|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
(+ 0 more)
314 a.a.
|
 |
|
|
|
|
|
|
|
(+ 0 more)
346 a.a.
|
 |
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Transferase
|
 |
|
Title:
|
 |
Protein geranylgeranyltransferase type-i complexed with a ggpp analog and a kkksktkcvil peptide
|
|
Structure:
|
 |
Protein farnesyltransferase/geranylgeranyltransferase type- 1 subunit alpha. Chain: a, c, e, g, i, k. Synonym: caax farnesyltransferase subunit alpha,ftase-alpha,ras proteins prenyltransferase subunit alpha,type i protein geranyl- geranyltransferase subunit alpha,ggtase-i-alpha. Engineered: yes. Geranylgeranyl transferase type-1 subunit beta. Chain: b, d, f, h, j, l.
|
|
Source:
|
 |
Rattus norvegicus. Rat. Organism_taxid: 10116. Gene: fnta. Expressed in: spodoptera frugiperda. Expression_system_taxid: 7108. Gene: pggt1b. Synthetic: yes. Homo sapiens.
|
|
Biol. unit:
|
 |
80mer (from
)
|
|
Resolution:
|
 |
|
2.40Å
|
R-factor:
|
0.214
|
R-free:
|
0.234
|
|
|
Authors:
|
 |
J.S.Taylor,T.S.Reid,P.J.Casey,L.S.Beese
|
|
Key ref:
|
 |
J.S.Taylor
et al.
(2003).
Structure of mammalian protein geranylgeranyltransferase type-I.
Embo J,
22,
5963-5974.
PubMed id:
|
 |
|
Date:
|
 |
|
01-Nov-02
|
Release date:
|
18-Nov-03
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class 1:
|
 |
Chains A, C, E, G, I, K:
E.C.2.5.1.58
- protein farnesyltransferase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
L-cysteinyl-[protein] + (2E,6E)-farnesyl diphosphate = S-(2E,6E)- farnesyl-L-cysteinyl-[protein] + diphosphate
|
 |
 |
 |
 |
 |
L-cysteinyl-[protein]
Bound ligand (Het Group name = )
matches with 51.72% similarity
|
+
|
(2E,6E)-farnesyl diphosphate
|
=
|
S-(2E,6E)- farnesyl-L-cysteinyl-[protein]
|
+
|
diphosphate
|
|
 |
 |
 |
 |
 |
 |
 |
 |
Cofactor:
|
 |
Mg(2+); Zn(2+)
|
 |
 |
 |
 |
 |
Enzyme class 2:
|
 |
Chains A, B, C, D, E, F, G, H, I, J, K, L:
E.C.2.5.1.59
- protein geranylgeranyltransferase type I.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
geranylgeranyl diphosphate + L-cysteinyl-[protein] = S-geranylgeranyl-L- cysteinyl-[protein] + diphosphate
|
 |
 |
 |
 |
 |
geranylgeranyl diphosphate
Bound ligand (Het Group name = )
matches with 68.97% similarity
|
+
|
L-cysteinyl-[protein]
|
=
|
S-geranylgeranyl-L- cysteinyl-[protein]
|
+
|
diphosphate
|
|
 |
 |
 |
 |
 |
 |
 |
 |
Cofactor:
|
 |
Zn(2+)
|
 |
 |
 |
 |
 |
 |
 |
|
Note, where more than one E.C. class is given (as above), each may
correspond to a different protein domain or, in the case of polyprotein
precursors, to a different mature protein.
|
|
 |
|
Molecule diagrams generated from .mol files obtained from the
KEGG ftp site
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
| |
|
|
Embo J
22:5963-5974
(2003)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structure of mammalian protein geranylgeranyltransferase type-I.
|
|
J.S.Taylor,
T.S.Reid,
K.L.Terry,
P.J.Casey,
L.S.Beese.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
Protein geranylgeranyltransferase type-I (GGTase-I), one of two CaaX
prenyltransferases, is an essential enzyme in eukaryotes. GGTase-I catalyzes
C-terminal lipidation of >100 proteins, including many GTP- binding
regulatory proteins. We present the first structural information for mammalian
GGTase-I, including a series of substrate and product complexes that delineate
the path of the chemical reaction. These structures reveal that all protein
prenyltransferases share a common reaction mechanism and identify specific
residues that play a dominant role in determining prenyl group specificity. This
hypothesis was confirmed by converting farnesyltransferase (15-C prenyl
substrate) into GGTase-I (20-C prenyl substrate) with a single point mutation.
GGTase-I discriminates against farnesyl diphosphate (FPP) at the product
turnover step through the inability of a 15-C FPP to displace the 20-C
prenyl-peptide product. Understanding these key features of specificity is
expected to contribute to optimization of anti-cancer and anti-parasite drugs.
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
J.A.Tamames,
and
M.J.Ramos
(2011).
Metals in proteins: cluster analysis studies.
|
| |
J Mol Model,
17,
429-442.
|
 |
|
|
|
|
 |
C.M.Owens,
C.Mawhinney,
J.M.Grenier,
R.Altmeyer,
M.S.Lee,
A.A.Borisy,
J.Lehár,
and
L.M.Johansen
(2010).
Chemical combinations elucidate pathway interactions and regulation relevant to Hepatitis C replication.
|
| |
Mol Syst Biol,
6,
375.
|
 |
|
|
|
|
 |
M.Andrews,
D.H.Huizinga,
and
D.N.Crowell
(2010).
The CaaX specificities of Arabidopsis protein prenyltransferases explain era1 and ggb phenotypes.
|
| |
BMC Plant Biol,
10,
118.
|
 |
|
|
|
|
 |
M.L.Hovlid,
R.L.Edelstein,
O.Henry,
J.Ochocki,
A.DeGraw,
S.Lenevich,
T.Talbot,
V.G.Young,
A.W.Hruza,
F.Lopez-Gallego,
N.P.Labello,
C.L.Strickland,
C.Schmidt-Dannert,
and
M.D.Distefano
(2010).
Synthesis, properties, and applications of diazotrifluropropanoyl-containing photoactive analogs of farnesyl diphosphate containing modified linkages for enhanced stability.
|
| |
Chem Biol Drug Des,
75,
51-67.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.S.Virtanen,
J.Sandholm,
G.Yegutkin,
H.Kalervo Väänänen,
and
P.L.Härkönen
(2010).
Inhibition of GGTase-I and FTase disrupts cytoskeletal organization of human PC-3 prostate cancer cells.
|
| |
Cell Biol Int,
34,
815-826.
|
 |
|
|
|
|
 |
U.T.Nguyen,
R.S.Goody,
and
K.Alexandrov
(2010).
Understanding and exploiting protein prenyltransferases.
|
| |
Chembiochem,
11,
1194-1201.
|
 |
|
|
|
|
 |
L.N.Chan,
C.Hart,
L.Guo,
T.Nyberg,
B.S.Davies,
L.G.Fong,
S.G.Young,
B.J.Agnew,
and
F.Tamanoi
(2009).
A novel approach to tag and identify geranylgeranylated proteins.
|
| |
Electrophoresis,
30,
3598-3606.
|
 |
|
|
|
|
 |
M.A.Hast,
S.Fletcher,
C.G.Cummings,
E.E.Pusateri,
M.A.Blaskovich,
K.Rivas,
M.H.Gelb,
W.C.Van Voorhis,
S.M.Sebti,
A.D.Hamilton,
and
L.S.Beese
(2009).
Structural basis for binding and selectivity of antimalarial and anticancer ethylenediamine inhibitors to protein farnesyltransferase.
|
| |
Chem Biol,
16,
181-192.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
R.A.Baron,
R.Tavaré,
A.C.Figueiredo,
K.M.Blazewska,
B.A.Kashemirov,
C.E.McKenna,
F.H.Ebetino,
A.Taylor,
M.J.Rogers,
F.P.Coxon,
and
M.C.Seabra
(2009).
Phosphonocarboxylates inhibit the second geranylgeranyl addition by rab geranylgeranyl transferase.
|
| |
J Biol Chem,
284,
6861-6868.
|
 |
|
|
|
|
 |
A.I.Anzellotti,
and
N.P.Farrell
(2008).
Zinc metalloproteins as medicinal targets.
|
| |
Chem Soc Rev,
37,
1629-1651.
|
 |
|
|
|
|
 |
J.S.Weiss,
H.S.Kruth,
H.Kuivaniemi,
G.Tromp,
J.Karkera,
S.Mahurkar,
W.Lisch,
W.J.Dupps,
P.S.White,
R.S.Winters,
C.Kim,
C.J.Rapuano,
J.Sutphin,
J.Reidy,
F.R.Hu,
d.a. .W.Lu,
N.Ebenezer,
and
M.L.Nickerson
(2008).
Genetic analysis of 14 families with Schnyder crystalline corneal dystrophy reveals clues to UBIAD1 protein function.
|
| |
Am J Med Genet A,
146,
271-283.
|
 |
|
|
|
|
 |
K.Yokoyama,
J.R.Gillespie,
W.C.Van Voorhis,
F.S.Buckner,
and
M.H.Gelb
(2008).
Protein geranylgeranyltransferase-I of Trypanosoma cruzi.
|
| |
Mol Biochem Parasitol,
157,
32-43.
|
 |
|
|
|
|
 |
M.A.Hast,
and
L.S.Beese
(2008).
Structure of Protein Geranylgeranyltransferase-I from the Human Pathogen Candida albicans Complexed with a Lipid Substrate.
|
| |
J Biol Chem,
283,
31933-31940.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Watanabe,
H.D.Fiji,
L.Guo,
L.Chan,
S.S.Kinderman,
D.J.Slamon,
O.Kwon,
and
F.Tamanoi
(2008).
Inhibitors of protein geranylgeranyltransferase I and Rab geranylgeranyltransferase identified from a library of allenoate-derived compounds.
|
| |
J Biol Chem,
283,
9571-9579.
|
 |
|
|
|
|
 |
Z.Guo,
Y.W.Wu,
D.Das,
C.Delon,
J.Cramer,
S.Yu,
S.Thuns,
N.Lupilova,
H.Waldmann,
L.Brunsveld,
R.S.Goody,
K.Alexandrov,
and
W.Blankenfeldt
(2008).
Structures of RabGGTase-substrate/product complexes provide insights into the evolution of protein prenylation.
|
| |
EMBO J,
27,
2444-2456.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
d.a. .Y.Oh,
J.M.Yoon,
M.J.Moon,
J.I.Hwang,
H.Choe,
J.Y.Lee,
J.I.Kim,
S.Kim,
H.Rhim,
D.K.O'Dell,
J.M.Walker,
H.S.Na,
M.G.Lee,
H.B.Kwon,
K.Kim,
and
J.Y.Seong
(2008).
Identification of farnesyl pyrophosphate and N-arachidonylglycine as endogenous ligands for GPR92.
|
| |
J Biol Chem,
283,
21054-21064.
|
 |
|
|
|
|
 |
C.Coffinier,
S.E.Hudon,
E.A.Farber,
S.Y.Chang,
C.A.Hrycyna,
S.G.Young,
and
L.G.Fong
(2007).
HIV protease inhibitors block the zinc metalloproteinase ZMPSTE24 and lead to an accumulation of prelamin A in cells.
|
| |
Proc Natl Acad Sci U S A,
104,
13432-13437.
|
 |
|
|
|
|
 |
R.Rasteiro,
and
J.B.Pereira-Leal
(2007).
Multiple domain insertions and losses in the evolution of the Rab prenylation complex.
|
| |
BMC Evol Biol,
7,
140.
|
 |
|
|
|
|
 |
F.Minutolo,
S.Bertini,
L.Betti,
R.Danesi,
G.Gervasi,
G.Giannaccini,
A.Martinelli,
A.M.Papini,
E.Peroni,
G.Placanica,
S.Rapposelli,
T.Tuccinardi,
and
M.Macchia
(2006).
Synthesis of stable analogues of geranylgeranyl diphosphate possessing a (Z,E,E)-geranylgeranyl side chain, docking analysis, and biological assays for prenyl protein transferase inhibition.
|
| |
ChemMedChem,
1,
218-224.
|
 |
|
|
|
|
 |
H.Peng,
D.Carrico,
V.Thai,
M.Blaskovich,
C.Bucher,
E.E.Pusateri,
S.M.Sebti,
and
A.D.Hamilton
(2006).
Synthesis and evaluation of potent, highly-selective, 3-aryl-piperazinone inhibitors of protein geranylgeranyltransferase-I.
|
| |
Org Biomol Chem,
4,
1768-1784.
|
 |
|
|
|
|
 |
J.Ohkanda,
C.L.Strickland,
M.A.Blaskovich,
D.Carrico,
J.W.Lockman,
A.Vogt,
C.J.Bucher,
J.Sun,
Y.Qian,
D.Knowles,
E.E.Pusateri,
S.M.Sebti,
and
A.D.Hamilton
(2006).
Structure-based design of imidazole-containing peptidomimetic inhibitors of protein farnesyltransferase.
|
| |
Org Biomol Chem,
4,
482-492.
|
 |
|
|
|
|
 |
J.Payandeh,
M.Fujihashi,
W.Gillon,
and
E.F.Pai
(2006).
The crystal structure of (S)-3-O-geranylgeranylglyceryl phosphate synthase reveals an ancient fold for an ancient enzyme.
|
| |
J Biol Chem,
281,
6070-6078.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.H.Gelb,
L.Brunsveld,
C.A.Hrycyna,
S.Michaelis,
F.Tamanoi,
W.C.Van Voorhis,
and
H.Waldmann
(2006).
Therapeutic intervention based on protein prenylation and associated modifications.
|
| |
Nat Chem Biol,
2,
518-528.
|
 |
|
|
|
|
 |
D.Michaelson,
W.Ali,
V.K.Chiu,
M.Bergo,
J.Silletti,
L.Wright,
S.G.Young,
and
M.Philips
(2005).
Postprenylation CAAX processing is required for proper localization of Ras but not Rho GTPases.
|
| |
Mol Biol Cell,
16,
1606-1616.
|
 |
|
|
|
|
 |
R.T.Eastman,
J.White,
O.Hucke,
K.Bauer,
K.Yokoyama,
L.Nallan,
D.Chakrabarti,
C.L.Verlinde,
M.H.Gelb,
P.K.Rathod,
and
W.C.Van Voorhis
(2005).
Resistance to a protein farnesyltransferase inhibitor in Plasmodium falciparum.
|
| |
J Biol Chem,
280,
13554-13559.
|
 |
|
|
|
|
 |
S.Maurer-Stroh,
and
F.Eisenhaber
(2005).
Refinement and prediction of protein prenylation motifs.
|
| |
Genome Biol,
6,
R55.
|
 |
|
|
|
|
 |
H.L.Hartman,
K.E.Bowers,
and
C.A.Fierke
(2004).
Lysine beta311 of protein geranylgeranyltransferase type I partially replaces magnesium.
|
| |
J Biol Chem,
279,
30546-30553.
|
 |
|
|
|
|
 |
M.P.Running,
M.Lavy,
H.Sternberg,
A.Galichet,
W.Gruissem,
S.Hake,
N.Ori,
and
S.Yalovsky
(2004).
Enlarged meristems and delayed growth in plp mutants result from lack of CaaX prenyltransferases.
|
| |
Proc Natl Acad Sci U S A,
101,
7815-7820.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |