spacer
spacer

PDBsum entry 1pm0

Go to PDB code: 
protein dna_rna ligands metals links
Transferase/DNA PDB id
1pm0

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
341 a.a.
DNA/RNA
Ligands
ATP
Metals
_CA ×2
Waters ×204
Obsolete entry
PDB id:
1pm0
Name: Transferase/DNA
Title: Replication of a cis-syn thymine dimer at atomic resolution
Structure: DNA polymerase iv. Chain: a. Synonym: pol iv. Engineered: yes. 5'-d( Gp Gp Gp Gp Gp Ap Ap Gp Gp Ap Tp Tp C)-3'. Chain: b. Engineered: yes. 5'- d( Tp Tp Tp Gp Ap Ap Tp Cp Cp Tp Tp Cp Cp Cp Cp C)-3'.
Source: Sulfolobus solfataricus. Archaea. Gene: dpo4. Expressed in: escherichia coli. Synthetic: yes. Synthetic: yes
Biol. unit: Trimer (from PQS)
Resolution:
2.28Å     R-factor:   0.253     R-free:   0.281
Authors: H.Ling,F.Boudsocq,B.Plosky,R.Woodgate,W.Yang
Key ref:
H.Ling et al. (2003). Replication of a cis-syn thymine dimer at atomic resolution. Nature, 424, 1083-1087. PubMed id: 12904819 DOI: 10.1038/nature01919
Date:
09-Jun-03     Release date:   16-Sep-03    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
Q97W02  (DPO4_SULSO) -  DNA polymerase IV from Saccharolobus solfataricus (strain ATCC 35092 / DSM 1617 / JCM 11322 / P2)
Seq:
Struc:
352 a.a.
341 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

DNA/RNA chains
  G-G-G-G-G-A-A-G-G-A-T-T-C 13 bases
  T-T-T-G-A-A-T-C-C-T-T-C-C-C-C-C 16 bases

 Enzyme reactions 
   Enzyme class: E.C.2.7.7.7  - DNA-directed Dna polymerase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: DNA(n) + a 2'-deoxyribonucleoside 5'-triphosphate = DNA(n+1) + diphosphate
DNA(n)
Bound ligand (Het Group name = ATP)
matches with 6129.00% similarity corresponds exactly
+ 2'-deoxyribonucleoside 5'-triphosphate
= DNA(n+1)
+ diphosphate
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    Added reference    
 
 
DOI no: 10.1038/nature01919 Nature 424:1083-1087 (2003)
PubMed id: 12904819  
 
 
Replication of a cis-syn thymine dimer at atomic resolution.
H.Ling, F.Boudsocq, B.S.Plosky, R.Woodgate, W.Yang.
 
  ABSTRACT  
 
Ultraviolet light damages DNA by catalysing covalent bond formation between adjacent pyrimidines, generating cis-syn cyclobutane pyrimidine dimers (CPDs) as the most common lesion. CPDs block DNA replication by high-fidelity DNA polymerases, but they can be efficiently bypassed by the Y-family DNA polymerase pol eta. Mutations in POLH encoding pol eta are implicated in nearly 20% of xeroderma pigmentosum, a human disease characterized by extreme sensitivity to sunlight and predisposition to skin cancer. Here we have determined two crystal structures of Dpo4, an archaeal pol eta homologue, complexed with CPD-containing DNA, where the 3' and 5' thymine of the CPD separately serves as a templating base. The 3' thymine of the CPD forms a Watson-Crick base pair with the incoming dideoxyATP, but the 5' thymine forms a Hoogsteen base pair with the dideoxyATP in syn conformation. Dpo4 retains a similar tertiary structure, but each unusual DNA structure is individually fitted into the active site for catalysis. A model of the pol eta-CPD complex built from the crystal structures of Saccharomyces cerevisiae apo-pol eta and the Dpo4-CPD complex suggests unique features that allow pol eta to efficiently bypass CPDs.
 
  Selected figure(s)  
 
Figure 1.
Figure 1: Replication of a CPD by Dpo4 in solution and crystals. a, Extension of two primers (13 nucleotides each) paired with undamaged or CPD-containing 18-nucleotide templates used in the crystallization studies (TT-1, TT-2). Reactions were carried out with 10 nM DNA substrate, 10 nM Dpo4 and 100 M dATP at 37 °C for 2, 5, 10 or 20 min. b, Inhibition of primer extension by ddATP. P indicates primer strand, and U and D indicate undamaged and CPD-containing template, respectively. The reactions took place for 30 min at 22 °C or 37 °C as indicated. c, The active site of TT-1, where the 3' thymine of the CPD (orange) is base-paired with ddATP (yellow). The conserved residues interacting with ddATP and catalytic carboxylates are highlighted. Tyr 10, which immobilizes the finger domain by wedging between the palm and finger domains, is shown in red. d, Replication at the 3' T of the CPD. The CPD and the replicating and preceding base pairs of TT-1 are shown with the F[o] - F[c] omit electron densities. e, Active site of TT-2, where the 5' thymine of the CPD is base-paired with ddATP, f, The replicating and two preceding base pairs of the TT-2 are shown with the F[o] - F[c] omit electron densities. g, Stereo view of the TT-1 (blue) and TT-2 (pink) active-site superposition. The three catalytic carboxylates, two Ca^2+ ions, the 3' nucleotide of the primer strand, and the incoming nucleotide are shown in the ball-and-stick model.
Figure 2.
Figure 2: Structural comparison of the CPD complexed with Dpo4 and protein free. a, Structures of the CPD (orange) and surrounding nucleic acids in TT-1 (blue), TT-2 (pink) and in the absence of protein (yellow)19 are shown in the ball-and-stick model after superposition of the CPDs. b, c, Ball-and-stick presentations of base-pairing of the CPDs in TT-1 (b) and TT-2 (c). The phosphorus atoms are shown in purple, oxygen in red and nitrogen in dark blue. The carbon atoms of the replicating base pair are white, and others are light blue.
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nature (2003, 424, 1083-1087) copyright 2003.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21227930 R.P.Wong, H.Lin, S.Khosravi, B.Piche, S.M.Jafarnejad, D.W.Chen, and G.Li (2011).
Tumour suppressor ING1b maintains genomic stability upon replication stress.
  Nucleic Acids Res, 39, 3632-3642.  
21354175 R.Vasquez-Del Carpio, T.D.Silverstein, S.Lone, R.E.Johnson, L.Prakash, S.Prakash, and A.K.Aggarwal (2011).
Role of human DNA polymerase κ in extension opposite from a cis-syn thymine dimer.
  J Mol Biol, 408, 252-261.
PDB code: 3pzp
20846959 S.M.Sherrer, K.A.Fiala, J.D.Fowler, S.A.Newmister, J.M.Pryor, and Z.Suo (2011).
Quantitative analysis of the efficiency and mutagenic spectra of abasic lesion bypass catalyzed by human Y-family DNA polymerases.
  Nucleic Acids Res, 39, 609-622.  
20577208 C.Biertümpfel, Y.Zhao, Y.Kondo, S.Ramón-Maiques, M.Gregory, J.Y.Lee, C.Masutani, A.R.Lehmann, F.Hanaoka, and W.Yang (2010).
Structure and mechanism of human DNA polymerase eta.
  Nature, 465, 1044-1048.
PDB codes: 3mr2 3mr3 3mr4 3mr5 3mr6 3si8
20123134 J.D.Pata (2010).
Structural diversity of the Y-family DNA polymerases.
  Biochim Biophys Acta, 1804, 1124-1135.  
20111609 M.Yokoyama, H.Mori, and H.Sato (2010).
Allosteric regulation of HIV-1 reverse transcriptase by ATP for nucleotide selection.
  PLoS One, 5, e8867.  
  20936174 S.Chandani, C.Jacobs, and E.L.Loechler (2010).
Architecture of y-family DNA polymerases relevant to translesion DNA synthesis as revealed in structural and molecular modeling studies.
  J Nucleic Acids, 2010, 0.  
20400942 S.Obeid, N.Blatter, R.Kranaster, A.Schnur, K.Diederichs, W.Welte, and A.Marx (2010).
Replication through an abasic DNA lesion: structural basis for adenine selectivity.
  EMBO J, 29, 1738-1747.
PDB codes: 3lwl 3lwm
19171965 F.Brueckner, K.J.Armache, A.Cheung, G.E.Damsma, H.Kettenberger, E.Lehmann, J.Sydow, and P.Cramer (2009).
Structure-function studies of the RNA polymerase II elongation complex.
  Acta Crystallogr D Biol Crystallogr, 65, 112-120.  
19059910 H.Zhang, R.L.Eoff, I.D.Kozekov, C.J.Rizzo, M.Egli, and F.P.Guengerich (2009).
Versatility of Y-family Sulfolobus solfataricus DNA Polymerase Dpo4 in Translesion Synthesis Past Bulky N2-Alkylguanine Adducts.
  J Biol Chem, 284, 3563-3576.
PDB codes: 2v4s 2v4t 2w8k 2w8l
19440206 K.N.Kirouac, and H.Ling (2009).
Structural basis of error-prone replication and stalling at a thymine base by human DNA polymerase iota.
  EMBO J, 28, 1644-1654.
PDB codes: 3gv5 3gv7 3gv8
19258535 L.S.Waters, B.K.Minesinger, M.E.Wiltrout, S.D'Souza, R.V.Woodruff, and G.C.Walker (2009).
Eukaryotic translesion polymerases and their roles and regulation in DNA damage tolerance.
  Microbiol Mol Biol Rev, 73, 134-154.  
19446528 O.Rechkoblit, L.Malinina, Y.Cheng, N.E.Geacintov, S.Broyde, and D.J.Patel (2009).
Impact of conformational heterogeneity of OxoG lesions and their pairing partners on bypass fidelity by Y family polymerases.
  Structure, 17, 725-736.
PDB codes: 3gii 3gij 3gik 3gil 3gim
19564618 O.Ziv, N.Geacintov, S.Nakajima, A.Yasui, and Z.Livneh (2009).
DNA polymerase zeta cooperates with polymerases kappa and iota in translesion DNA synthesis across pyrimidine photodimers in cells from XPV patients.
  Proc Natl Acad Sci U S A, 106, 11552-11557.  
19364137 P.Xu, L.Oum, Y.C.Lee, N.E.Geacintov, and S.Broyde (2009).
Visualizing sequence-governed nucleotide selectivities and mutagenic consequences through a replicative cycle: processing of a bulky carcinogen N2-dG lesion in a Y-family DNA polymerase.
  Biochemistry, 48, 4677-4690.  
19188081 S.Chandani, and E.L.Loechler (2009).
Y-Family DNA polymerases may use two different dNTP shapes for insertion: a hypothesis and its implications.
  J Mol Graph Model, 27, 759-769.  
19124465 S.M.Sherrer, J.A.Brown, L.R.Pack, V.P.Jasti, J.D.Fowler, A.K.Basu, and Z.Suo (2009).
Mechanistic Studies of the Bypass of a Bulky Single-base Lesion Catalyzed by a Y-family DNA Polymerase.
  J Biol Chem, 284, 6379-6388.  
18368133 H.Inui, K.S.Oh, C.Nadem, T.Ueda, S.G.Khan, A.Metin, E.Gozukara, S.Emmert, H.Slor, D.B.Busch, C.C.Baker, J.J.DiGiovanna, D.Tamura, C.S.Seitz, A.Gratchev, W.H.Wu, K.Y.Chung, H.J.Chung, E.Azizi, R.Woodgate, T.D.Schneider, and K.H.Kraemer (2008).
Xeroderma pigmentosum-variant patients from America, Europe, and Asia.
  J Invest Dermatol, 128, 2055-2068.  
18499711 J.A.Brown, S.A.Newmister, K.A.Fiala, and Z.Suo (2008).
Mechanism of double-base lesion bypass catalyzed by a Y-family DNA polymerase.
  Nucleic Acids Res, 36, 3867-3878.  
18616289 L.DeCarlo, A.S.Gowda, Z.Suo, and T.E.Spratt (2008).
Formation of purine-purine mispairs by Sulfolobus solfataricus DNA polymerase IV.
  Biochemistry, 47, 8157-8164.  
19074258 R.Pokorny, T.Klar, U.Hennecke, T.Carell, A.Batschauer, and L.O.Essen (2008).
Recognition and repair of UV lesions in loop structures of duplex DNA by DASH-type cryptochrome.
  Proc Natl Acad Sci U S A, 105, 21023-21027.
PDB code: 2vtb
18166979 S.D.McCulloch, and T.A.Kunkel (2008).
The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases.
  Cell Res, 18, 148-161.  
18287276 W.J.Allen, P.J.Rothwell, and G.Waksman (2008).
An intramolecular FRET system monitors fingers subdomain opening in Klentaq1.
  Protein Sci, 17, 401-408.  
17951245 A.Irimia, R.L.Eoff, P.S.Pallan, F.P.Guengerich, and M.Egli (2007).
Structure and activity of Y-class DNA polymerase DPO4 from Sulfolobus solfataricus with templates containing the hydrophobic thymine analog 2,4-difluorotoluene.
  J Biol Chem, 282, 36421-36433.
PDB codes: 2v9w 2va2 2va3
17715002 A.N.Sakamoto, J.E.Stone, G.E.Kissling, S.D.McCulloch, Y.I.Pavlov, and T.A.Kunkel (2007).
Mutator alleles of yeast DNA polymerase zeta.
  DNA Repair (Amst), 6, 1829-1838.  
17290000 F.Brueckner, U.Hennecke, T.Carell, and P.Cramer (2007).
CPD damage recognition by transcribing RNA polymerase II.
  Science, 315, 859-862.
PDB codes: 2ja5 2ja6 2ja7 2ja8
17848527 J.Bauer, G.Xing, H.Yagi, J.M.Sayer, D.M.Jerina, and H.Ling (2007).
A structural gap in Dpo4 supports mutagenic bypass of a major benzo[a]pyrene dG adduct in DNA through template misalignment.
  Proc Natl Acad Sci U S A, 104, 14905-14910.
PDB codes: 2ia6 2ibk
17095011 K.A.Fiala, J.A.Brown, H.Ling, A.K.Kshetry, J.Zhang, J.S.Taylor, W.Yang, and Z.Suo (2007).
Mechanism of template-independent nucleotide incorporation catalyzed by a template-dependent DNA polymerase.
  J Mol Biol, 365, 590-602.
PDB code: 2imw
17234630 K.A.Fiala, and Z.Suo (2007).
Sloppy bypass of an abasic lesion catalyzed by a Y-family DNA polymerase.
  J Biol Chem, 282, 8199-8206.  
18496613 M.Garcia-Diaz, and K.Bebenek (2007).
Multiple functions of DNA polymerases.
  CRC Crit Rev Plant Sci, 26, 105-122.  
17090533 R.A.Perlow-Poehnelt, I.Likhterov, L.Wang, D.A.Scicchitano, N.E.Geacintov, and S.Broyde (2007).
Increased flexibility enhances misincorporation: temperature effects on nucleotide incorporation opposite a bulky carcinogen-DNA adduct by a Y-family DNA polymerase.
  J Biol Chem, 282, 1397-1408.  
17264133 R.J.Davies, J.F.Malone, Y.Gan, C.J.Cardin, M.P.Lee, and S.Neidle (2007).
High-resolution crystal structure of the intramolecular d(TpA) thymine-adenine photoadduct and its mechanistic implications.
  Nucleic Acids Res, 35, 1048-1053.  
17468100 R.L.Eoff, A.Irimia, K.C.Angel, M.Egli, and F.P.Guengerich (2007).
Hydrogen bonding of 7,8-dihydro-8-oxodeoxyguanosine with a charged residue in the little finger domain determines miscoding events in Sulfolobus solfataricus DNA polymerase Dpo4.
  J Biol Chem, 282, 19831-19843.
PDB codes: 2uvr 2uvu 2uvv 2uvw
17105728 R.L.Eoff, A.Irimia, M.Egli, and F.P.Guengerich (2007).
Sulfolobus solfataricus DNA polymerase Dpo4 is partially inhibited by "wobble" pairing between O6-methylguanine and cytosine, but accurate bypass is preferred.
  J Biol Chem, 282, 1456-1467.
PDB codes: 2j6s 2j6t 2j6u
17337730 R.L.Eoff, K.C.Angel, M.Egli, and F.P.Guengerich (2007).
Molecular basis of selectivity of nucleoside triphosphate incorporation opposite O6-benzylguanine by sulfolobus solfataricus DNA polymerase Dpo4: steady-state and pre-steady-state kinetics and x-ray crystallography of correct and incorrect pairing.
  J Biol Chem, 282, 13573-13584.
PDB codes: 2jef 2jeg 2jei 2jej
17608453 S.D.McCulloch, A.Wood, P.Garg, P.M.Burgers, and T.A.Kunkel (2007).
Effects of accessory proteins on the bypass of a cis-syn thymine-thymine dimer by Saccharomyces cerevisiae DNA polymerase eta.
  Biochemistry, 46, 8888-8896.  
17317631 S.Lone, S.A.Townson, S.N.Uljon, R.E.Johnson, A.Brahma, D.T.Nair, S.Prakash, L.Prakash, and A.K.Aggarwal (2007).
Human DNA polymerase kappa encircles DNA: implications for mismatch extension and lesion bypass.
  Mol Cell, 25, 601-614.  
17303570 V.J.Cannistraro, and J.S.Taylor (2007).
Ability of polymerase eta and T7 DNA polymerase to bypass bulge structures.
  J Biol Chem, 282, 11188-11196.  
17898175 W.Yang, and R.Woodgate (2007).
What a difference a decade makes: insights into translesion DNA synthesis.
  Proc Natl Acad Sci U S A, 104, 15591-15598.  
17188030 A.R.Lehmann (2006).
New functions for Y family polymerases.
  Mol Cell, 24, 493-495.  
16763556 B.S.Plosky, A.E.Vidal, A.R.Fernández de Henestrosa, M.P.McLenigan, J.P.McDonald, S.Mead, and R.Woodgate (2006).
Controlling the subcellular localization of DNA polymerases iota and eta via interactions with ubiquitin.
  EMBO J, 25, 2847-2855.  
16468818 H.M.Bdour, J.L.Kao, and J.S.Taylor (2006).
Synthesis and characterization of a [3-15N]-labeled cis-syn thymine dimer-containing DNA duplex.
  J Org Chem, 71, 1640-1646.  
16306039 H.Zang, A.Irimia, J.Y.Choi, K.C.Angel, L.V.Loukachevitch, M.Egli, and F.P.Guengerich (2006).
Efficient and high fidelity incorporation of dCTP opposite 7,8-dihydro-8-oxodeoxyguanosine by Sulfolobus solfataricus DNA polymerase Dpo4.
  J Biol Chem, 281, 2358-2372.
PDB codes: 2c22 2c28 2c2d 2c2e 2c2r
16488882 J.P.McDonald, A.Hall, D.Gasparutto, J.Cadet, J.Ballantyne, and R.Woodgate (2006).
Novel thermostable Y-family polymerases: applications for the PCR amplification of damaged or ancient DNAs.
  Nucleic Acids Res, 34, 1102-1111.  
16452300 L.Wang, and S.Broyde (2006).
A new anti conformation for N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (AAF-dG) allows Watson-Crick pairing in the Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4).
  Nucleic Acids Res, 34, 785-795.  
16820532 L.Zhang, O.Rechkoblit, L.Wang, D.J.Patel, R.Shapiro, and S.Broyde (2006).
Mutagenic nucleotide incorporation and hindered translocation by a food carcinogen C8-dG adduct in Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4): modeling and dynamics studies.
  Nucleic Acids Res, 34, 3326-3337.  
16379496 O.Rechkoblit, L.Malinina, Y.Cheng, V.Kuryavyi, S.Broyde, N.E.Geacintov, and D.J.Patel (2006).
Stepwise translocation of Dpo4 polymerase during error-free bypass of an oxoG lesion.
  PLoS Biol, 4, e11.
PDB codes: 2asd 2asj 2asl 2atl 2au0
  16687920 S.A.Nick McElhinny, Y.I.Pavlov, and T.A.Kunkel (2006).
Evidence for extrinsic exonucleolytic proofreading.
  Cell Cycle, 5, 958-962.  
16876489 S.D.McCulloch, and T.A.Kunkel (2006).
Multiple solutions to inefficient lesion bypass by T7 DNA polymerase.
  DNA Repair (Amst), 5, 1373-1383.  
16322565 Y.Wang, K.Arora, and T.Schlick (2006).
Subtle but variable conformational rearrangements in the replication cycle of Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) may accommodate lesion bypass.
  Protein Sci, 15, 135-151.  
16107880 A.Vaisman, H.Ling, R.Woodgate, and W.Yang (2005).
Fidelity of Dpo4: effect of metal ions, nucleotide selection and pyrophosphorolysis.
  EMBO J, 24, 2957-2967.
PDB codes: 2ago 2agp 2agq
16216587 D.T.Nair, R.E.Johnson, L.Prakash, S.Prakash, and A.K.Aggarwal (2005).
Human DNA polymerase iota incorporates dCTP opposite template G via a G.C + Hoogsteen base pair.
  Structure, 13, 1569-1577.
PDB code: 2alz
15548515 G.W.Hsu, X.Huang, N.P.Luneva, N.E.Geacintov, and L.S.Beese (2005).
Structure of a high fidelity DNA polymerase bound to a benzo[a]pyrene adduct that blocks replication.
  J Biol Chem, 280, 3764-3770.
PDB code: 1xc9
15965231 H.Zang, A.K.Goodenough, J.Y.Choi, A.Irimia, L.V.Loukachevitch, I.D.Kozekov, K.C.Angel, C.J.Rizzo, M.Egli, and F.P.Guengerich (2005).
DNA adduct bypass polymerization by Sulfolobus solfataricus DNA polymerase Dpo4: analysis and crystal structures of multiple base pair substitution and frameshift products with the adduct 1,N2-ethenoguanine.
  J Biol Chem, 280, 29750-29764.
PDB codes: 2bq3 2bqr 2bqu 2br0
16061181 P.J.Rothwell, V.Mitaksov, and G.Waksman (2005).
Motions of the fingers subdomain of klentaq1 are fast and not rate limiting: implications for the molecular basis of fidelity in DNA polymerases.
  Mol Cell, 19, 345-355.  
16116089 R.E.Johnson, L.Prakash, and S.Prakash (2005).
Distinct mechanisms of cis-syn thymine dimer bypass by Dpo4 and DNA polymerase eta.
  Proc Natl Acad Sci U S A, 102, 12359-12364.  
16242991 Z.Kelman, and M.F.White (2005).
Archaeal DNA replication and repair.
  Curr Opin Microbiol, 8, 669-676.  
15576622 A.Mees, T.Klar, P.Gnau, U.Hennecke, A.P.Eker, T.Carell, and L.O.Essen (2004).
Crystal structure of a photolyase bound to a CPD-like DNA lesion after in situ repair.
  Science, 306, 1789-1793.
PDB code: 1tez
15024063 A.Niimi, S.Limsirichaikul, S.Yoshida, S.Iwai, C.Masutani, F.Hanaoka, E.T.Kool, Y.Nishiyama, and M.Suzuki (2004).
Palm mutants in DNA polymerases alpha and eta alter DNA replication fidelity and translesion activity.
  Mol Cell Biol, 24, 2734-2746.  
15196456 B.S.Plosky, and R.Woodgate (2004).
Switching from high-fidelity replicases to low-fidelity lesion-bypass polymerases.
  Curr Opin Genet Dev, 14, 113-119.  
15130474 D.Das, and M.M.Georgiadis (2004).
The crystal structure of the monomeric reverse transcriptase from Moloney murine leukemia virus.
  Structure, 12, 819-829.
PDB codes: 1rw3 4mh8
15155753 F.Boudsocq, R.J.Kokoska, B.S.Plosky, A.Vaisman, H.Ling, T.A.Kunkel, W.Yang, and R.Woodgate (2004).
Investigating the role of the little finger domain of Y-family DNA polymerases in low fidelity synthesis and translesion replication.
  J Biol Chem, 279, 32932-32940.  
15385534 G.W.Hsu, J.R.Kiefer, D.Burnouf, O.J.Becherel, R.P.Fuchs, and L.S.Beese (2004).
Observing translesion synthesis of an aromatic amine DNA adduct by a high-fidelity DNA polymerase.
  J Biol Chem, 279, 50280-50285.
PDB codes: 1ua0 1ua1
15322558 G.W.Hsu, M.Ober, T.Carell, and L.S.Beese (2004).
Error-prone replication of oxidatively damaged DNA by a high-fidelity DNA polymerase.
  Nature, 431, 217-221.
PDB codes: 1u45 1u47 1u48 1u49 1u4b
15020710 K.Takasawa, C.Masutani, F.Hanaoka, and S.Iwai (2004).
Chemical synthesis and translesion replication of a cis-syn cyclobutane thymine-uracil dimer.
  Nucleic Acids Res, 32, 1738-1745.  
15057283 M.Hogg, S.S.Wallace, and S.Doublié (2004).
Crystallographic snapshots of a replicative DNA polymerase encountering an abasic site.
  EMBO J, 23, 1483-1493.
PDB codes: 1rv2 2p5o
15186765 O.Fleck, and P.Schär (2004).
Translesion DNA synthesis: little fingers teach tolerance.
  Curr Biol, 14, R389-R391.  
15210693 R.A.Perlow-Poehnelt, I.Likhterov, D.A.Scicchitano, N.E.Geacintov, and S.Broyde (2004).
The spacious active site of a Y-family DNA polymerase facilitates promiscuous nucleotide incorporation opposite a bulky carcinogen-DNA adduct: elucidating the structure-function relationship through experimental and computational approaches.
  J Biol Chem, 279, 36951-36961.  
15569147 R.Kusumoto, C.Masutani, S.Shimmyo, S.Iwai, and F.Hanaoka (2004).
DNA binding properties of human DNA polymerase eta: implications for fidelity and polymerase switching of translesion synthesis.
  Genes Cells, 9, 1139-1150.  
14999287 S.D.McCulloch, R.J.Kokoska, C.Masutani, S.Iwai, F.Hanaoka, and T.A.Kunkel (2004).
Preferential cis-syn thymine dimer bypass by DNA polymerase eta occurs with biased fidelity.
  Nature, 428, 97.  
15333698 S.D.McCulloch, R.J.Kokoska, O.Chilkova, C.M.Welch, E.Johansson, P.M.Burgers, and T.A.Kunkel (2004).
Enzymatic switching for efficient and accurate translesion DNA replication.
  Nucleic Acids Res, 32, 4665-4675.  
15296733 S.N.Uljon, R.E.Johnson, T.A.Edwards, S.Prakash, L.Prakash, and A.K.Aggarwal (2004).
Crystal structure of the catalytic core of human DNA polymerase kappa.
  Structure, 12, 1395-1404.
PDB code: 1t94
14988392 T.A.Kunkel (2004).
DNA replication fidelity.
  J Biol Chem, 279, 16895-16898.  
15235589 Y.Li, S.Dutta, S.Doublié, H.M.Bdour, J.S.Taylor, and T.Ellenberger (2004).
Nucleotide insertion opposite a cis-syn thymine dimer by a replicative DNA polymerase from bacteriophage T7.
  Nat Struct Mol Biol, 11, 784-790.
PDB codes: 1skr 1sks 1skw 1sl0 1sl1 1sl2
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer