spacer
spacer

PDBsum entry 2ahm

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Viral protein, replication PDB id
2ahm

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
77 a.a. *
155 a.a. *
143 a.a. *
191 a.a. *
Ligands
GOL ×5
SO4
Waters ×149
* Residue conservation analysis
PDB id:
2ahm
Name: Viral protein, replication
Title: Crystal structure of sars-cov super complex of non-structural proteins: the hexadecamer
Structure: Replicase polyprotein 1ab, light chain. Chain: a, b, c, d. Synonym: replicase nsp7. Engineered: yes. Replicase polyprotein 1ab, heavy chain. Chain: e, f, g, h. Synonym: replicase nsp8. Engineered: yes
Source: Sars coronavirus. Organism_taxid: 227859. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008.
Biol. unit: 60mer (from PDB file)
Resolution:
2.40Å     R-factor:   0.213     R-free:   0.251
Authors: Y.J.Zhai,F.Sun,M.Bartlam,Z.Rao
Key ref:
Y.Zhai et al. (2005). Insights into SARS-CoV transcription and replication from the structure of the nsp7-nsp8 hexadecamer. Nat Struct Biol, 12, 980-986. PubMed id: 16228002 DOI: 10.1038/nsmb999
Date:
28-Jul-05     Release date:   15-Nov-05    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P0C6X7  (R1AB_CVHSA) -  Replicase polyprotein 1ab from Severe acute respiratory syndrome coronavirus
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
7073 a.a.
77 a.a.*
Protein chain
Pfam   ArchSchema ?
P0C6X7  (R1AB_CVHSA) -  Replicase polyprotein 1ab from Severe acute respiratory syndrome coronavirus
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
7073 a.a.
155 a.a.
Protein chain
Pfam   ArchSchema ?
P0C6X7  (R1AB_CVHSA) -  Replicase polyprotein 1ab from Severe acute respiratory syndrome coronavirus
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
7073 a.a.
143 a.a.
Protein chains
Pfam   ArchSchema ?
P0C6X7  (R1AB_CVHSA) -  Replicase polyprotein 1ab from Severe acute respiratory syndrome coronavirus
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
7073 a.a.
191 a.a.
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 4 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class 2: Chains A, B, C, D, E, F, G, H: E.C.2.1.1.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 3: Chains A, B, C, D, E, F, G, H: E.C.2.1.1.56  - mRNA (guanine-N(7))-methyltransferase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: a 5'-end (5'-triphosphoguanosine)-ribonucleoside in mRNA + S-adenosyl-L- methionine = a 5'-end (N(7)-methyl 5'-triphosphoguanosine)-ribonucleoside in mRNA + S-adenosyl-L-homocysteine
5'-end (5'-triphosphoguanosine)-ribonucleoside in mRNA
+ S-adenosyl-L- methionine
= 5'-end (N(7)-methyl 5'-triphosphoguanosine)-ribonucleoside in mRNA
+ S-adenosyl-L-homocysteine
   Enzyme class 4: Chains A, B, C, D, E, F, G, H: E.C.2.1.1.57  - methyltransferase cap1.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: a 5'-end (N(7)-methyl 5'-triphosphoguanosine)-ribonucleoside in mRNA + S-adenosyl-L-methionine = a 5'-end (N(7)-methyl 5'-triphosphoguanosine)- (2'-O-methyl-ribonucleoside) in mRNA + S-adenosyl-L-homocysteine + H+
5'-end (N(7)-methyl 5'-triphosphoguanosine)-ribonucleoside in mRNA
+ S-adenosyl-L-methionine
= 5'-end (N(7)-methyl 5'-triphosphoguanosine)- (2'-O-methyl-ribonucleoside) in mRNA
+ S-adenosyl-L-homocysteine
+ H(+)
   Enzyme class 5: Chains A, B, C, D, E, F, G, H: E.C.2.7.7.48  - RNA-directed Rna polymerase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: RNA(n) + a ribonucleoside 5'-triphosphate = RNA(n+1) + diphosphate
RNA(n)
+ ribonucleoside 5'-triphosphate
= RNA(n+1)
+ diphosphate
   Enzyme class 6: Chains A, B, C, D, E, F, G, H: E.C.2.7.7.50  - mRNA guanylyltransferase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: a 5'-end diphospho-ribonucleoside in mRNA + GTP + H+ = a 5'-end (5'-triphosphoguanosine)-ribonucleoside in mRNA + diphosphate
5'-end diphospho-ribonucleoside in mRNA
+ GTP
+ H(+)
= 5'-end (5'-triphosphoguanosine)-ribonucleoside in mRNA
+ diphosphate
   Enzyme class 7: Chains A, B, C, D, E, F, G, H: E.C.3.1.13.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 8: Chains A, B, C, D, E, F, G, H: E.C.3.4.19.12  - ubiquitinyl hydrolase 1.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Thiol-dependent hydrolysis of ester, thiolester, amide, peptide and isopeptide bonds formed by the C-terminal Gly of ubiquitin (a 76-residue protein attached to proteins as an intracellular targeting signal).
   Enzyme class 9: Chains A, B, C, D, E, F, G, H: E.C.3.4.22.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 10: Chains A, B, C, D, E, F, G, H: E.C.3.4.22.69  - Sars coronavirus main proteinase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 11: Chains A, B, C, D, E, F, G, H: E.C.3.6.4.12  - Dna helicase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: ATP + H2O = ADP + phosphate + H+
ATP
+ H2O
= ADP
+ phosphate
+ H(+)
   Enzyme class 12: Chains A, B, C, D, E, F, G, H: E.C.3.6.4.13  - Rna helicase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: ATP + H2O = ADP + phosphate + H+
ATP
+ H2O
= ADP
+ phosphate
+ H(+)
   Enzyme class 13: Chains A, B, C, D, E, F, G, H: E.C.4.6.1.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1038/nsmb999 Nat Struct Biol 12:980-986 (2005)
PubMed id: 16228002  
 
 
Insights into SARS-CoV transcription and replication from the structure of the nsp7-nsp8 hexadecamer.
Y.Zhai, F.Sun, X.Li, H.Pang, X.Xu, M.Bartlam, Z.Rao.
 
  ABSTRACT  
 
Coronavirus replication and transcription machinery involves multiple virus-encoded nonstructural proteins (nsp). We report the crystal structure of the hexadecameric nsp7-nsp8 supercomplex from the severe acute respiratory syndrome coronavirus at 2.4-angstroms resolution. nsp8 has a novel 'golf-club' fold with two conformations. The supercomplex is a unique hollow, cylinder-like structure assembled from eight copies of nsp8 and held tightly together by eight copies of nsp7. With an internal diameter of approximately 30 angstroms, the central channel has dimensions and positive electrostatic properties favorable for nucleic acid binding, implying that its role is to confer processivity on RNA-dependent RNA polymerase.
 
  Selected figure(s)  
 
Figure 3.
Figure 3. Architecture and assembly of the hexadecameric nsp7–nsp8 complex. (a) The interaction sites between nsp7 and nsp8I/II. Green, nsp7; blue, nsp8. (b) T1 and T2 heterotetramer formation. The two dimers from one tetramer are illustrated by the surface representation and ribbon diagram, respectively. Residues: green, polar; yellow, hydrophobic; red, acidic; blue, basic. Ribbons: green, nsp7; blue, nsp8I; orange, nsp8II. (c) Possible pathway for assembly of the complex by heterotetramers T1 and T2. (d) Hexadecameric supercomplex construction with 'bricks' of nsp8 and 'mortar' of nsp7. The angle between nsp8I and nsp8II is labeled in magenta. In c and d, nsp7 molecules interacting with nsp8I and nsp8II are colored yellow-green and blue-green, respectively.
Figure 4.
Figure 4. Hypothetical interaction between RNA and the hexadecameric nsp7–nsp8 complex. (a) The electrostatic potential surface of the hexadecamer modeled with (right) and without (left) duplex RNA in the positive channel. Blue, positive charge (+10 k[B]T); red, negative charge (-10 k[B]T). (b) Model of the hexadecameric nsp7–nsp8 supercomplex with hypothetical duplex RNA. Left, top view, showing the channel's proper dimensions to accommodate dsRNA. Right, side view, showing a possible mode of interaction where the four nsp8II NH3 helices insert into the dsRNA grooves. (c,d) Results of EMSAs of nsp7, nsp8 and their mutants. Each lane contains 75 pmol dsRNA (c) or dsDNA (d). Lanes 1–7 contain 650 pmol of each protein; lanes 8–13 contain 90 pmol of hexadecamer.
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nat Struct Biol (2005, 12, 980-986) copyright 2005.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21079686 A.J.te Velthuis, S.H.van den Worm, A.C.Sims, R.S.Baric, E.J.Snijder, and M.J.van Hemert (2010).
Zn(2+) inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture.
  PLoS Pathog, 6, e1001176.  
20007278 M.C.Hagemeijer, M.H.Verheije, M.Ulasli, I.A.Shaltiël, L.A.de Vries, F.Reggiori, P.J.Rottier, and C.A.de Haan (2010).
Dynamics of coronavirus replication-transcription complexes.
  J Virol, 84, 2134-2149.  
20444893 S.Fang, H.Shen, J.Wang, F.P.Tay, and D.X.Liu (2010).
Functional and genetic studies of the substrate specificity of coronavirus infectious bronchitis virus 3C-like proteinase.
  J Virol, 84, 7325-7336.  
19153232 Z.J.Miknis, E.F.Donaldson, T.C.Umland, R.A.Rimmer, R.S.Baric, and L.W.Schultz (2009).
Severe acute respiratory syndrome coronavirus nsp9 dimerization is essential for efficient viral growth.
  J Virol, 83, 3007-3018.
PDB code: 3ee7
18054092 B.Canard, J.S.Joseph, and P.Kuhn (2008).
International research networks in viral structural proteomics: again, lessons from SARS.
  Antiviral Res, 78, 47-50.  
18827877 J.Pan, X.Peng, Y.Gao, Z.Li, X.Lu, Y.Chen, M.Ishaq, D.Liu, M.L.Dediego, L.Enjuanes, and D.Guo (2008).
Genome-wide analysis of protein-protein interactions and involvement of viral proteins in SARS-CoV replication.
  PLoS ONE, 3, e3299.  
18798692 K.Knoops, M.Kikkert, S.H.Worm, J.C.Zevenhoven-Dobbe, Y.van der Meer, A.J.Koster, A.M.Mommaas, and E.J.Snijder (2008).
SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum.
  PLoS Biol, 6, e226.  
18451981 M.J.van Hemert, S.H.van den Worm, K.Knoops, A.M.Mommaas, A.E.Gorbalenya, and E.J.Snijder (2008).
SARS-coronavirus replication/transcription complexes are membrane-protected and need a host factor for activity in vitro.
  PLoS Pathog, 4, e1000054.  
18842706 M.Oostra, M.C.Hagemeijer, M.van Gent, C.P.Bekker, E.G.te Lintelo, P.J.Rottier, and C.A.de Haan (2008).
Topology and membrane anchoring of the coronavirus replication complex: not all hydrophobic domains of nsp3 and nsp6 are membrane spanning.
  J Virol, 82, 12392-12405.  
17397959 R.L.Graham, J.S.Sparks, L.D.Eckerle, A.C.Sims, and M.R.Denison (2008).
SARS coronavirus replicase proteins in pathogenesis.
  Virus Res, 133, 88.  
18032506 R.Züst, T.B.Miller, S.J.Goebel, V.Thiel, and P.S.Masters (2008).
Genetic interactions between an essential 3' cis-acting RNA pseudoknot, replicase gene products, and the extreme 3' end of the mouse coronavirus genome.
  J Virol, 82, 1214-1228.  
17520018 A.von Brunn, C.Teepe, J.C.Simpson, R.Pepperkok, C.C.Friedel, R.Zimmer, R.Roberts, R.Baric, and J.Haas (2007).
Analysis of intraviral protein-protein interactions of the SARS coronavirus ORFeome.
  PLoS ONE, 2, e459.  
17634238 D.J.Deming, R.L.Graham, M.R.Denison, and R.S.Baric (2007).
Processing of open reading frame 1a replicase proteins nsp7 to nsp10 in murine hepatitis virus strain A59 replication.
  J Virol, 81, 10280-10291.  
17392363 E.F.Donaldson, A.C.Sims, R.L.Graham, M.R.Denison, and R.S.Baric (2007).
Murine hepatitis virus replicase protein nsp10 is a critical regulator of viral RNA synthesis.
  J Virol, 81, 6356-6368.  
17308310 G.S.Briggs, P.A.McEwan, J.Yu, T.Moore, J.Emsley, and R.G.Lloyd (2007).
Ring structure of the Escherichia coli DNA-binding protein RdgC associated with recombination and replication fork repair.
  J Biol Chem, 282, 12353-12357.
PDB code: 2owl
17251282 J.Ziebuhr, B.Schelle, N.Karl, E.Minskaia, S.Bayer, S.G.Siddell, A.E.Gorbalenya, and V.Thiel (2007).
Human coronavirus 229E papain-like proteases have overlapping specificities but distinct functions in viral replication.
  J Virol, 81, 3922-3932.  
17680348 M.Bartlam, Y.Xu, and Z.Rao (2007).
Structural proteomics of the SARS coronavirus: a model response to emerging infectious diseases.
  J Struct Funct Genomics, 8, 85-97.  
17855519 M.Oostra, E.G.te Lintelo, M.Deijs, M.H.Verheije, P.J.Rottier, and C.A.de Haan (2007).
Localization and membrane topology of coronavirus nonstructural protein 4: involvement of the early secretory pathway in replication.
  J Virol, 81, 12323-12336.  
17202208 M.S.Almeida, M.A.Johnson, T.Herrmann, M.Geralt, and K.Wüthrich (2007).
Novel beta-barrel fold in the nuclear magnetic resonance structure of the replicase nonstructural protein 1 from the severe acute respiratory syndrome coronavirus.
  J Virol, 81, 3151-3161.
PDB codes: 2gdt 2hsx
17728234 P.Serrano, M.A.Johnson, M.S.Almeida, R.Horst, T.Herrmann, J.S.Joseph, B.W.Neuman, V.Subramanian, K.S.Saikatendu, M.J.Buchmeier, R.C.Stevens, P.Kuhn, and K.Wüthrich (2007).
Nuclear magnetic resonance structure of the N-terminal domain of nonstructural protein 3 from the severe acute respiratory syndrome coronavirus.
  J Virol, 81, 12049-12060.
PDB codes: 2gri 2idy
16928755 S.G.Sawicki, D.L.Sawicki, and S.G.Siddell (2007).
A contemporary view of coronavirus transcription.
  J Virol, 81, 20-29.  
17934078 V.C.Cheng, S.K.Lau, P.C.Woo, and K.Y.Yuen (2007).
Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection.
  Clin Microbiol Rev, 20, 660-694.  
17327211 Z.Rao (2007).
History of protein crystallography in China.
  Philos Trans R Soc Lond B Biol Sci, 362, 1035-1042.  
16503362 A.E.Gorbalenya, L.Enjuanes, J.Ziebuhr, and E.J.Snijder (2006).
Nidovirales: evolving the largest RNA virus genome.
  Virus Res, 117, 17-37.  
16873247 D.Su, Z.Lou, F.Sun, Y.Zhai, H.Yang, R.Zhang, A.Joachimiak, X.C.Zhang, M.Bartlam, and Z.Rao (2006).
Dodecamer structure of severe acute respiratory syndrome coronavirus nonstructural protein nsp10.
  J Virol, 80, 7902-7908.
PDB codes: 2g9t 2ga6
16731931 E.J.Snijder, Y.van der Meer, J.Zevenhoven-Dobbe, J.J.Onderwater, J.van der Meulen, H.K.Koerten, and A.M.Mommaas (2006).
Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex.
  J Virol, 80, 5927-5940.  
16987966 H.Schütze, R.Ulferts, B.Schelle, S.Bayer, H.Granzow, B.Hoffmann, T.C.Mettenleiter, and J.Ziebuhr (2006).
Characterization of White bream virus reveals a novel genetic cluster of nidoviruses.
  J Virol, 80, 11598-11609.  
17024178 I.Imbert, J.C.Guillemot, J.M.Bourhis, C.Bussetta, B.Coutard, M.P.Egloff, F.Ferron, A.E.Gorbalenya, and B.Canard (2006).
A second, non-canonical RNA-dependent RNA polymerase in SARS coronavirus.
  EMBO J, 25, 4933-4942.  
17085042 J.R.Mesters, J.Tan, and R.Hilgenfeld (2006).
Viral enzymes.
  Curr Opin Struct Biol, 16, 776-786.  
16873246 J.S.Joseph, K.S.Saikatendu, V.Subramanian, B.W.Neuman, A.Brooun, M.Griffith, K.Moy, M.K.Yadav, J.Velasquez, M.J.Buchmeier, R.C.Stevens, and P.Kuhn (2006).
Crystal structure of nonstructural protein 10 from the severe acute respiratory syndrome coronavirus reveals a novel fold with two zinc-binding motifs.
  J Virol, 80, 7894-7901.
PDB code: 2fyg
16804033 M.D.Sørensen, B.Sørensen, R.Gonzalez-Dosal, C.J.Melchjorsen, J.Weibel, J.Wang, C.W.Jun, Y.Huanming, and P.Kristensen (2006).
Severe acute respiratory syndrome (SARS): development of diagnostics and antivirals.
  Ann N Y Acad Sci, 1067, 500-505.  
16882730 S.Ricagno, M.P.Egloff, R.Ulferts, B.Coutard, D.Nurizzo, V.Campanacci, C.Cambillau, J.Ziebuhr, and B.Canard (2006).
Crystal structure and mechanistic determinants of SARS coronavirus nonstructural protein 15 define an endoribonuclease family.
  Proc Natl Acad Sci U S A, 103, 11892-11897.
PDB code: 2h85
16873248 X.Xu, Y.Zhai, F.Sun, Z.Lou, D.Su, Y.Xu, R.Zhang, A.Joachimiak, X.C.Zhang, M.Bartlam, and Z.Rao (2006).
New antiviral target revealed by the hexameric structure of mouse hepatitis virus nonstructural protein nsp15.
  J Virol, 80, 7909-7917.
PDB codes: 2gth 2gti
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer