kashemirov, C.E.McKenna, F.H.Ebetino, A.Taylor, M.J.Rogers, F.P.Coxon, and M.C.Seabra (2009).
Phosphonocarboxylates inhibit the second geranylgeranyl addition by rab geranylgeranyl transferase.
  J Biol Chem, 284, 6861-6868.  
18648687 A.I.Anzellotti, and N.P.Farrell (2008).
Zinc metalloproteins as medicinal targets.
  Chem Soc Rev, 37, 1629-1651.  
18230616 M.Watanabe, H.D.Fiji, L.Guo, L.Chan, S.S.Kinderman, D.J.Slamon, O.Kwon, and F.Tamanoi (2008).
Inhibitors of protein geranylgeranyltransferase I and Rab geranylgeranyltransferase identified from a library of allenoate-derived compounds.
  J Biol Chem, 283, 9571-9579.  
18682224 T.Pavkov, E.M.Egelseer, M.Tesarz, D.I.Svergun, U.B.Sleytr, and W.Keller (2008).
The structure and binding behavior of the bacterial cell surface layer protein SbsC.
  Structure, 16, 1226-1237.
PDB code: 2ra1
18756270 Z.Guo, Y.W.Wu, D.Das, C.Delon, J.Cramer, S.Yu, S.Thuns, N.Lupilova, H.Waldmann, L.Brunsveld, R.S.Goody, K.Alexandrov, and W.Blankenfeldt (2008).
Structures of RabGGTase-substrate/product complexes provide insights into the evolution of protein prenylation.
  EMBO J, 27, 2444-2456.
PDB codes: 3dss 3dst 3dsu 3dsv 3dsw 3dsx
17878918 G.Raposo, and M.S.Marks (2007).
Melanosomes--dark organelles enlighten endosomal membrane transport.
  Nat Rev Mol Cell Biol, 8, 786-797.  
17582168 L.M.Chavas, S.Torii, H.Kamikubo, M.Kawasaki, K.Ihara, R.Kato, M.Kataoka, T.Izumi, and S.Wakatsuki (2007).
Structure of the small GTPase Rab27b shows an unexpected swapped dimer.
  Acta Crystallogr D Biol Crystallogr, 63, 769-779.
PDB codes: 2iey 2iez 2if0
17097678 M.Sommerhalter, Y.Zhang, and A.C.Rosenzweig (2007).
Solution structure of the COMMD1 N-terminal domain.
  J Mol Biol, 365, 715-721.
PDB code: 2h2m
17517123 N.Matsushima, T.Tanaka, P.Enkhbayar, T.Mikami, M.Taga, K.Yamada, and Y.Kuroki (2007).
Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate toll-like receptors.
  BMC Genomics, 8, 124.  
17705859 R.Rasteiro, and J.B.Pereira-Leal (2007).
Multiple domain insertions and losses in the evolution of the Rab prenylation complex.
  BMC Evol Biol, 7, 140.  
16983387 M.H.Gelb, L.Brunsveld, C.A.Hrycyna, S.Michaelis, F.Tamanoi, W.C.Van Voorhis, and H.Waldmann (2006).
Therapeutic intervention based on protein prenylation and associated modifications.
  Nat Chem Biol, 2, 518-528.  
15837622 M.R.Lackner, R.M.Kindt, P.M.Carroll, K.Brown, M.R.Cancilla, C.Chen, H.de Silva, Y.Franke, B.Guan, T.Heuer, T.Hung, K.Keegan, J.M.Lee, V.Manne, C.O'Brien, D.Parry, J.J.Perez-Villar, R.K.Reddy, H.Xiao, H.Zhan, M.Cockett, G.Plowman, K.Fitzgerald, M.Costa, and P.Ross-Macdonald (2005).
Chemical genetics identifies Rab geranylgeranyl transferase as an apoptotic target of farnesyl transferase inhibitors.
  Cancer Cell, 7, 325-336.  
15630480 R.Pejchal, and M.L.Ludwig (2005).
Cobalamin-independent methionine synthase (MetE): a face-to-face double barrel that evolved by gene duplication.
  PLoS Biol, 3, e31.
PDB codes: 1t7l 1xdj 1xpg 1xr2
15837619 S.M.Sebti (2005).
Protein farnesylation: implications for normal physiology, malignant transformation, and cancer therapy.
  Cancer Cell, 7, 297-300.  
14747988 P.Enkhbayar, M.Kamiya, M.Osaki, T.Matsumoto, and N.Matsushima (2004).
Structural principles of leucine-rich repeat (LRR) proteins.
  Proteins, 54, 394-403.  
15016365 Z.Zhang, W.Hu, L.Cano, T.D.Lee, D.J.Chen, and Y.Chen (2004).
Solution structure of the C-terminal domain of Ku80 suggests important sites for protein-protein interactions.
  Structure, 12, 495-502.
PDB code: 1rw2
12941939 B.Larijani, A.N.Hume, A.K.Tarafder, and M.C.Seabra (2003).
Multiple factors contribute to inefficient prenylation of Rab27a in Rab prenylation diseases.
  J Biol Chem, 278, 46798-46804.  
12972569 C.Alory, and W.E.Balch (2003).
Molecular evolution of the Rab-escort-protein/guanine-nucleotide-dissociation-inhibitor superfamily.
  Mol Biol Cell, 14, 3857-3867.  
14609943 J.S.Taylor, T.S.Reid, K.L.Terry, P.J.Casey, and L.S.Beese (2003).
Structure of mammalian protein geranylgeranyltransferase type-I.
  EMBO J, 22, 5963-5974.
PDB codes: 1n4p 1n4q 1n4r 1n4s
12620235 O.Pylypenko, A.Rak, R.Reents, A.Niculae, V.Sidorovitch, M.D.Cioaca, E.Bessolitsyna, N.H.Thomä, H.Waldmann, I.Schlichting, R.S.Goody, and K.Alexandrov (2003).
Structure of Rab escort protein-1 in complex with Rab geranylgeranyltransferase.
  Mol Cell, 11, 483-494.
PDB code: 1ltx
12702202 S.Maurer-Stroh, S.Washietl, and F.Eisenhaber (2003).
Protein prenyltransferases.
  Genome Biol, 4, 212.  
12623022 Y.An, Y.Shao, C.Alory, J.Matteson, T.Sakisaka, W.Chen, R.A.Gibbs, I.A.Wilson, and W.E.Balch (2003).
Geranylgeranyl switching regulates GDI-Rab GTPase recycling.
  Structure, 11, 347-357.
PDB code: 1lv0
11967365 A.V.Kajava, and B.Kobe (2002).
Assessment of the ability to model proteins with leucine-rich repeats in light of the latest structural information.
  Protein Sci, 11, 1082-1090.  
12226088 H.Ceulemans, V.Vulsteke, M.De Maeyer, K.Tatchell, W.Stalmans, and M.Bollen (2002).
Binding of the concave surface of the Sds22 superhelix to the alpha 4/alpha 5/alpha 6-triangle of protein phosphatase-1.
  J Biol Chem, 277, 47331-47337.  
12220488 J.C.Evans, D.P.Huddler, J.Jiracek, C.Castro, N.S.Millian, T.A.Garrow, and M.L.Ludwig (2002).
Betaine-homocysteine methyltransferase: zinc in a distorted barrel.
  Structure, 10, 1159-1171.
PDB codes: 1lt7 1lt8
11847292 J.Pei, and N.V.Grishin (2002).
Breaking the singleton of germination protease.
  Protein Sci, 11, 691-697.  
12213767 M.Mondragón-Palomino, B.C.Meyers, R.W.Michelmore, and B.S.Gaut (2002).
Patterns of positive selection in the complete NBS-LRR gene family of Arabidopsis thaliana.
  Genome Res, 12, 1305-1315.  
12135472 P.H.Liang, T.P.Ko, and A.H.Wang (2002).
Structure, mechanism and function of prenyltransferases.
  Eur J Biochem, 269, 3339-3354.  
11489211 C.Alory, and W.E.Balch (2001).
Organization of the Rab-GDI/CHM superfamily: the functional basis for choroideremia disease.
  Traffic, 2, 532-543.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer