 |
PDBsum entry 1svb
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Viral protein
|
PDB id
|
|
|
|
1svb
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class 1:
|
 |
E.C.2.1.1.56
- mRNA (guanine-N(7))-methyltransferase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
a 5'-end (5'-triphosphoguanosine)-ribonucleoside in mRNA + S-adenosyl-L- methionine = a 5'-end (N(7)-methyl 5'-triphosphoguanosine)-ribonucleoside in mRNA + S-adenosyl-L-homocysteine
|
 |
 |
 |
 |
 |
5'-end (5'-triphosphoguanosine)-ribonucleoside in mRNA
|
+
|
S-adenosyl-L- methionine
|
=
|
5'-end (N(7)-methyl 5'-triphosphoguanosine)-ribonucleoside in mRNA
|
+
|
S-adenosyl-L-homocysteine
|
|
 |
 |
 |
 |
 |
 |
 |
 |
Enzyme class 2:
|
 |
E.C.2.1.1.57
- methyltransferase cap1.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
a 5'-end (N(7)-methyl 5'-triphosphoguanosine)-ribonucleoside in mRNA + S-adenosyl-L-methionine = a 5'-end (N(7)-methyl 5'-triphosphoguanosine)- (2'-O-methyl-ribonucleoside) in mRNA + S-adenosyl-L-homocysteine + H+
|
 |
 |
 |
 |
 |
5'-end (N(7)-methyl 5'-triphosphoguanosine)-ribonucleoside in mRNA
|
+
|
S-adenosyl-L-methionine
|
=
|
5'-end (N(7)-methyl 5'-triphosphoguanosine)- (2'-O-methyl-ribonucleoside) in mRNA
|
+
|
S-adenosyl-L-homocysteine
|
+
|
H(+)
|
|
 |
 |
 |
 |
 |
 |
 |
 |
Enzyme class 3:
|
 |
E.C.2.7.7.48
- RNA-directed Rna polymerase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
RNA(n) + a ribonucleoside 5'-triphosphate = RNA(n+1) + diphosphate
|
 |
 |
 |
 |
 |
RNA(n)
|
+
|
ribonucleoside 5'-triphosphate
|
=
|
RNA(n+1)
|
+
|
diphosphate
|
|
 |
 |
 |
 |
 |
 |
 |
 |
Enzyme class 4:
|
 |
E.C.3.4.21.91
- flavivirin.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
Selective hydrolysis of Xaa-Xaa-|-Xbb bonds in which each of the Xaa can be either Arg or Lys and Xbb can be either Ser or Ala.
|
 |
 |
 |
 |
 |
Enzyme class 5:
|
 |
E.C.3.6.1.15
- nucleoside-triphosphate phosphatase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
a ribonucleoside 5'-triphosphate + H2O = a ribonucleoside 5'-diphosphate + phosphate + H+
|
 |
 |
 |
 |
 |
ribonucleoside 5'-triphosphate
|
+
|
H2O
|
=
|
ribonucleoside 5'-diphosphate
|
+
|
phosphate
|
+
|
H(+)
|
|
 |
 |
 |
 |
 |
 |
 |
 |
Enzyme class 6:
|
 |
E.C.3.6.4.13
- Rna helicase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
ATP + H2O = ADP + phosphate + H+
|
 |
 |
 |
 |
 |
ATP
|
+
|
H2O
|
=
|
ADP
Bound ligand (Het Group name = )
matches with 41.38% similarity
|
+
|
phosphate
|
+
|
H(+)
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Note, where more than one E.C. class is given (as above), each may
correspond to a different protein domain or, in the case of polyprotein
precursors, to a different mature protein.
|
|
 |
|
Molecule diagrams generated from .mol files obtained from the
KEGG ftp site
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
| |
|
|
Nature
375:291-298
(1995)
|
|
PubMed id:
|
|
|
|
|
| |
|
The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution.
|
|
F.A.Rey,
F.X.Heinz,
C.Mandl,
C.Kunz,
S.C.Harrison.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The crystallographically determined structure of a soluble fragment from the
major envelope protein of a flavivirus reveals an unusual architecture. The
flat, elongated dimer extends in a direction that would be parallel to the viral
membrane. Residues that influence binding of monoclonal antibodies lie on the
outward-facing surface of the protein. The clustering of mutations that affect
virulence in various flaviviruses indicates a possible receptor binding site
and, together with other mutational and biochemical data, suggests a picture for
the fusion-activating, conformational change triggered by low pH.
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
R.M.DuBois,
M.C.Vaney,
M.A.Tortorici,
R.A.Kurdi,
G.Barba-Spaeth,
T.Krey,
and
F.A.Rey
(2013).
Functional and evolutionary insight from the crystal structure of rubella virus protein E1.
|
| |
Nature,
493,
552-556.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Ikawa-Yoshida,
K.Yoshii,
K.Kuwahara,
M.Obara,
H.Kariwa,
and
I.Takashima
(2011).
Development of an ELISA system for tick-borne encephalitis virus infection in rodents.
|
| |
Microbiol Immunol,
55,
100-107.
|
 |
|
|
|
|
 |
A.Umamaheswari,
M.M.Kumar,
D.Pradhan,
and
H.Marisetty
(2011).
Docking studies towards exploring antiviral compounds against envelope protein of yellow fever virus.
|
| |
Interdiscip Sci,
3,
64-77.
|
 |
|
|
|
|
 |
B.R.Murphy,
and
S.S.Whitehead
(2011).
Immune response to dengue virus and prospects for a vaccine.
|
| |
Annu Rev Immunol,
29,
587-619.
|
 |
|
|
|
|
 |
D.W.Beasley
(2011).
Vaccines and immunotherapeutics for the prevention and treatment of infections with West Nile virus.
|
| |
Immunotherapy,
3,
269-285.
|
 |
|
|
|
|
 |
N.Cifuentes-Muñoz,
G.P.Barriga,
P.D.Valenzuela,
and
N.D.Tischler
(2011).
Aromatic and polar residues spanning the candidate fusion peptide of the Andes virus Gc protein are essential for membrane fusion and infection.
|
| |
J Gen Virol,
92,
552-563.
|
 |
|
|
|
|
 |
R.Gäumann,
D.Růžek,
K.Mühlemann,
M.Strasser,
and
C.M.Beuret
(2011).
Phylogenetic and virulence analysis of tick-borne encephalitis virus field isolates from Switzerland.
|
| |
J Med Virol,
83,
853-863.
|
 |
|
|
|
|
 |
S.Butrapet,
T.Childers,
K.J.Moss,
S.M.Erb,
B.E.Luy,
A.E.Calvert,
C.D.Blair,
J.T.Roehrig,
and
C.Y.Huang
(2011).
Amino acid changes within the E protein hinge region that affect dengue virus type 2 infectivity and fusion.
|
| |
Virology,
413,
118-127.
|
 |
|
|
|
|
 |
S.Indu,
V.Kochat,
S.Thakurela,
C.Ramakrishnan,
and
R.Varadarajan
(2011).
Conformational analysis and design of cross-strand disulfides in antiparallel β-sheets.
|
| |
Proteins,
79,
244-260.
|
 |
|
|
|
|
 |
A.G.Schmidt,
P.L.Yang,
and
S.C.Harrison
(2010).
Peptide inhibitors of dengue-virus entry target a late-stage fusion intermediate.
|
| |
PLoS Pathog,
6,
e1000851.
|
 |
|
|
|
|
 |
A.J.Schuh,
L.Li,
R.B.Tesh,
B.L.Innis,
and
A.D.Barrett
(2010).
Genetic characterization of early isolates of Japanese encephalitis virus: genotype II has been circulating since at least 1951.
|
| |
J Gen Virol,
91,
95.
|
 |
|
|
|
|
 |
A.Ko,
E.W.Lee,
J.Y.Yeh,
M.R.Yang,
W.Oh,
J.S.Moon,
and
J.Song
(2010).
MKRN1 induces degradation of West Nile virus capsid protein by functioning as an E3 ligase.
|
| |
J Virol,
84,
426-436.
|
 |
|
|
|
|
 |
A.Zheng,
M.Umashankar,
and
M.Kielian
(2010).
In vitro and in vivo studies identify important features of dengue virus pr-E protein interactions.
|
| |
PLoS Pathog,
6,
e1001157.
|
 |
|
|
|
|
 |
B.Kaufmann,
M.R.Vogt,
J.Goudsmit,
H.A.Holdaway,
A.A.Aksyuk,
P.R.Chipman,
R.J.Kuhn,
M.S.Diamond,
and
M.G.Rossmann
(2010).
Neutralization of West Nile virus by cross-linking of its surface proteins with Fab fragments of the human monoclonal antibody CR4354.
|
| |
Proc Natl Acad Sci U S A,
107,
18950-18955.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
B.Shrestha,
J.D.Brien,
S.Sukupolvi-Petty,
S.K.Austin,
M.A.Edeling,
T.Kim,
K.M.O'Brien,
C.A.Nelson,
S.Johnson,
D.H.Fremont,
and
M.S.Diamond
(2010).
The development of therapeutic antibodies that neutralize homologous and heterologous genotypes of dengue virus type 1.
|
| |
PLoS Pathog,
6,
e1000823.
|
 |
|
|
|
|
 |
C.J.Baldick,
M.J.Wichroski,
A.Pendri,
A.W.Walsh,
J.Fang,
C.E.Mazzucco,
K.A.Pokornowski,
R.E.Rose,
B.J.Eggers,
M.Hsu,
W.Zhai,
G.Zhai,
S.W.Gerritz,
M.A.Poss,
N.A.Meanwell,
M.I.Cockett,
and
D.J.Tenney
(2010).
A novel small molecule inhibitor of hepatitis C virus entry.
|
| |
PLoS Pathog,
6,
0.
|
 |
|
|
|
|
 |
E.Lee,
S.K.Leang,
A.Davidson,
and
M.Lobigs
(2010).
Both E protein glycans adversely affect dengue virus infectivity but are beneficial for virion release.
|
| |
J Virol,
84,
5171-5180.
|
 |
|
|
|
|
 |
G.D.Ebel
(2010).
Update on Powassan virus: emergence of a North American tick-borne flavivirus.
|
| |
Annu Rev Entomol,
55,
95.
|
 |
|
|
|
|
 |
H.L.Chen,
S.Y.Her,
K.C.Huang,
H.T.Cheng,
C.W.Wu,
S.C.Wu,
and
J.W.Cheng
(2010).
Identification of a heparin binding peptide from the Japanese encephalitis virus envelope protein.
|
| |
Biopolymers,
94,
331-338.
|
 |
|
|
|
|
 |
I.A.Rodenhuis-Zybert,
J.Wilschut,
and
J.M.Smit
(2010).
Dengue virus life cycle: viral and host factors modulating infectivity.
|
| |
Cell Mol Life Sci,
67,
2773-2786.
|
 |
|
|
|
|
 |
J.E.Voss,
M.C.Vaney,
S.Duquerroy,
C.Vonrhein,
C.Girard-Blanc,
E.Crublet,
A.Thompson,
G.Bricogne,
and
F.A.Rey
(2010).
Glycoprotein organization of Chikungunya virus particles revealed by X-ray crystallography.
|
| |
Nature,
468,
709-712.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.Hepojoki,
T.Strandin,
A.Vaheri,
and
H.Lankinen
(2010).
Interactions and oligomerization of hantavirus glycoproteins.
|
| |
J Virol,
84,
227-242.
|
 |
|
|
|
|
 |
J.M.Costin,
E.Jenwitheesuk,
S.M.Lok,
E.Hunsperger,
K.A.Conrads,
K.A.Fontaine,
C.R.Rees,
M.G.Rossmann,
S.Isern,
R.Samudrala,
and
S.F.Michael
(2010).
Structural optimization and de novo design of dengue virus entry inhibitory peptides.
|
| |
PLoS Negl Trop Dis,
4,
e721.
|
 |
|
|
|
|
 |
J.S.Schieffelin,
J.M.Costin,
C.O.Nicholson,
N.M.Orgeron,
K.A.Fontaine,
S.Isern,
S.F.Michael,
and
J.E.Robinson
(2010).
Neutralizing and non-neutralizing monoclonal antibodies against dengue virus E protein derived from a naturally infected patient.
|
| |
Virol J,
7,
28.
|
 |
|
|
|
|
 |
K.Matsui,
G.D.Gromowski,
L.Li,
and
A.D.Barrett
(2010).
Characterization of a dengue type-specific epitope on dengue 3 virus envelope protein domain III.
|
| |
J Gen Virol,
91,
2249-2253.
|
 |
|
|
|
|
 |
M.D.Dunn,
S.L.Rossi,
D.M.Carter,
M.R.Vogt,
E.Mehlhop,
M.S.Diamond,
and
T.M.Ross
(2010).
Enhancement of anti-DIII antibodies by the C3d derivative P28 results in lower viral titers and augments protection in mice.
|
| |
Virol J,
7,
95.
|
 |
|
|
|
|
 |
M.Kielian,
C.Chanel-Vos,
and
M.Liao
(2010).
Alphavirus Entry and Membrane Fusion.
|
| |
Viruses,
2,
796-825.
|
 |
|
|
|
|
 |
P.Danecek,
W.Lu,
and
C.H.Schein
(2010).
PCP consensus sequences of flaviviruses: correlating variance with vector competence and disease phenotype.
|
| |
J Mol Biol,
396,
550-563.
|
 |
|
|
|
|
 |
R.M.Markosyan,
and
F.S.Cohen
(2010).
Negative potentials across biological membranes promote fusion by class II and class III viral proteins.
|
| |
Mol Biol Cell,
21,
2001-2012.
|
 |
|
|
|
|
 |
S.C.Hsieh,
W.Y.Tsai,
and
W.K.Wang
(2010).
The length of and nonhydrophobic residues in the transmembrane domain of dengue virus envelope protein are critical for its retention and assembly in the endoplasmic reticulum.
|
| |
J Virol,
84,
4782-4797.
|
 |
|
|
|
|
 |
S.R.Kumar,
J.A.Patil,
D.Cecilia,
S.S.Cherian,
P.V.Barde,
A.M.Walimbe,
P.D.Yadav,
P.N.Yergolkar,
P.S.Shah,
V.S.Padbidri,
A.C.Mishra,
and
D.T.Mourya
(2010).
Evolution, dispersal and replacement of American genotype dengue type 2 viruses in India (1956-2005): selection pressure and molecular clock analyses.
|
| |
J Gen Virol,
91,
707-720.
|
 |
|
|
|
|
 |
W.M.Wahala,
E.F.Donaldson,
R.de Alwis,
M.A.Accavitti-Loper,
R.S.Baric,
and
A.M.de Silva
(2010).
Natural strain variation and antibody neutralization of dengue serotype 3 viruses.
|
| |
PLoS Pathog,
6,
e1000821.
|
 |
|
|
|
|
 |
Y.T.Shih,
C.F.Yang,
and
W.J.Chen
(2010).
Upregulation of a novel eukaryotic translation initiation factor 5A (eIF5A) in dengue 2 virus-infected mosquito cells.
|
| |
Virol J,
7,
214.
|
 |
|
|
|
|
 |
A.A.Amarilla,
F.T.de Almeida,
D.M.Jorge,
H.L.Alfonso,
L.A.de Castro-Jorge,
N.A.Nogueira,
L.T.Figueiredo,
and
V.H.Aquino
(2009).
Genetic diversity of the E protein of dengue type 3 virus.
|
| |
Virol J,
6,
113.
|
 |
|
|
|
|
 |
B.Kaufmann,
P.R.Chipman,
H.A.Holdaway,
S.Johnson,
D.H.Fremont,
R.J.Kuhn,
M.S.Diamond,
and
M.G.Rossmann
(2009).
Capturing a flavivirus pre-fusion intermediate.
|
| |
PLoS Pathog,
5,
e1000672.
|
 |
|
|
|
|
 |
B.S.Thompson,
B.Moesker,
J.M.Smit,
J.Wilschut,
M.S.Diamond,
and
D.H.Fremont
(2009).
A therapeutic antibody against west nile virus neutralizes infection by blocking fusion within endosomes.
|
| |
PLoS Pathog,
5,
e1000453.
|
 |
|
|
|
|
 |
C.E.Garry,
and
R.F.Garry
(2009).
Proteomics computational analyses suggest that the bornavirus glycoprotein is a class III viral fusion protein (gamma penetrene).
|
| |
Virol J,
6,
145.
|
 |
|
|
|
|
 |
C.Sánchez-San Martín,
C.Y.Liu,
and
M.Kielian
(2009).
Dealing with low pH: entry and exit of alphaviruses and flaviviruses.
|
| |
Trends Microbiol,
17,
514-521.
|
 |
|
|
|
|
 |
D.E.Volk,
F.J.May,
S.H.Gandham,
A.Anderson,
J.J.Von Lindern,
D.W.Beasley,
A.D.Barrett,
and
D.G.Gorenstein
(2009).
Structure of yellow fever virus envelope protein domain III.
|
| |
Virology,
394,
12-18.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.Mudhakir,
and
H.Harashima
(2009).
Learning from the viral journey: how to enter cells and how to overcome intracellular barriers to reach the nucleus.
|
| |
AAPS J,
11,
65-77.
|
 |
|
|
|
|
 |
G.Añez,
R.Men,
K.H.Eckels,
and
C.J.Lai
(2009).
Passage of dengue virus type 4 vaccine candidates in fetal rhesus lung cells selects heparin-sensitive variants that result in loss of infectivity and immunogenicity in rhesus macaques.
|
| |
J Virol,
83,
10384-10394.
|
 |
|
|
|
|
 |
H.F.Li,
C.H.Huang,
L.S.Ai,
C.K.Chuang,
and
S.S.Chen
(2009).
Mutagenesis of the fusion peptide-like domain of hepatitis C virus E1 glycoprotein: involvement in cell fusion and virus entry.
|
| |
J Biomed Sci,
16,
89.
|
 |
|
|
|
|
 |
I.M.Yu,
H.A.Holdaway,
P.R.Chipman,
R.J.Kuhn,
M.G.Rossmann,
and
J.Chen
(2009).
Association of the pr peptides with dengue virus at acidic pH blocks membrane fusion.
|
| |
J Virol,
83,
12101-12107.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.E.Lee,
and
E.O.Saphire
(2009).
Neutralizing ebolavirus: structural insights into the envelope glycoprotein and antibodies targeted against it.
|
| |
Curr Opin Struct Biol,
19,
408-417.
|
 |
|
|
|
|
 |
J.E.Lee,
and
E.O.Saphire
(2009).
Ebolavirus glycoprotein structure and mechanism of entry.
|
| |
Future Virol,
4,
621-635.
|
 |
|
|
|
|
 |
J.Jose,
J.E.Snyder,
and
R.J.Kuhn
(2009).
A structural and functional perspective of alphavirus replication and assembly.
|
| |
Future Microbiol,
4,
837-856.
|
 |
|
|
|
|
 |
K.L.Mansfield,
N.Johnson,
L.P.Phipps,
J.R.Stephenson,
A.R.Fooks,
and
T.Solomon
(2009).
Tick-borne encephalitis virus - a review of an emerging zoonosis.
|
| |
J Gen Virol,
90,
1781-1794.
|
 |
|
|
|
|
 |
L.Bernardo,
O.Fleitas,
A.Pavón,
L.Hermida,
G.Guillén,
and
M.G.Guzman
(2009).
Antibodies induced by dengue virus type 1 and 2 envelope domain III recombinant proteins in monkeys neutralize strains with different genotypes.
|
| |
Clin Vaccine Immunol,
16,
1829-1831.
|
 |
|
|
|
|
 |
M.A.Khasnatinov,
K.Ustanikova,
T.V.Frolova,
V.V.Pogodina,
N.G.Bochkova,
L.S.Levina,
M.Slovak,
M.Kazimirova,
M.Labuda,
B.Klempa,
E.Eleckova,
E.A.Gould,
and
T.S.Gritsun
(2009).
Non-hemagglutinating flaviviruses: molecular mechanisms for the emergence of new strains via adaptation to European ticks.
|
| |
PLoS One,
4,
e7295.
|
 |
|
|
|
|
 |
M.B.Crabtree,
P.T.Nga,
and
B.R.Miller
(2009).
Isolation and characterization of a new mosquito flavivirus, Quang Binh virus, from Vietnam.
|
| |
Arch Virol,
154,
857-860.
|
 |
|
|
|
|
 |
M.B.Sherman,
A.N.Freiberg,
M.R.Holbrook,
and
S.J.Watowich
(2009).
Single-particle cryo-electron microscopy of Rift Valley fever virus.
|
| |
Virology,
387,
11-15.
|
 |
|
|
|
|
 |
M.Backovic,
and
T.S.Jardetzky
(2009).
Class III viral membrane fusion proteins.
|
| |
Curr Opin Struct Biol,
19,
189-196.
|
 |
|
|
|
|
 |
M.R.Vogt,
B.Moesker,
J.Goudsmit,
M.Jongeneelen,
S.K.Austin,
T.Oliphant,
S.Nelson,
T.C.Pierson,
J.Wilschut,
M.Throsby,
and
M.S.Diamond
(2009).
Human monoclonal antibodies against West Nile virus induced by natural infection neutralize at a postattachment step.
|
| |
J Virol,
83,
6494-6507.
|
 |
|
|
|
|
 |
M.S.Diamond
(2009).
Progress on the development of therapeutics against West Nile virus.
|
| |
Antiviral Res,
83,
214-227.
|
 |
|
|
|
|
 |
M.V.Cherrier,
B.Kaufmann,
G.E.Nybakken,
S.M.Lok,
J.T.Warren,
B.R.Chen,
C.A.Nelson,
V.A.Kostyuchenko,
H.A.Holdaway,
P.R.Chipman,
R.J.Kuhn,
M.S.Diamond,
M.G.Rossmann,
and
D.H.Fremont
(2009).
Structural basis for the preferential recognition of immature flaviviruses by a fusion-loop antibody.
|
| |
EMBO J,
28,
3269-3276.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
Q.Y.Wang,
S.J.Patel,
E.Vangrevelinghe,
H.Y.Xu,
R.Rao,
D.Jaber,
W.Schul,
F.Gu,
O.Heudi,
N.L.Ma,
M.K.Poh,
W.Y.Phong,
T.H.Keller,
E.Jacoby,
and
S.G.Vasudevan
(2009).
A small-molecule dengue virus entry inhibitor.
|
| |
Antimicrob Agents Chemother,
53,
1823-1831.
|
 |
|
|
|
|
 |
R.Rajamanonmani,
C.Nkenfou,
P.Clancy,
Y.H.Yau,
S.G.Shochat,
S.Sukupolvi-Petty,
W.Schul,
M.S.Diamond,
S.G.Vasudevan,
and
J.Lescar
(2009).
On a mouse monoclonal antibody that neutralizes all four dengue virus serotypes.
|
| |
J Gen Virol,
90,
799-809.
|
 |
|
|
|
|
 |
R.Yennamalli,
N.Subbarao,
T.Kampmann,
R.P.McGeary,
P.R.Young,
and
B.Kobe
(2009).
Identification of novel target sites and an inhibitor of the dengue virus E protein.
|
| |
J Comput Aided Mol Des,
23,
333-341.
|
 |
|
|
|
|
 |
S.Kiermayr,
K.Stiasny,
and
F.X.Heinz
(2009).
Impact of quaternary organization on the antigenic structure of the tick-borne encephalitis virus envelope glycoprotein E.
|
| |
J Virol,
83,
8482-8491.
|
 |
|
|
|
|
 |
S.M.Yun,
S.Y.Kim,
M.G.Han,
Y.E.Jeong,
T.S.Yong,
C.H.Lee,
and
Y.R.Ju
(2009).
Analysis of the envelope (E) protein gene of tick-borne encephalitis viruses isolated in South Korea.
|
| |
Vector Borne Zoonotic Dis,
9,
287-293.
|
 |
|
|
|
|
 |
T.Duan,
M.Ferguson,
L.Yuan,
F.Xu,
and
G.Li
(2009).
Human Monoclonal Fab Antibodies Against West Nile Virus and its Neutralizing Activity Analyzed in Vitro and in Vivo.
|
| |
J Antivir Antiretrovir,
1,
36-42.
|
 |
|
|
|
|
 |
V.Nayak,
M.Dessau,
K.Kucera,
K.Anthony,
M.Ledizet,
and
Y.Modis
(2009).
Crystal structure of dengue virus type 1 envelope protein in the postfusion conformation and its implications for membrane fusion.
|
| |
J Virol,
83,
4338-4344.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
W.D.Crill,
H.R.Hughes,
M.J.Delorey,
and
G.J.Chang
(2009).
Humoral immune responses of dengue fever patients using epitope-specific serotype-2 virus-like particle antigens.
|
| |
PLoS ONE,
4,
e4991.
|
 |
|
|
|
|
 |
W.M.Wahala,
A.A.Kraus,
L.B.Haymore,
M.A.Accavitti-Loper,
and
A.M.de Silva
(2009).
Dengue virus neutralization by human immune sera: role of envelope protein domain III-reactive antibody.
|
| |
Virology,
392,
103-113.
|
 |
|
|
|
|
 |
Z.L.Qin,
Y.Zheng,
and
M.Kielian
(2009).
Role of conserved histidine residues in the low-pH dependence of the Semliki Forest virus fusion protein.
|
| |
J Virol,
83,
4670-4677.
|
 |
|
|
|
|
 |
A.C.Sim,
W.Lin,
G.K.Tan,
M.S.Sim,
V.T.Chow,
and
S.Alonso
(2008).
Induction of neutralizing antibodies against dengue virus type 2 upon mucosal administration of a recombinant Lactococcus lactis strain expressing envelope domain III antigen.
|
| |
Vaccine,
26,
1145-1154.
|
 |
|
|
|
|
 |
A.P.Goncalvez,
C.H.Chien,
K.Tubthong,
I.Gorshkova,
C.Roll,
O.Donau,
P.Schuck,
S.Yoksan,
S.D.Wang,
R.H.Purcell,
and
C.J.Lai
(2008).
Humanized monoclonal antibodies derived from chimpanzee Fabs protect against Japanese encephalitis virus in vitro and in vivo.
|
| |
J Virol,
82,
7009-7021.
|
 |
|
|
|
|
 |
A.V.Abhyankar,
R.Bhargava,
A.M.Jana,
A.K.Sahni,
and
P.V.Rao
(2008).
Production and characterization of monoclonal antibody specific to recombinant dengue multi-epitope protein.
|
| |
Hybridoma (Larchmt),
27,
191-198.
|
 |
|
|
|
|
 |
C.E.Garry,
and
R.F.Garry
(2008).
Proteomics computational analyses suggest that baculovirus GP64 superfamily proteins are class III penetrenes.
|
| |
Virol J,
5,
28.
|
 |
|
|
|
|
 |
C.J.Lee,
H.R.Lin,
C.L.Liao,
and
Y.L.Lin
(2008).
Cholesterol effectively blocks entry of flavivirus.
|
| |
J Virol,
82,
6470-6480.
|
 |
|
|
|
|
 |
C.Puttikhunt,
P.Keelapang,
N.Khemnu,
N.Sittisombut,
W.Kasinrerk,
and
P.Malasit
(2008).
Novel anti-dengue monoclonal antibody recognizing conformational structure of the prM-E heterodimeric complex of dengue virus.
|
| |
J Med Virol,
80,
125-133.
|
 |
|
|
|
|
 |
C.Sánchez-San Martín,
H.Sosa,
and
M.Kielian
(2008).
A stable prefusion intermediate of the alphavirus fusion protein reveals critical features of class II membrane fusion.
|
| |
Cell Host Microbe,
4,
600-608.
|
 |
|
|
|
|
 |
C.W.Lin,
K.T.Liu,
H.D.Huang,
and
W.J.Chen
(2008).
Protective immunity of E. coli-synthesized NS1 protein of Japanese encephalitis virus.
|
| |
Biotechnol Lett,
30,
205-214.
|
 |
|
|
|
|
 |
C.Y.Lai,
W.Y.Tsai,
S.R.Lin,
C.L.Kao,
H.P.Hu,
C.C.King,
H.C.Wu,
G.J.Chang,
and
W.K.Wang
(2008).
Antibodies to envelope glycoprotein of dengue virus during the natural course of infection are predominantly cross-reactive and recognize epitopes containing highly conserved residues at the fusion loop of domain II.
|
| |
J Virol,
82,
6631-6643.
|
 |
|
|
|
|
 |
D.E.Volk,
K.M.Anderson,
S.H.Gandham,
F.J.May,
L.Li,
D.W.Beasley,
A.D.Barrett,
and
D.G.Gorenstein
(2008).
NMR assignments of the sylvatic dengue 1 virus envelope protein domain III.
|
| |
Biomol NMR Assign,
2,
155-157.
|
 |
|
|
|
|
 |
D.J.Pierro,
E.L.Powers,
and
K.E.Olson
(2008).
Genetic determinants of Sindbis virus mosquito infection are associated with a highly conserved alphavirus and flavivirus envelope sequence.
|
| |
J Virol,
82,
2966-2974.
|
 |
|
|
|
|
 |
D.N.Mitzel,
S.M.Best,
M.F.Masnick,
S.F.Porcella,
J.B.Wolfinbarger,
and
M.E.Bloom
(2008).
Identification of genetic determinants of a tick-borne flavivirus associated with host-specific adaptation and pathogenicity.
|
| |
Virology,
381,
268-276.
|
 |
|
|
|
|
 |
E.Lee,
and
M.Lobigs
(2008).
E protein domain III determinants of yellow fever virus 17D vaccine strain enhance binding to glycosaminoglycans, impede virus spread, and attenuate virulence.
|
| |
J Virol,
82,
6024-6033.
|
 |
|
|
|
|
 |
I.M.Yu,
W.Zhang,
H.A.Holdaway,
L.Li,
V.A.Kostyuchenko,
P.R.Chipman,
R.J.Kuhn,
M.G.Rossmann,
and
J.Chen
(2008).
Structure of the immature dengue virus at low pH primes proteolytic maturation.
|
| |
Science,
319,
1834-1837.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.M.White,
S.E.Delos,
M.Brecher,
and
K.Schornberg
(2008).
Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme.
|
| |
Crit Rev Biochem Mol Biol,
43,
189-219.
|
 |
|
|
|
|
 |
J.T.Roehrig,
J.Hombach,
and
A.D.Barrett
(2008).
Guidelines for Plaque-Reduction Neutralization Testing of Human Antibodies to Dengue Viruses.
|
| |
Viral Immunol,
21,
123-132.
|
 |
|
|
|
|
 |
K.C.Huang,
M.C.Lee,
C.W.Wu,
K.J.Huang,
H.Y.Lei,
and
J.W.Cheng
(2008).
Solution structure and neutralizing antibody binding studies of domain III of the dengue-2 virus envelope protein.
|
| |
Proteins,
70,
1116-1119.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
L.Li,
S.M.Lok,
I.M.Yu,
Y.Zhang,
R.J.Kuhn,
J.Chen,
and
M.G.Rossmann
(2008).
The flavivirus precursor membrane-envelope protein complex: structure and maturation.
|
| |
Science,
319,
1830-1834.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
L.Lindquist,
and
O.Vapalahti
(2008).
Tick-borne encephalitis.
|
| |
Lancet,
371,
1861-1871.
|
 |
|
|
|
|
 |
M.S.Diamond,
T.C.Pierson,
and
D.H.Fremont
(2008).
The structural immunology of antibody protection against West Nile virus.
|
| |
Immunol Rev,
225,
212-225.
|
 |
|
|
|
|
 |
M.Umashankar,
C.Sánchez-San Martín,
M.Liao,
B.Reilly,
A.Guo,
G.Taylor,
and
M.Kielian
(2008).
Differential cholesterol binding by class II fusion proteins determines membrane fusion properties.
|
| |
J Virol,
82,
9245-9253.
|
 |
|
|
|
|
 |
M.V.Bogachek,
E.V.Protopopova,
V.B.Loktev,
B.N.Zaitsev,
M.Favre,
S.K.Sekatskii,
and
G.Dietler
(2008).
Immunochemical and single molecule force spectroscopy studies of specific interaction between the laminin binding protein and the West Nile virus surface glycoprotein E domain II.
|
| |
J Mol Recognit,
21,
55-62.
|
 |
|
|
|
|
 |
R.A.Maillard,
M.Jordan,
D.W.Beasley,
A.D.Barrett,
and
J.C.Lee
(2008).
Long range communication in the envelope protein domain III and its effect on the resistance of West Nile virus to antibody-mediated neutralization.
|
| |
J Biol Chem,
283,
613-622.
|
 |
|
|
|
|
 |
R.E.Iacob,
I.Perdivara,
M.Przybylski,
and
K.B.Tomer
(2008).
Mass spectrometric characterization of glycosylation of hepatitis C virus E2 envelope glycoprotein reveals extended microheterogeneity of N-glycans.
|
| |
J Am Soc Mass Spectrom,
19,
428-444.
|
 |
|
|
|
|
 |
R.E.Iacob,
Z.Keck,
O.Olson,
S.K.Foung,
and
K.B.Tomer
(2008).
Structural elucidation of critical residues involved in binding of human monoclonal antibodies to hepatitis C virus E2 envelope glycoprotein.
|
| |
Biochim Biophys Acta,
1784,
530-542.
|
 |
|
|
|
|
 |
R.Fritz,
K.Stiasny,
and
F.X.Heinz
(2008).
Identification of specific histidines as pH sensors in flavivirus membrane fusion.
|
| |
J Cell Biol,
183,
353-361.
|
 |
|
|
|
|
 |
R.Perera,
M.Khaliq,
and
R.J.Kuhn
(2008).
Closing the door on flaviviruses: entry as a target for antiviral drug design.
|
| |
Antiviral Res,
80,
11-22.
|
 |
|
|
|
|
 |
S.C.Harrison
(2008).
Viral membrane fusion.
|
| |
Nat Struct Mol Biol,
15,
690-698.
|
 |
|
|
|
|
 |
S.C.Harrison
(2008).
The pH sensor for flavivirus membrane fusion.
|
| |
J Cell Biol,
183,
177-179.
|
 |
|
|
|
|
 |
S.J.Seligman
(2008).
Constancy and diversity in the flavivirus fusion peptide.
|
| |
Virol J,
5,
27.
|
 |
|
|
|
|
 |
S.Kang,
C.Sim,
B.D.Byrd,
F.H.Collins,
and
Y.S.Hong
(2008).
Ex vivo promoter analysis of antiviral heat shock cognate 70B gene in Anopheles gambiae.
|
| |
Virol J,
5,
136.
|
 |
|
|
|
|
 |
S.M.Lok,
V.Kostyuchenko,
G.E.Nybakken,
H.A.Holdaway,
A.J.Battisti,
S.Sukupolvi-Petty,
D.Sedlak,
D.H.Fremont,
P.R.Chipman,
J.T.Roehrig,
M.S.Diamond,
R.J.Kuhn,
and
M.G.Rossmann
(2008).
Binding of a neutralizing antibody to dengue virus alters the arrangement of surface glycoproteins.
|
| |
Nat Struct Mol Biol,
15,
312-317.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.R.Wu,
L.Haag,
M.Sjöberg,
H.Garoff,
and
L.Hammar
(2008).
The dynamic envelope of a fusion class II virus. E3 domain of glycoprotein E2 precursor in Semliki Forest virus provides a unique contact with the fusion protein E1.
|
| |
J Biol Chem,
283,
26452-26460.
|
 |
|
|
|
|
 |
S.S.Chiou,
W.D.Crill,
L.K.Chen,
and
G.J.Chang
(2008).
Enzyme-linked immunosorbent assays using novel Japanese encephalitis virus antigen improve the accuracy of clinical diagnosis of flavivirus infections.
|
| |
Clin Vaccine Immunol,
15,
825-835.
|
 |
|
|
|
|
 |
T.C.Pierson,
and
M.S.Diamond
(2008).
Molecular mechanisms of antibody-mediated neutralisation of flavivirus infection.
|
| |
Expert Rev Mol Med,
10,
e12.
|
 |
|
|
|
|
 |
X.Wu,
L.Lu,
H.Guzman,
R.B.Tesh,
and
S.Y.Xiao
(2008).
Persistent infection and associated nucleotide changes of West Nile virus serially passaged in hamsters.
|
| |
J Gen Virol,
89,
3073-3079.
|
 |
|
|
|
|
 |
Y.J.Chien,
W.J.Chen,
W.L.Hsu,
and
S.S.Chiou
(2008).
Bovine lactoferrin inhibits Japanese encephalitis virus by binding to heparan sulfate and receptor for low density lipoprotein.
|
| |
Virology,
379,
143-151.
|
 |
|
|
|
|
 |
Z.Li,
M.Khaliq,
Z.Zhou,
C.B.Post,
R.J.Kuhn,
and
M.Cushman
(2008).
Design, synthesis, and biological evaluation of antiviral agents targeting flavivirus envelope proteins.
|
| |
J Med Chem,
51,
4660-4671.
|
 |
|
|
|
|
 |
Z.Zhou,
M.Khaliq,
J.E.Suk,
C.Patkar,
L.Li,
R.J.Kuhn,
and
C.B.Post
(2008).
Antiviral compounds discovered by virtual screening of small-molecule libraries against dengue virus E protein.
|
| |
ACS Chem Biol,
3,
765-775.
|
 |
|
|
|
|
 |
A.Reske,
G.Pollara,
C.Krummenacher,
B.M.Chain,
and
D.R.Katz
(2007).
Understanding HSV-1 entry glycoproteins.
|
| |
Rev Med Virol,
17,
205-215.
|
 |
|
|
|
|
 |
Alka,
K.Bharati,
Y.P.Malik,
and
S.Vrati
(2007).
Immunogenicity and protective efficacy of the E. coli-expressed domain III of Japanese encephalitis virus envelope protein in mice.
|
| |
Med Microbiol Immunol,
196,
227-231.
|
 |
|
|
|
|
 |
B.P.Hannah,
E.E.Heldwein,
F.C.Bender,
G.H.Cohen,
and
R.J.Eisenberg
(2007).
Mutational evidence of internal fusion loops in herpes simplex virus glycoprotein B.
|
| |
J Virol,
81,
4858-4865.
|
 |
|
|
|
|
 |
C.G.Patkar,
C.T.Jones,
Y.H.Chang,
R.Warrier,
and
R.J.Kuhn
(2007).
Functional requirements of the yellow fever virus capsid protein.
|
| |
J Virol,
81,
6471-6481.
|
 |
|
|
|
|
 |
C.J.Lai,
A.P.Goncalvez,
R.Men,
C.Wernly,
O.Donau,
R.E.Engle,
and
R.H.Purcell
(2007).
Epitope determinants of a chimpanzee dengue virus type 4 (DENV-4)-neutralizing antibody and protection against DENV-4 challenge in mice and rhesus monkeys by passively transferred humanized antibody.
|
| |
J Virol,
81,
12766-12774.
|
 |
|
|
|
|
 |
D.E.Volk,
Y.C.Lee,
X.Li,
V.Thiviyanathan,
G.D.Gromowski,
L.Li,
A.R.Lamb,
D.W.Beasley,
A.D.Barrett,
and
D.G.Gorenstein
(2007).
Solution structure of the envelope protein domain III of dengue-4 virus.
|
| |
Virology,
364,
147-154.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.Lavillette,
E.I.Pécheur,
P.Donot,
J.Fresquet,
J.Molle,
R.Corbau,
M.Dreux,
F.Penin,
and
F.L.Cosset
(2007).
Characterization of fusion determinants points to the involvement of three discrete regions of both E1 and E2 glycoproteins in the membrane fusion process of hepatitis C virus.
|
| |
J Virol,
81,
8752-8765.
|
 |
|
|
|
|
 |
D.Ludolfs,
M.Niedrig,
J.T.Paweska,
and
H.Schmitz
(2007).
Reverse ELISA for the detection of anti West Nile virus IgG antibodies in humans.
|
| |
Eur J Clin Microbiol Infect Dis,
26,
467-473.
|
 |
|
|
|
|
 |
E.Falkowska,
F.Kajumo,
E.Garcia,
J.Reinus,
and
T.Dragic
(2007).
Hepatitis C virus envelope glycoprotein E2 glycans modulate entry, CD81 binding, and neutralization.
|
| |
J Virol,
81,
8072-8079.
|
 |
|
|
|
|
 |
E.Teissier,
and
E.I.Pécheur
(2007).
Lipids as modulators of membrane fusion mediated by viral fusion proteins.
|
| |
Eur Biophys J,
36,
887-899.
|
 |
|
|
|
|
 |
H.M.van der Schaar,
M.J.Rust,
B.L.Waarts,
H.van der Ende-Metselaar,
R.J.Kuhn,
J.Wilschut,
X.Zhuang,
and
J.M.Smit
(2007).
Characterization of the early events in dengue virus cell entry by biochemical assays and single-virus tracking.
|
| |
J Virol,
81,
12019-12028.
|
 |
|
|
|
|
 |
J.A.Mondotte,
P.Y.Lozach,
A.Amara,
and
A.V.Gamarnik
(2007).
Essential role of dengue virus envelope protein N glycosylation at asparagine-67 during viral propagation.
|
| |
J Virol,
81,
7136-7148.
|
 |
|
|
|
|
 |
J.Bordignon,
D.M.Strottmann,
A.L.Mosimann,
C.M.Probst,
V.Stella,
L.Noronha,
S.M.Zanata,
and
C.N.Dos Santos
(2007).
Dengue neurovirulence in mice: identification of molecular signatures in the E and NS3 helicase domains.
|
| |
J Med Virol,
79,
1506-1517.
|
 |
|
|
|
|
 |
J.M.Yang,
Y.F.Chen,
Y.Y.Tu,
K.R.Yen,
and
Y.L.Yang
(2007).
Combinatorial computational approaches to identify tetracycline derivatives as flavivirus inhibitors.
|
| |
PLoS ONE,
2,
e428.
|
 |
|
|
|
|
 |
J.Ren,
T.Ding,
W.Zhang,
J.Song,
and
W.Ma
(2007).
Does Japanese encephalitis virus share the same cellular receptor with other mosquito-borne flaviviruses on the C6/36 mosquito cells?
|
| |
Virol J,
4,
83.
|
 |
|
|
|
|
 |
K.Stiasny,
C.Kössl,
J.Lepault,
F.A.Rey,
and
F.X.Heinz
(2007).
Characterization of a structural intermediate of flavivirus membrane fusion.
|
| |
PLoS Pathog,
3,
e20.
|
 |
|
|
|
|
 |
K.Stiasny,
S.Brandler,
C.Kössl,
and
F.X.Heinz
(2007).
Probing the flavivirus membrane fusion mechanism by using monoclonal antibodies.
|
| |
J Virol,
81,
11526-11531.
|
 |
|
|
|
|
 |
M.C.Bonaldo,
S.M.Mello,
G.F.Trindade,
A.A.Rangel,
A.S.Duarte,
P.J.Oliveira,
M.S.Freire,
C.F.Kubelka,
and
R.Galler
(2007).
Construction and characterization of recombinant flaviviruses bearing insertions between E and NS1 genes.
|
| |
Virol J,
4,
115.
|
 |
|
|
|
|
 |
M.L.Plassmeyer,
S.S.Soldan,
K.M.Stachelek,
S.M.Roth,
J.Martín-García,
and
F.González-Scarano
(2007).
Mutagenesis of the La Crosse Virus glycoprotein supports a role for Gc (1066-1087) as the fusion peptide.
|
| |
Virology,
358,
273-282.
|
 |
|
|
|
|
 |
M.Throsby,
J.Ter Meulen,
C.Geuijen,
J.Goudsmit,
and
J.de Kruif
(2007).
Mapping and analysis of West Nile virus-specific monoclonal antibodies: prospects for vaccine development.
|
| |
Expert Rev Vaccines,
6,
183-191.
|
 |
|
|
|
|
 |
M.W.Chiu,
H.M.Shih,
T.H.Yang,
and
Y.L.Yang
(2007).
The type 2 dengue virus envelope protein interacts with small ubiquitin-like modifier-1 (SUMO-1) conjugating enzyme 9 (Ubc9).
|
| |
J Biomed Sci,
14,
429-444.
|
 |
|
|
|
|
 |
R.M.Markosyan,
M.Kielian,
and
F.S.Cohen
(2007).
Fusion induced by a class II viral fusion protein, semliki forest virus E1, is dependent on the voltage of the target cell.
|
| |
J Virol,
81,
11218-11225.
|
 |
|
|
|
|
 |
S.Chen,
M.Yu,
T.Jiang,
Y.Deng,
C.Qin,
and
E.Qin
(2007).
Induction of tetravalent protective immunity against four dengue serotypes by the tandem domain III of the envelope protein.
|
| |
DNA Cell Biol,
26,
361-367.
|
 |
|
|
|
|
 |
S.Melino,
and
M.Paci
(2007).
Progress for dengue virus diseases. Towards the NS2B-NS3pro inhibition for a therapeutic-based approach.
|
| |
FEBS J,
274,
2986-3002.
|
 |
|
|
|
|
 |
S.R.Wu,
L.Haag,
L.Hammar,
B.Wu,
H.Garoff,
L.Xing,
K.Murata,
and
R.H.Cheng
(2007).
The dynamic envelope of a fusion class II virus. Prefusion stages of semliki forest virus revealed by electron cryomicroscopy.
|
| |
J Biol Chem,
282,
6752-6762.
|
 |
|
|
|
|
 |
S.Sukupolvi-Petty,
S.K.Austin,
W.E.Purtha,
T.Oliphant,
G.E.Nybakken,
J.J.Schlesinger,
J.T.Roehrig,
G.D.Gromowski,
A.D.Barrett,
D.H.Fremont,
and
M.S.Diamond
(2007).
Type- and subcomplex-specific neutralizing antibodies against domain III of dengue virus type 2 envelope protein recognize adjacent epitopes.
|
| |
J Virol,
81,
12816-12826.
|
 |
|
|
|
|
 |
T.C.Pierson,
Q.Xu,
S.Nelson,
T.Oliphant,
G.E.Nybakken,
D.H.Fremont,
and
M.S.Diamond
(2007).
The stoichiometry of antibody-mediated neutralization and enhancement of West Nile virus infection.
|
| |
Cell Host Microbe,
1,
135-145.
|
 |
|
|
|
|
 |
T.D.Volkova,
D.O.Koroev,
M.A.Titova,
M.B.Oboznaia,
M.P.Filatova,
M.F.Vorovich,
S.V.Ozherelkov,
A.V.Timofeev,
and
O.M.Vol'pina
(2007).
[Synthetic fragments of the NS1 protein of the tick-borne encephalitis virus exhibiting a protective effect]
|
| |
Bioorg Khim,
33,
229-234.
|
 |
|
|
|
|
 |
T.L.Tellinghuisen,
M.J.Evans,
T.von Hahn,
S.You,
and
C.M.Rice
(2007).
Studying hepatitis C virus: making the best of a bad virus.
|
| |
J Virol,
81,
8853-8867.
|
 |
|
|
|
|
 |
T.Oliphant,
and
M.S.Diamond
(2007).
The molecular basis of antibody-mediated neutralization of West Nile virus.
|
| |
Expert Opin Biol Ther,
7,
885-892.
|
 |
|
|
|
|
 |
A.A.Rumyantsev,
B.R.Murphy,
and
A.G.Pletnev
(2006).
A tick-borne Langat virus mutant that is temperature sensitive and host range restricted in neuroblastoma cells and lacks neuroinvasiveness for immunodeficient mice.
|
| |
J Virol,
80,
1427-1439.
|
 |
|
|
|
|
 |
A.Roussel,
J.Lescar,
M.C.Vaney,
G.Wengler,
G.Wengler,
and
F.A.Rey
(2006).
Structure and interactions at the viral surface of the envelope protein E1 of Semliki Forest virus.
|
| |
Structure,
14,
75-86.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
B.Kaufmann,
G.E.Nybakken,
P.R.Chipman,
W.Zhang,
M.S.Diamond,
D.H.Fremont,
R.J.Kuhn,
and
M.G.Rossmann
(2006).
West Nile virus in complex with the Fab fragment of a neutralizing monoclonal antibody.
|
| |
Proc Natl Acad Sci U S A,
103,
12400-12404.
|
 |
|
|
|
|
 |
C.Chanel-Vos,
and
M.Kielian
(2006).
Second-site revertants of a Semliki Forest virus fusion-block mutation reveal the dynamics of a class II membrane fusion protein.
|
| |
J Virol,
80,
6115-6122.
|
 |
|
|
|
|
 |
C.S.Lim,
J.J.Chua,
J.Wilkerson,
and
V.T.Chow
(2006).
Differential dengue cross-reactive and neutralizing antibody responses in BALB/c and Swiss albino mice induced by immunization with flaviviral vaccines and by infection with homotypic dengue-2 virus strains.
|
| |
Viral Immunol,
19,
33-41.
|
 |
|
|
|
|
 |
C.W.Davis,
H.Y.Nguyen,
S.L.Hanna,
M.D.Sánchez,
R.W.Doms,
and
T.C.Pierson
(2006).
West Nile virus discriminates between DC-SIGN and DC-SIGNR for cellular attachment and infection.
|
| |
J Virol,
80,
1290-1301.
|
 |
|
|
|
|
 |
E.Pokidysheva,
Y.Zhang,
A.J.Battisti,
C.M.Bator-Kelly,
P.R.Chipman,
C.Xiao,
G.G.Gregorio,
W.A.Hendrickson,
R.J.Kuhn,
and
M.G.Rossmann
(2006).
Cryo-EM reconstruction of dengue virus in complex with the carbohydrate recognition domain of DC-SIGN.
|
| |
Cell,
124,
485-493.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
G.E.Nybakken,
C.A.Nelson,
B.R.Chen,
M.S.Diamond,
and
D.H.Fremont
(2006).
Crystal structure of the West Nile virus envelope glycoprotein.
|
| |
J Virol,
80,
11467-11474.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.E.Drummer,
I.Boo,
A.L.Maerz,
and
P.Poumbourios
(2006).
A conserved Gly436-Trp-Leu-Ala-Gly-Leu-Phe-Tyr motif in hepatitis C virus glycoprotein E2 is a determinant of CD81 binding and viral entry.
|
| |
J Virol,
80,
7844-7853.
|
 |
|
|
|
|
 |
I.M.Yu,
M.L.Oldham,
J.Zhang,
and
J.Chen
(2006).
Crystal structure of the severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein dimerization domain reveals evolutionary linkage between corona- and arteriviridae.
|
| |
J Biol Chem,
281,
17134-17139.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.J.Schlesinger
(2006).
Flavivirus nonstructural protein NS1: complementary surprises.
|
| |
Proc Natl Acad Sci U S A,
103,
18879-18880.
|
 |
|
|
|
|
 |
J.W.Lee,
J.J.Chu,
and
M.L.Ng
(2006).
Quantifying the specific binding between West Nile virus envelope domain III protein and the cellular receptor alphaVbeta3 integrin.
|
| |
J Biol Chem,
281,
1352-1360.
|
 |
|
|
|
|
 |
K.K.Orlinger,
V.M.Hoenninger,
R.M.Kofler,
and
C.W.Mandl
(2006).
Construction and mutagenesis of an artificial bicistronic tick-borne encephalitis virus genome reveals an essential function of the second transmembrane region of protein e in flavivirus assembly.
|
| |
J Virol,
80,
12197-12208.
|
 |
|
|
|
|
 |
K.Stiasny,
S.Kiermayr,
H.Holzmann,
and
F.X.Heinz
(2006).
Cryptic properties of a cluster of dominant flavivirus cross-reactive antigenic sites.
|
| |
J Virol,
80,
9557-9568.
|
 |
|
|
|
|
 |
M.Abe,
K.Shiosaki,
L.Hammar,
K.Sonoda,
L.Xing,
S.Kuzuhara,
Y.Kino,
and
R.Holland Cheng
(2006).
Immunological equivalence between mouse brain-derived and Vero cell-derived Japanese encephalitis vaccines.
|
| |
Virus Res,
121,
152-160.
|
 |
|
|
|
|
 |
M.Kielian,
and
F.A.Rey
(2006).
Virus membrane-fusion proteins: more than one way to make a hairpin.
|
| |
Nat Rev Microbiol,
4,
67-76.
|
 |
|
|
|
|
 |
M.Kobayashi,
M.C.Bennett,
T.Bercot,
and
I.R.Singh
(2006).
Functional analysis of hepatitis C virus envelope proteins, using a cell-cell fusion assay.
|
| |
J Virol,
80,
1817-1825.
|
 |
|
|
|
|
 |
M.Liao,
and
M.Kielian
(2006).
Site-directed antibodies against the stem region reveal low pH-induced conformational changes of the Semliki Forest virus fusion protein.
|
| |
J Virol,
80,
9599-9607.
|
 |
|
|
|
|
 |
M.Mukherjee,
K.Dutta,
M.A.White,
D.Cowburn,
and
R.O.Fox
(2006).
NMR solution structure and backbone dynamics of domain III of the E protein of tick-borne Langat flavivirus suggests a potential site for molecular recognition.
|
| |
Protein Sci,
15,
1342-1355.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Throsby,
C.Geuijen,
J.Goudsmit,
A.Q.Bakker,
J.Korimbocus,
R.A.Kramer,
M.Clijsters-van der Horst,
M.de Jong,
M.Jongeneelen,
S.Thijsse,
R.Smit,
T.J.Visser,
N.Bijl,
W.E.Marissen,
M.Loeb,
D.J.Kelvin,
W.Preiser,
J.ter Meulen,
and
J.de Kruif
(2006).
Isolation and characterization of human monoclonal antibodies from individuals infected with West Nile Virus.
|
| |
J Virol,
80,
6982-6992.
|
 |
|
|
|
|
 |
P.Kumar,
S.K.Lee,
P.Shankar,
and
N.Manjunath
(2006).
A single siRNA suppresses fatal encephalitis induced by two different flaviviruses.
|
| |
PLoS Med,
3,
e96.
|
 |
|
|
|
|
 |
Q.Li,
K.Xu,
H.Wang,
and
X.Zhou
(2006).
E sequence analysis of persistently infected mutant Japanese encephalitis virus strains.
|
| |
J Huazhong Univ Sci Technolog Med Sci,
26,
408-410.
|
 |
|
|
|
|
 |
R.Kanai,
K.Kar,
K.Anthony,
L.H.Gould,
M.Ledizet,
E.Fikrig,
W.A.Marasco,
R.A.Koski,
and
Y.Modis
(2006).
Crystal structure of west nile virus envelope glycoprotein reveals viral surface epitopes.
|
| |
J Virol,
80,
11000-11008.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Mukhopadhyay,
W.Zhang,
S.Gabler,
P.R.Chipman,
E.G.Strauss,
J.H.Strauss,
T.S.Baker,
R.J.Kuhn,
and
M.G.Rossmann
(2006).
Mapping the structure and function of the E1 and E2 glycoproteins in alphaviruses.
|
| |
Structure,
14,
63-73.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Roche,
S.Bressanelli,
F.A.Rey,
and
Y.Gaudin
(2006).
Crystal structure of the low-pH form of the vesicular stomatitis virus glycoprotein G.
|
| |
Science,
313,
187-191.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.Kampmann,
D.S.Mueller,
A.E.Mark,
P.R.Young,
and
B.Kobe
(2006).
The Role of histidine residues in low-pH-mediated viral membrane fusion.
|
| |
Structure,
14,
1481-1487.
|
 |
|
|
|
|
 |
T.Oliphant,
G.E.Nybakken,
M.Engle,
Q.Xu,
C.A.Nelson,
S.Sukupolvi-Petty,
A.Marri,
B.E.Lachmi,
U.Olshevsky,
D.H.Fremont,
T.C.Pierson,
and
M.S.Diamond
(2006).
Antibody recognition and neutralization determinants on domains I and II of West Nile Virus envelope protein.
|
| |
J Virol,
80,
12149-12159.
|
 |
|
|
|
|
 |
A.Berchanski,
D.Segal,
and
M.Eisenstein
(2005).
Modeling oligomers with Cn or Dn symmetry: application to CAPRI target 10.
|
| |
Proteins,
60,
202-206.
|
 |
|
|
|
|
 |
B.L.Waarts,
J.M.Smit,
O.J.Aneke,
G.M.McInerney,
P.Liljeström,
R.Bittman,
and
J.Wilschut
(2005).
Reversible acid-induced inactivation of the membrane fusion protein of Semliki Forest virus.
|
| |
J Virol,
79,
7942-7948.
|
 |
|
|
|
|
 |
B.Pierce,
W.Tong,
and
Z.Weng
(2005).
M-ZDOCK: a grid-based approach for Cn symmetric multimer docking.
|
| |
Bioinformatics,
21,
1472-1478.
|
 |
|
|
|
|
 |
C.Fermin,
and
R.Garry
(2005).
Alterations of lymphocyte membranes during HIV-1 infection via multiple and simultaneous entry strategies.
|
| |
Microsc Res Tech,
68,
149-167.
|
 |
|
|
|
|
 |
C.H.Schein,
B.Zhou,
and
W.Braun
(2005).
Stereophysicochemical variability plots highlight conserved antigenic areas in Flaviviruses.
|
| |
Virol J,
2,
40.
|
 |
|
|
|
|
 |
C.Larios,
B.Christiaens,
M.J.Gómara,
M.A.Alsina,
and
I.Haro
(2005).
Interaction of synthetic peptides corresponding to hepatitis G virus (HGV/GBV-C) E2 structural protein with phospholipid vesicles.
|
| |
FEBS J,
272,
2456-2466.
|
 |
|
|
|
|
 |
C.Rife,
R.Schwarzenbacher,
D.McMullan,
P.Abdubek,
E.Ambing,
H.Axelrod,
T.Biorac,
J.M.Canaves,
H.J.Chiu,
A.M.Deacon,
M.DiDonato,
M.A.Elsliger,
A.Godzik,
C.Grittini,
S.K.Grzechnik,
J.Hale,
E.Hampton,
G.W.Han,
J.Haugen,
M.Hornsby,
L.Jaroszewski,
H.E.Klock,
E.Koesema,
A.Kreusch,
P.Kuhn,
S.A.Lesley,
M.D.Miller,
K.Moy,
E.Nigoghossian,
J.Paulsen,
K.Quijano,
R.Reyes,
E.Sims,
G.Spraggon,
R.C.Stevens,
H.van den Bedem,
J.Velasquez,
J.Vincent,
A.White,
G.Wolf,
Q.Xu,
K.O.Hodgson,
J.Wooley,
and
I.A.Wilson
(2005).
Crystal structure of the global regulatory protein CsrA from Pseudomonas putida at 2.05 A resolution reveals a new fold.
|
| |
Proteins,
61,
449-453.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.W.Beasley,
M.C.Whiteman,
S.Zhang,
C.Y.Huang,
B.S.Schneider,
D.R.Smith,
G.D.Gromowski,
S.Higgs,
R.M.Kinney,
and
A.D.Barrett
(2005).
Envelope protein glycosylation status influences mouse neuroinvasion phenotype of genetic lineage 1 West Nile virus strains.
|
| |
J Virol,
79,
8339-8347.
|
 |
|
|
|
|
 |
D.Y.Chao,
C.C.King,
W.K.Wang,
W.J.Chen,
H.L.Wu,
and
G.J.Chang
(2005).
Strategically examining the full-genome of dengue virus type 3 in clinical isolates reveals its mutation spectra.
|
| |
Virol J,
2,
72.
|
 |
|
|
|
|
 |
E.Ben-Zeev,
N.Kowalsman,
A.Ben-Shimon,
D.Segal,
T.Atarot,
O.Noivirt,
T.Shay,
and
M.Eisenstein
(2005).
Docking to single-domain and multiple-domain proteins: old and new challenges.
|
| |
Proteins,
60,
195-201.
|
 |
|
|
|
|
 |
I.A.Razumov,
E.I.Kazachinskaia,
V.A.Ternovoi,
E.V.Protopopova,
I.V.Galkina,
V.L.Gromashevskii,
A.G.Prilipov,
A.V.Kachko,
A.V.Ivanova,
D.K.L'vov,
and
V.B.Loktev
(2005).
Neutralizing monoclonal antibodies against Russian strain of the West Nile virus.
|
| |
Viral Immunol,
18,
558-568.
|
 |
|
|
|
|
 |
I.Takashima,
D.Hayasaka,
A.Goto,
K.Yoshii,
and
H.Kariwa
(2005).
[Phylogenetic analysis and pathogenicity of tick-borne encephalitis virus from Japan and far-east Russia]
|
| |
Uirusu,
55,
35-44.
|
 |
|
|
|
|
 |
K.Stiasny,
C.Kössl,
and
F.X.Heinz
(2005).
Differences in the postfusion conformations of full-length and truncated class II fusion protein E of tick-borne encephalitis virus.
|
| |
J Virol,
79,
6511-6515.
|
 |
|
|
|
|
 |
L.Aldaz-Carroll,
J.C.Whitbeck,
M.Ponce de Leon,
H.Lou,
L.Hirao,
S.N.Isaacs,
B.Moss,
R.J.Eisenberg,
and
G.H.Cohen
(2005).
Epitope-mapping studies define two major neutralization sites on the vaccinia virus extracellular enveloped virus glycoprotein B5R.
|
| |
J Virol,
79,
6260-6271.
|
 |
|
|
|
|
 |
L.T.Cheng,
R.K.Plemper,
and
R.W.Compans
(2005).
Atypical fusion peptide of Nelson Bay virus fusion-associated small transmembrane protein.
|
| |
J Virol,
79,
1853-1860.
|
 |
|
|
|
|
 |
M.A.Barocchi,
V.Masignani,
and
R.Rappuoli
(2005).
Opinion: Cell entry machines: a common theme in nature?
|
| |
Nat Rev Microbiol,
3,
349-358.
|
 |
|
|
|
|
 |
M.C.Bonaldo,
R.C.Garratt,
R.S.Marchevsky,
E.S.Coutinho,
A.V.Jabor,
L.F.Almeida,
A.M.Yamamura,
A.S.Duarte,
P.J.Oliveira,
J.O.Lizeu,
L.A.Camacho,
M.S.Freire,
and
R.Galler
(2005).
Attenuation of recombinant yellow fever 17D viruses expressing foreign protein epitopes at the surface.
|
| |
J Virol,
79,
8602-8613.
|
 |
|
|
|
|
 |
M.G.Rossmann,
M.C.Morais,
P.G.Leiman,
and
W.Zhang
(2005).
Combining X-ray crystallography and electron microscopy.
|
| |
Structure,
13,
355-362.
|
 |
|
|
|
|
 |
M.Liao,
and
M.Kielian
(2005).
Domain III from class II fusion proteins functions as a dominant-negative inhibitor of virus membrane fusion.
|
| |
J Cell Biol,
171,
111-120.
|
 |
|
|
|
|
 |
M.S.Diamond
(2005).
Development of effective therapies against West Nile virus infection.
|
| |
Expert Rev Anti Infect Ther,
3,
931-944.
|
 |
|
|
|
|
 |
M.Tsurudome
(2005).
[Viral fusion mechanisms]
|
| |
Uirusu,
55,
207-219.
|
 |
|
|
|
|
 |
O.Schueler-Furman,
C.Wang,
and
D.Baker
(2005).
Progress in protein-protein docking: atomic resolution predictions in the CAPRI experiment using RosettaDock with an improved treatment of side-chain flexibility.
|
| |
Proteins,
60,
187-194.
|
 |
|
|
|
|
 |
S.Daffis,
R.E.Kontermann,
J.Korimbocus,
H.Zeller,
H.D.Klenk,
and
J.Ter Meulen
(2005).
Antibody responses against wild-type yellow fever virus and the 17D vaccine strain: characterization with human monoclonal antibody fragments and neutralization escape variants.
|
| |
Virology,
337,
262-272.
|
 |
|
|
|
|
 |
S.Galdiero,
A.Falanga,
M.Vitiello,
H.Browne,
C.Pedone,
and
M.Galdiero
(2005).
Fusogenic domains in herpes simplex virus type 1 glycoprotein H.
|
| |
J Biol Chem,
280,
28632-28643.
|
 |
|
|
|
|
 |
S.L.Hanna,
T.C.Pierson,
M.D.Sanchez,
A.A.Ahmed,
M.M.Murtadha,
and
R.W.Doms
(2005).
N-linked glycosylation of west nile virus envelope proteins influences particle assembly and infectivity.
|
| |
J Virol,
79,
13262-13274.
|
 |
|
|
|
|
 |
S.Mukhopadhyay,
R.J.Kuhn,
and
M.G.Rossmann
(2005).
A structural perspective of the flavivirus life cycle.
|
| |
Nat Rev Microbiol,
3,
13-22.
|
 |
|
|
|
|
 |
S.R.Comeau,
S.Vajda,
and
C.J.Camacho
(2005).
Performance of the first protein docking server ClusPro in CAPRI rounds 3-5.
|
| |
Proteins,
60,
239-244.
|
 |
|
|
|
|
 |
S.Vijayasri,
and
S.Agrawal
(2005).
Domain-based homology modeling and mapping of the conformational epitopes of envelope glycoprotein of west nile virus.
|
| |
J Mol Model,
11,
248-255.
|
 |
|
|
|
|
 |
T.Oliphant,
M.Engle,
G.E.Nybakken,
C.Doane,
S.Johnson,
L.Huang,
S.Gorlatov,
E.Mehlhop,
A.Marri,
K.M.Chung,
G.D.Ebel,
L.D.Kramer,
D.H.Fremont,
and
M.S.Diamond
(2005).
Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus.
|
| |
Nat Med,
11,
522-530.
|
 |
|
|
|
|
 |
X.Zhang,
and
M.Kielian
(2005).
An interaction site of the envelope proteins of Semliki Forest virus that is preserved after proteolytic activation.
|
| |
Virology,
337,
344-352.
|
 |
|
|
|
|
 |
Y.Inbar,
D.Schneidman-Duhovny,
I.Halperin,
A.Oron,
R.Nussinov,
and
H.J.Wolfson
(2005).
Approaching the CAPRI challenge with an efficient geometry-based docking.
|
| |
Proteins,
60,
217-223.
|
 |
|
|
|
|
 |
Y.J.Lin,
and
S.C.Wu
(2005).
Histidine at residue 99 and the transmembrane region of the precursor membrane prM protein are important for the prM-E heterodimeric complex formation of Japanese encephalitis virus.
|
| |
J Virol,
79,
8535-8544.
|
 |
|
|
|
|
 |
Y.M.Hrobowski,
R.F.Garry,
and
S.F.Michael
(2005).
Peptide inhibitors of dengue virus and West Nile virus infectivity.
|
| |
Virol J,
2,
49.
|
 |
|
|
|
|
 |
Y.Modis,
S.Ogata,
D.Clements,
and
S.C.Harrison
(2005).
Variable surface epitopes in the crystal structure of dengue virus type 3 envelope glycoprotein.
|
| |
J Virol,
79,
1223-1231.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.Op De Beeck,
Y.Rouillé,
M.Caron,
S.Duvet,
and
J.Dubuisson
(2004).
The transmembrane domains of the prM and E proteins of yellow fever virus are endoplasmic reticulum localization signals.
|
| |
J Virol,
78,
12591-12602.
|
 |
|
|
|
|
 |
A.P.Goncalvez,
R.H.Purcell,
and
C.J.Lai
(2004).
Epitope determinants of a chimpanzee Fab antibody that efficiently cross-neutralizes dengue type 1 and type 2 viruses map to inside and in close proximity to fusion loop of the dengue type 2 virus envelope glycoprotein.
|
| |
J Virol,
78,
12919-12928.
|
 |
|
|
|
|
 |
C.Chanel-Vos,
and
M.Kielian
(2004).
A conserved histidine in the ij loop of the Semliki Forest virus E1 protein plays an important role in membrane fusion.
|
| |
J Virol,
78,
13543-13552.
|
 |
|
|
|
|
 |
C.E.Garry,
and
R.F.Garry
(2004).
Proteomics computational analyses suggest that the carboxyl terminal glycoproteins of Bunyaviruses are class II viral fusion protein (beta-penetrenes).
|
| |
Theor Biol Med Model,
1,
10.
|
 |
|
|
|
|
 |
C.W.Mandl
(2004).
Flavivirus immunization with capsid-deletion mutants: basics, benefits, and barriers.
|
| |
Viral Immunol,
17,
461-472.
|
 |
|
|
|
|
 |
D.E.Volk,
D.W.Beasley,
D.A.Kallick,
M.R.Holbrook,
A.D.Barrett,
and
D.G.Gorenstein
(2004).
Solution structure and antibody binding studies of the envelope protein domain III from the New York strain of West Nile virus.
|
| |
J Biol Chem,
279,
38755-38761.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.L.Gibbons,
A.Ahn,
M.Liao,
L.Hammar,
R.H.Cheng,
and
M.Kielian
(2004).
Multistep regulation of membrane insertion of the fusion peptide of Semliki Forest virus.
|
| |
J Virol,
78,
3312-3318.
|
 |
|
|
|
|
 |
D.L.Gibbons,
B.Reilly,
A.Ahn,
M.C.Vaney,
A.Vigouroux,
F.A.Rey,
and
M.Kielian
(2004).
Purification and crystallization reveal two types of interactions of the fusion protein homotrimer of Semliki Forest virus.
|
| |
J Virol,
78,
3514-3523.
|
 |
|
|
|
|
 |
D.L.Gibbons,
M.C.Vaney,
A.Roussel,
A.Vigouroux,
B.Reilly,
J.Lepault,
M.Kielian,
and
F.A.Rey
(2004).
Conformational change and protein-protein interactions of the fusion protein of Semliki Forest virus.
|
| |
Nature,
427,
320-325.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.S.Dimitrov
(2004).
Virus entry: molecular mechanisms and biomedical applications.
|
| |
Nat Rev Microbiol,
2,
109-122.
|
 |
|
|
|
|
 |
E.Lee,
R.A.Hall,
and
M.Lobigs
(2004).
Common E protein determinants for attenuation of glycosaminoglycan-binding variants of Japanese encephalitis and West Nile viruses.
|
| |
J Virol,
78,
8271-8280.
|
 |
|
|
|
|
 |
F.Penin,
J.Dubuisson,
F.A.Rey,
D.Moradpour,
and
J.M.Pawlotsky
(2004).
Structural biology of hepatitis C virus.
|
| |
Hepatology,
39,
5.
|
 |
|
|
|
|
 |
H.E.Drummer,
and
P.Poumbourios
(2004).
Hepatitis C virus glycoprotein E2 contains a membrane-proximal heptad repeat sequence that is essential for E1E2 glycoprotein heterodimerization and viral entry.
|
| |
J Biol Chem,
279,
30066-30072.
|
 |
|
|
|
|
 |
J.Arroyo,
C.Miller,
J.Catalan,
G.A.Myers,
M.S.Ratterree,
D.W.Trent,
and
T.P.Monath
(2004).
ChimeriVax-West Nile virus live-attenuated vaccine: preclinical evaluation of safety, immunogenicity, and efficacy.
|
| |
J Virol,
78,
12497-12507.
|
 |
|
|
|
|
 |
J.J.Chu,
and
M.L.Ng
(2004).
Infectious entry of West Nile virus occurs through a clathrin-mediated endocytic pathway.
|
| |
J Virol,
78,
10543-10555.
|
 |
|
|
|
|
 |
J.J.Chu,
and
M.L.Ng
(2004).
Interaction of West Nile virus with alpha v beta 3 integrin mediates virus entry into cells.
|
| |
J Biol Chem,
279,
54533-54541.
|
 |
|
|
|
|
 |
J.J.Hung,
M.T.Hsieh,
M.J.Young,
C.L.Kao,
C.C.King,
and
W.Chang
(2004).
An external loop region of domain III of dengue virus type 2 envelope protein is involved in serotype-specific binding to mosquito but not mammalian cells.
|
| |
J Virol,
78,
378-388.
|
 |
|
|
|
|
 |
J.T.Roehrig,
K.E.Volpe,
J.Squires,
A.R.Hunt,
B.S.Davis,
and
G.J.Chang
(2004).
Contribution of disulfide bridging to epitope expression of the dengue type 2 virus envelope glycoprotein.
|
| |
J Virol,
78,
2648-2652.
|
 |
|
|
|
|
 |
K.Stiasny,
and
F.X.Heinz
(2004).
Effect of membrane curvature-modifying lipids on membrane fusion by tick-borne encephalitis virus.
|
| |
J Virol,
78,
8536-8542.
|
 |
|
|
|
|
 |
K.Stiasny,
S.Bressanelli,
J.Lepault,
F.A.Rey,
and
F.X.Heinz
(2004).
Characterization of a membrane-associated trimeric low-pH-induced Form of the class II viral fusion protein E from tick-borne encephalitis virus and its crystallization.
|
| |
J Virol,
78,
3178-3183.
|
 |
|
|
|
|
 |
K.V.Pugachev,
F.Guirakhoo,
S.W.Ocran,
F.Mitchell,
M.Parsons,
C.Penal,
S.Girakhoo,
S.O.Pougatcheva,
J.Arroyo,
D.W.Trent,
and
T.P.Monath
(2004).
High fidelity of yellow fever virus RNA polymerase.
|
| |
J Virol,
78,
1032-1038.
|
 |
|
|
|
|
 |
L.Ma,
C.T.Jones,
T.D.Groesch,
R.J.Kuhn,
and
C.B.Post
(2004).
Solution structure of dengue virus capsid protein reveals another fold.
|
| |
Proc Natl Acad Sci U S A,
101,
3414-3419.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.A.Wouters,
K.K.Lau,
and
P.J.Hogg
(2004).
Cross-strand disulphides in cell entry proteins: poised to act.
|
| |
Bioessays,
26,
73-79.
|
 |
|
|
|
|
 |
M.G.Guzmán,
M.Muné,
and
G.Kourí
(2004).
Dengue vaccine: priorities and progress.
|
| |
Expert Rev Anti Infect Ther,
2,
895-911.
|
 |
|
|
|
|
 |
M.R.Holbrook,
R.E.Shope,
and
A.D.Barrett
(2004).
Use of recombinant E protein domain III-based enzyme-linked immunosorbent assays for differentiation of tick-borne encephalitis serocomplex flaviviruses from mosquito-borne flaviviruses.
|
| |
J Clin Microbiol,
42,
4101-4110.
|
 |
|
|
|
|
 |
M.Shmulevitz,
R.F.Epand,
R.M.Epand,
and
R.Duncan
(2004).
Structural and functional properties of an unusual internal fusion peptide in a nonenveloped virus membrane fusion protein.
|
| |
J Virol,
78,
2808-2818.
|
 |
|
|
|
|
 |
R.Men,
T.Yamashiro,
A.P.Goncalvez,
C.Wernly,
D.J.Schofield,
S.U.Emerson,
R.H.Purcell,
and
C.J.Lai
(2004).
Identification of chimpanzee Fab fragments by repertoire cloning and production of a full-length humanized immunoglobulin G1 antibody that is highly efficient for neutralization of dengue type 4 virus.
|
| |
J Virol,
78,
4665-4674.
|
 |
|
|
|
|
 |
S.Bressanelli,
K.Stiasny,
S.L.Allison,
E.A.Stura,
S.Duquerroy,
J.Lescar,
F.X.Heinz,
and
F.A.Rey
(2004).
Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation.
|
| |
EMBO J,
23,
728-738.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.D.Fuller
(2004).
Visualizing the house from the brick.
|
| |
Structure,
12,
1119-1120.
|
 |
|
|
|
|
 |
S.Kiermayr,
R.M.Kofler,
C.W.Mandl,
P.Messner,
and
F.X.Heinz
(2004).
Isolation of capsid protein dimers from the tick-borne encephalitis flavivirus and in vitro assembly of capsid-like particles.
|
| |
J Virol,
78,
8078-8084.
|
 |
|
|
|
|
 |
S.R.Lin,
S.C.Hsieh,
Y.Y.Yueh,
T.H.Lin,
D.Y.Chao,
W.J.Chen,
C.C.King,
and
W.K.Wang
(2004).
Study of sequence variation of dengue type 3 virus in naturally infected mosquitoes and human hosts: implications for transmission and evolution.
|
| |
J Virol,
78,
12717-12721.
|
 |
|
|
|
|
 |
W.D.Crill,
and
G.J.Chang
(2004).
Localization and characterization of flavivirus envelope glycoprotein cross-reactive epitopes.
|
| |
J Virol,
78,
13975-13986.
|
 |
|
|
|
|
 |
Y.Modis,
S.Ogata,
D.Clements,
and
S.C.Harrison
(2004).
Structure of the dengue virus envelope protein after membrane fusion.
|
| |
Nature,
427,
313-319.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Y.Zhang,
W.Zhang,
S.Ogata,
D.Clements,
J.H.Strauss,
T.S.Baker,
R.J.Kuhn,
and
M.G.Rossmann
(2004).
Conformational changes of the flavivirus E glycoprotein.
|
| |
Structure,
12,
1607-1618.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Op De Beeck,
R.Molenkamp,
M.Caron,
A.Ben Younes,
P.Bredenbeek,
and
J.Dubuisson
(2003).
Role of the transmembrane domains of prM and E proteins in the formation of yellow fever virus envelope.
|
| |
J Virol,
77,
813-820.
|
 |
|
|
|
|
 |
C.W.Lin,
and
S.C.Wu
(2003).
A functional epitope determinant on domain III of the Japanese encephalitis virus envelope protein interacted with neutralizing-antibody combining sites.
|
| |
J Virol,
77,
2600-2606.
|
 |
|
|
|
|
 |
C.Y.Huang,
S.Butrapet,
K.R.Tsuchiya,
N.Bhamarapravati,
D.J.Gubler,
and
R.M.Kinney
(2003).
Dengue 2 PDK-53 virus as a chimeric carrier for tetravalent dengue vaccine development.
|
| |
J Virol,
77,
11436-11447.
|
 |
|
|
|
|
 |
D.N.Doan,
and
T.Dokland
(2003).
Structure of the nucleocapsid protein of porcine reproductive and respiratory syndrome virus.
|
| |
Structure,
11,
1445-1451.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
E.Jeetendra,
K.Ghosh,
D.Odell,
J.Li,
H.P.Ghosh,
and
M.A.Whitt
(2003).
The membrane-proximal region of vesicular stomatitis virus glycoprotein G ectodomain is critical for fusion and virus infectivity.
|
| |
J Virol,
77,
12807-12818.
|
 |
|
|
|
|
 |
F.A.Rey
(2003).
Dengue virus envelope glycoprotein structure: new insight into its interactions during viral entry.
|
| |
Proc Natl Acad Sci U S A,
100,
6899-6901.
|
 |
|
|
|
|
 |
I.C.Lorenz,
J.Kartenbeck,
A.Mezzacasa,
S.L.Allison,
F.X.Heinz,
and
A.Helenius
(2003).
Intracellular assembly and secretion of recombinant subviral particles from tick-borne encephalitis virus.
|
| |
J Virol,
77,
4370-4382.
|
 |
|
|
|
|
 |
K.Ludwig,
B.Baljinnyam,
A.Herrmann,
and
C.Böttcher
(2003).
The 3D structure of the fusion primed Sendai F-protein determined by electron cryomicroscopy.
|
| |
EMBO J,
22,
3761-3771.
|
 |
|
|
|
|
 |
K.P.Wu,
C.W.Wu,
Y.P.Tsao,
T.W.Kuo,
Y.C.Lou,
C.W.Lin,
S.C.Wu,
and
J.W.Cheng
(2003).
Structural basis of a flavivirus recognized by its neutralizing antibody: solution structure of the domain III of the Japanese encephalitis virus envelope protein.
|
| |
J Biol Chem,
278,
46007-46013.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.Stiasny,
C.Koessl,
and
F.X.Heinz
(2003).
Involvement of lipids in different steps of the flavivirus fusion mechanism.
|
| |
J Virol,
77,
7856-7862.
|
 |
|
|
|
|
 |
L.K.Tamm,
J.Crane,
and
V.Kiessling
(2003).
Membrane fusion: a structural perspective on the interplay of lipids and proteins.
|
| |
Curr Opin Struct Biol,
13,
453-466.
|
 |
|
|
|
|
 |
M.A.McArthur,
M.T.Suderman,
J.P.Mutebi,
S.Y.Xiao,
and
A.D.Barrett
(2003).
Molecular characterization of a hamster viscerotropic strain of yellow fever virus.
|
| |
J Virol,
77,
1462-1468.
|
 |
|
|
|
|
 |
M.A.Petit,
C.Jolivet-Reynaud,
E.Peronnet,
Y.Michal,
and
C.Trépo
(2003).
Mapping of a conformational epitope shared between E1 and E2 on the serum-derived human hepatitis C virus envelope.
|
| |
J Biol Chem,
278,
44385-44392.
|
 |
|
|
|
|
 |
M.A.White,
D.Liu,
M.R.Holbrook,
R.E.Shope,
A.D.Barrett,
and
R.O.Fox
(2003).
Crystallization and preliminary X-ray diffraction analysis of Langat virus envelope protein domain III.
|
| |
Acta Crystallogr D Biol Crystallogr,
59,
1049-1051.
|
 |
|
|
|
|
 |
M.Nickells,
and
T.J.Chambers
(2003).
Neuroadapted yellow fever virus 17D: determinants in the envelope protein govern neuroinvasiveness for SCID mice.
|
| |
J Virol,
77,
12232-12242.
|
 |
|
|
|
|
 |
M.S.Diamond
(2003).
Evasion of innate and adaptive immunity by flaviviruses.
|
| |
Immunol Cell Biol,
81,
196-206.
|
 |
|
|
|
|
 |
R.M.Kofler,
A.Leitner,
G.O'Riordain,
F.X.Heinz,
and
C.W.Mandl
(2003).
Spontaneous mutations restore the viability of tick-borne encephalitis virus mutants with large deletions in protein C.
|
| |
J Virol,
77,
443-451.
|
 |
|
|
|
|
 |
R.Roccasecca,
H.Ansuini,
A.Vitelli,
A.Meola,
E.Scarselli,
S.Acali,
M.Pezzanera,
B.B.Ercole,
J.McKeating,
A.Yagnik,
A.Lahm,
A.Tramontano,
R.Cortese,
and
A.Nicosia
(2003).
Binding of the hepatitis C virus E2 glycoprotein to CD81 is strain specific and is modulated by a complex interplay between hypervariable regions 1 and 2.
|
| |
J Virol,
77,
1856-1867.
|
 |
|
|
|
|
 |
S.J.Seligman,
and
D.J.Bucher
(2003).
The importance of being outer: consequences of the distinction between the outer and inner surfaces of flavivirus glycoprotein E.
|
| |
Trends Microbiol,
11,
108-110.
|
 |
|
|
|
|
 |
S.L.Allison,
Y.J.Tao,
G.O'Riordain,
C.W.Mandl,
S.C.Harrison,
and
F.X.Heinz
(2003).
Two distinct size classes of immature and mature subviral particles from tick-borne encephalitis virus.
|
| |
J Virol,
77,
11357-11366.
|
 |
|
|
|
|
 |
S.Mukhopadhyay,
B.S.Kim,
P.R.Chipman,
M.G.Rossmann,
and
R.J.Kuhn
(2003).
Structure of West Nile virus.
|
| |
Science,
302,
248.
|
 |
|
|
|
|
 |
T.S.Gritsun,
T.V.Frolova,
A.I.Zhankov,
M.Armesto,
S.L.Turner,
M.P.Frolova,
V.V.Pogodina,
V.A.Lashkevich,
and
E.A.Gould
(2003).
Characterization of a siberian virus isolated from a patient with progressive chronic tick-borne encephalitis.
|
| |
J Virol,
77,
25-36.
|
 |
|
|
|
|
 |
T.Solomon,
H.Ni,
D.W.Beasley,
M.Ekkelenkamp,
M.J.Cardosa,
and
A.D.Barrett
(2003).
Origin and evolution of Japanese encephalitis virus in southeast Asia.
|
| |
J Virol,
77,
3091-3098.
|
 |
|
|
|
|
 |
T.Stehle,
and
T.S.Dermody
(2003).
Structural evidence for common functions and ancestry of the reovirus and adenovirus attachment proteins.
|
| |
Rev Med Virol,
13,
123-132.
|
 |
|
|
|
|
 |
W.Zhang,
P.R.Chipman,
J.Corver,
P.R.Johnson,
Y.Zhang,
S.Mukhopadhyay,
T.S.Baker,
J.H.Strauss,
M.G.Rossmann,
and
R.J.Kuhn
(2003).
Visualization of membrane protein domains by cryo-electron microscopy of dengue virus.
|
| |
Nat Struct Biol,
10,
907-912.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
W.Zhao,
B.Fan,
Z.Hu,
S.Chen,
P.Wang,
X.Yuan,
X.Li,
M.Yu,
E.Qin,
and
P.Yang
(2003).
Study on the determinants of suckling mice neurovirulence of dengue 2 virus.
|
| |
Sci China C Life Sci,
46,
95.
|
 |
|
|
|
|
 |
Y.Modis,
S.Ogata,
D.Clements,
and
S.C.Harrison
(2003).
A ligand-binding pocket in the dengue virus envelope glycoprotein.
|
| |
Proc Natl Acad Sci U S A,
100,
6986-6991.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
Y.Zhang,
J.Corver,
P.R.Chipman,
W.Zhang,
S.V.Pletnev,
D.Sedlak,
T.S.Baker,
J.H.Strauss,
R.J.Kuhn,
and
M.G.Rossmann
(2003).
Structures of immature flavivirus particles.
|
| |
EMBO J,
22,
2604-2613.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Ahn,
D.L.Gibbons,
and
M.Kielian
(2002).
The fusion peptide of Semliki Forest virus associates with sterol-rich membrane domains.
|
| |
J Virol,
76,
3267-3275.
|
 |
|
|
|
|
 |
C.A.Guerrero,
D.Bouyssounade,
S.Zárate,
P.Isa,
T.López,
R.Espinosa,
P.Romero,
E.Méndez,
S.López,
and
C.F.Arias
(2002).
Heat shock cognate protein 70 is involved in rotavirus cell entry.
|
| |
J Virol,
76,
4096-4102.
|
 |
|
|
|
|
 |
D.J.Taylor,
N.K.Krishna,
M.A.Canady,
A.Schneemann,
and
J.E.Johnson
(2002).
Large-scale, pH-dependent, quaternary structure changes in an RNA virus capsid are reversible in the absence of subunit autoproteolysis.
|
| |
J Virol,
76,
9972-9980.
|
 |
|
|
|
|
 |
D.L.Gibbons,
and
M.Kielian
(2002).
Molecular dissection of the Semliki Forest virus homotrimer reveals two functionally distinct regions of the fusion protein.
|
| |
J Virol,
76,
1194-1205.
|
 |
|
|
|
|
 |
D.W.Beasley,
and
A.D.Barrett
(2002).
Identification of neutralizing epitopes within structural domain III of the West Nile virus envelope protein.
|
| |
J Virol,
76,
13097-13100.
|
 |
|
|
|
|
 |
E.Lee,
and
M.Lobigs
(2002).
Mechanism of virulence attenuation of glycosaminoglycan-binding variants of Japanese encephalitis virus and Murray Valley encephalitis virus.
|
| |
J Virol,
76,
4901-4911.
|
 |
|
|
|
|
 |
H.E.Drummer,
K.A.Wilson,
and
P.Poumbourios
(2002).
Identification of the hepatitis C virus E2 glycoprotein binding site on the large extracellular loop of CD81.
|
| |
J Virol,
76,
11143-11147.
|
 |
|
|
|
|
 |
I.C.Lorenz,
S.L.Allison,
F.X.Heinz,
and
A.Helenius
(2002).
Folding and dimerization of tick-borne encephalitis virus envelope proteins prM and E in the endoplasmic reticulum.
|
| |
J Virol,
76,
5480-5491.
|
 |
|
|
|
|
 |
J.D.Chappell,
A.E.Prota,
T.S.Dermody,
and
T.Stehle
(2002).
Crystal structure of reovirus attachment protein sigma1 reveals evolutionary relationship to adenovirus fiber.
|
| |
EMBO J,
21,
1.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Mota,
J.Ramos-Castañeda,
R.Rico-Hesse,
and
C.Ramos
(2002).
Phylogenetic analysis of the envelope protein (domain III) of dengue 4 viruses.
|
| |
Salud Publica Mex,
44,
228-236.
|
 |
|
|
|
|
 |
K.Stiasny,
S.L.Allison,
J.Schalich,
and
F.X.Heinz
(2002).
Membrane interactions of the tick-borne encephalitis virus fusion protein E at low pH.
|
| |
J Virol,
76,
3784-3790.
|
 |
|
|
|
|
 |
L.A.Vlaycheva,
and
T.J.Chambers
(2002).
Neuroblastoma cell-adapted yellow fever 17D virus: characterization of a viral variant associated with persistent infection and decreased virus spread.
|
| |
J Virol,
76,
6172-6184.
|
 |
|
|
|
|
 |
M.A.Brinton
(2002).
The molecular biology of West Nile Virus: a new invader of the western hemisphere.
|
| |
Annu Rev Microbiol,
56,
371-402.
|
 |
|
|
|
|
 |
M.Kielian
(2002).
Structural surprises from the flaviviruses and alphaviruses.
|
| |
Mol Cell,
9,
454-456.
|
 |
|
|
|
|
 |
P.K.Chatterjee,
C.H.Eng,
and
M.Kielian
(2002).
Novel mutations that control the sphingolipid and cholesterol dependence of the Semliki Forest virus fusion protein.
|
| |
J Virol,
76,
12712-12722.
|
 |
|
|
|
|
 |
R.M.Kofler,
F.X.Heinz,
and
C.W.Mandl
(2002).
Capsid protein C of tick-borne encephalitis virus tolerates large internal deletions and is a favorable target for attenuation of virulence.
|
| |
J Virol,
76,
3534-3543.
|
 |
|
|
|
|
 |
S.Dawe,
and
R.Duncan
(2002).
The S4 genome segment of baboon reovirus is bicistronic and encodes a novel fusion-associated small transmembrane protein.
|
| |
J Virol,
76,
2131-2140.
|
 |
|
|
|
|
 |
S.G.Peisajovich,
and
Y.Shai
(2002).
High similarity between reverse-oriented sequences from HIV and foamy virus envelope glycoproteins.
|
| |
AIDS Res Hum Retroviruses,
18,
309-312.
|
 |
|
|
|
|
 |
T.P.Monath,
J.Arroyo,
I.Levenbook,
Z.X.Zhang,
J.Catalan,
K.Draper,
and
F.Guirakhoo
(2002).
Single mutation in the flavivirus envelope protein hinge region increases neurovirulence for mice and monkeys but decreases viscerotropism for monkeys: relevance to development and safety testing of live, attenuated vaccines.
|
| |
J Virol,
76,
1932-1943.
|
 |
|
|
|
|
 |
W.K.Wang,
S.R.Lin,
C.M.Lee,
C.C.King,
and
S.C.Chang
(2002).
Dengue type 3 virus in plasma is a population of closely related genomes: quasispecies.
|
| |
J Virol,
76,
4662-4665.
|
 |
|
|
|
|
 |
C.W.Mandl,
H.Kroschewski,
S.L.Allison,
R.Kofler,
H.Holzmann,
T.Meixner,
and
F.X.Heinz
(2001).
Adaptation of tick-borne encephalitis virus to BHK-21 cells results in the formation of multiple heparan sulfate binding sites in the envelope protein and attenuation in vivo.
|
| |
J Virol,
75,
5627-5637.
|
 |
|
|
|
|
 |
D.M.Eckert,
and
P.S.Kim
(2001).
Mechanisms of viral membrane fusion and its inhibition.
|
| |
Annu Rev Biochem,
70,
777-810.
|
 |
|
|
|
|
 |
H.Garoff,
and
R.H.Cheng
(2001).
The missing link between envelope formation and fusion in alphaviruses.
|
| |
Trends Microbiol,
9,
408-410.
|
 |
|
|
|
|
 |
I.Ferlenghi,
M.Clarke,
T.Ruttan,
S.L.Allison,
J.Schalich,
F.X.Heinz,
S.C.Harrison,
F.A.Rey,
and
S.D.Fuller
(2001).
Molecular organization of a recombinant subviral particle from tick-borne encephalitis virus.
|
| |
Mol Cell,
7,
593-602.
|
 |
|
|
|
|
 |
J.Arroyo,
F.Guirakhoo,
S.Fenner,
Z.X.Zhang,
T.P.Monath,
and
T.J.Chambers
(2001).
Molecular basis for attenuation of neurovirulence of a yellow fever Virus/Japanese encephalitis virus chimera vaccine (ChimeriVax-JE).
|
| |
J Virol,
75,
934-942.
|
 |
|
|
|
|
 |
J.H.Strauss,
and
E.G.Strauss
(2001).
Virus evolution: how does an enveloped virus make a regular structure?
|
| |
Cell,
105,
5-8.
|
 |
|
|
|
|
 |
J.J.Martínez-Barragán,
and
R.M.del Angel
(2001).
Identification of a putative coreceptor on Vero cells that participates in dengue 4 virus infection.
|
| |
J Virol,
75,
7818-7827.
|
 |
|
|
|
|
 |
J.Lescar,
A.Roussel,
M.W.Wien,
J.Navaza,
S.D.Fuller,
G.Wengler,
G.Wengler,
and
F.A.Rey
(2001).
The Fusion glycoprotein shell of Semliki Forest virus: an icosahedral assembly primed for fusogenic activation at endosomal pH.
|
| |
Cell,
105,
137-148.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.Moeller,
I.Duffy,
P.Duprex,
B.Rima,
R.Beschorner,
S.Fauser,
R.Meyermann,
S.Niewiesk,
V.ter Meulen,
and
J.Schneider-Schaulies
(2001).
Recombinant measles viruses expressing altered hemagglutinin (H) genes: functional separation of mutations determining H antibody escape from neurovirulence.
|
| |
J Virol,
75,
7612-7620.
|
 |
|
|
|
|
 |
K.Stiasny,
S.L.Allison,
C.W.Mandl,
and
F.X.Heinz
(2001).
Role of metastability and acidic pH in membrane fusion by tick-borne encephalitis virus.
|
| |
J Virol,
75,
7392-7398.
|
 |
|
|
|
|
 |
Lundkvist k,
S.Vene,
I.Golovljova,
V.Mavtchoutko,
M.Forsgren,
V.Kalnina,
and
A.Plyusnin
(2001).
Characterization of tick-borne encephalitis virus from Latvia: evidence for co-circulation of three distinct subtypes.
|
| |
J Med Virol,
65,
730-735.
|
 |
|
|
|
|
 |
M.Martin,
T.F.Tsai,
B.Cropp,
G.J.Chang,
D.A.Holmes,
J.Tseng,
W.Shieh,
S.R.Zaki,
I.Al-Sanouri,
A.F.Cutrona,
G.Ray,
L.H.Weld,
and
M.S.Cetron
(2001).
Fever and multisystem organ failure associated with 17D-204 yellow fever vaccination: a report of four cases.
|
| |
Lancet,
358,
98.
|
 |
|
|
|
|
 |
M.R.Holbrook,
H.Wang,
and
A.D.Barrett
(2001).
Langat virus M protein is structurally homologous to prM.
|
| |
J Virol,
75,
3999-4001.
|
 |
|
|
|
|
 |
R.J.Hurrelbrink,
and
P.C.McMinn
(2001).
Attenuation of Murray Valley encephalitis virus by site-directed mutagenesis of the hinge and putative receptor-binding regions of the envelope protein.
|
| |
J Virol,
75,
7692-7702.
|
 |
|
|
|
|
 |
S.Bhardwaj,
M.Holbrook,
R.E.Shope,
A.D.Barrett,
and
S.J.Watowich
(2001).
Biophysical characterization and vector-specific antagonist activity of domain III of the tick-borne flavivirus envelope protein.
|
| |
J Virol,
75,
4002-4007.
|
 |
|
|
|
|
 |
S.L.Allison,
J.Schalich,
K.Stiasny,
C.W.Mandl,
and
F.X.Heinz
(2001).
Mutational evidence for an internal fusion peptide in flavivirus envelope protein E.
|
| |
J Virol,
75,
4268-4275.
|
 |
|
|
|
|
 |
S.M.Lok,
M.L.Ng,
and
J.Aaskov
(2001).
Amino acid and phenotypic changes in dengue 2 virus associated with escape from neutralisation by IgM antibody.
|
| |
J Med Virol,
65,
315-323.
|
 |
|
|
|
|
 |
S.V.Pletnev,
W.Zhang,
S.Mukhopadhyay,
B.R.Fisher,
R.Hernandez,
D.T.Brown,
T.S.Baker,
M.G.Rossmann,
and
R.J.Kuhn
(2001).
Locations of carbohydrate sites on alphavirus glycoproteins show that E1 forms an icosahedral scaffold.
|
| |
Cell,
105,
127-136.
|
 |
|
|
|
|
 |
T.J.Chambers,
and
M.Nickells
(2001).
Neuroadapted yellow fever virus 17D: genetic and biological characterization of a highly mouse-neurovirulent virus and its infectious molecular clone.
|
| |
J Virol,
75,
10912-10922.
|
 |
|
|
|
|
 |
W.D.Crill,
and
J.T.Roehrig
(2001).
Monoclonal antibodies that bind to domain III of dengue virus E glycoprotein are the most efficient blockers of virus adsorption to Vero cells.
|
| |
J Virol,
75,
7769-7773.
|
 |
|
|
|
|
 |
A.T.Yagnik,
A.Lahm,
A.Meola,
R.M.Roccasecca,
B.B.Ercole,
A.Nicosia,
and
A.Tramontano
(2000).
A model for the hepatitis C virus envelope glycoprotein E2.
|
| |
Proteins,
40,
355-366.
|
 |
|
|
|
|
 |
C.W.Mandl,
S.L.Allison,
H.Holzmann,
T.Meixner,
and
F.X.Heinz
(2000).
Attenuation of tick-borne encephalitis virus by structure-based site-specific mutagenesis of a putative flavivirus receptor binding site.
|
| |
J Virol,
74,
9601-9609.
|
 |
|
|
|
|
 |
C.Y.Huang,
S.Butrapet,
D.J.Pierro,
G.J.Chang,
A.R.Hunt,
N.Bhamarapravati,
D.J.Gubler,
and
R.M.Kinney
(2000).
Chimeric dengue type 2 (vaccine strain PDK-53)/dengue type 1 virus as a potential candidate dengue type 1 virus vaccine.
|
| |
J Virol,
74,
3020-3028.
|
 |
|
|
|
|
 |
D.C.Drummond,
M.Zignani,
and
J.Leroux
(2000).
Current status of pH-sensitive liposomes in drug delivery.
|
| |
Prog Lipid Res,
39,
409-460.
|
 |
|
|
|
|
 |
D.L.Gibbons,
A.Ahn,
P.K.Chatterjee,
and
M.Kielian
(2000).
Formation and characterization of the trimeric form of the fusion protein of Semliki Forest Virus.
|
| |
J Virol,
74,
7772-7780.
|
 |
|
|
|
|
 |
E.J.Mancini,
M.Clarke,
B.E.Gowen,
T.Rutten,
and
S.D.Fuller
(2000).
Cryo-electron microscopy reveals the functional organization of an enveloped virus, Semliki Forest virus.
|
| |
Mol Cell,
5,
255-266.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
E.Lee,
and
M.Lobigs
(2000).
Substitutions at the putative receptor-binding site of an encephalitic flavivirus alter virulence and host cell tropism and reveal a role for glycosaminoglycans in entry.
|
| |
J Virol,
74,
8867-8875.
|
 |
|
|
|
|
 |
E.Wang,
H.Ni,
R.Xu,
A.D.Barrett,
S.J.Watowich,
D.J.Gubler,
and
S.C.Weaver
(2000).
Evolutionary relationships of endemic/epidemic and sylvatic dengue viruses.
|
| |
J Virol,
74,
3227-3234.
|
 |
|
|
|
|
 |
G.Shemer,
and
B.Podbilewicz
(2000).
Fusomorphogenesis: cell fusion in organ formation.
|
| |
Dev Dyn,
218,
30-51.
|
 |
|
|
|
|
 |
H.Ni,
K.D.Ryman,
H.Wang,
M.F.Saeed,
R.Hull,
D.Wood,
P.D.Minor,
S.J.Watowich,
and
A.D.Barrett
(2000).
Interaction of yellow fever virus French neurotropic vaccine strain with monkey brain: characterization of monkey brain membrane receptor escape variants.
|
| |
J Virol,
74,
2903-2906.
|
 |
|
|
|
|
 |
K.Boesze-Battaglia,
F.P.Stefano,
M.Fenner,
and
A.A.Napoli
(2000).
A peptide analogue to a fusion domain within photoreceptor peripherin/rds promotes membrane adhesion and depolarization.
|
| |
Biochim Biophys Acta,
1463,
343-354.
|
 |
|
|
|
|
 |
M.P.Courageot,
M.P.Frenkiel,
C.D.Dos Santos,
V.Deubel,
and
P.Desprès
(2000).
Alpha-glucosidase inhibitors reduce dengue virus production by affecting the initial steps of virion morphogenesis in the endoplasmic reticulum.
|
| |
J Virol,
74,
564-572.
|
 |
|
|
|
|
 |
M.Shmulevitz,
and
R.Duncan
(2000).
A new class of fusion-associated small transmembrane (FAST) proteins encoded by the non-enveloped fusogenic reoviruses.
|
| |
EMBO J,
19,
902-912.
|
 |
|
|
|
|
 |
S.E.Delos,
J.M.Gilbert,
and
J.M.White
(2000).
The central proline of an internal viral fusion peptide serves two important roles.
|
| |
J Virol,
74,
1686-1693.
|
 |
|
|
|
|
 |
S.Lustig,
U.Olshevsky,
D.Ben-Nathan,
B.E.Lachmi,
M.Malkinson,
D.Kobiler,
and
M.Halevy
(2000).
A live attenuated West Nile virus strain as a potential veterinary vaccine.
|
| |
Viral Immunol,
13,
401-410.
|
 |
|
|
|
|
 |
S.Y.Se-Thoe,
A.E.Ling,
and
M.M.Ng
(2000).
Alteration of virus entry mode: a neutralisation mechanism for Dengue-2 virus.
|
| |
J Med Virol,
62,
364-376.
|
 |
|
|
|
|
 |
T.Stegmann
(2000).
Membrane fusion mechanisms: the influenza hemagglutinin paradigm and its implications for intracellular fusion.
|
| |
Traffic,
1,
598-604.
|
 |
|
|
|
|
 |
I.Martin,
J.Ruysschaert,
and
R.M.Epand
(1999).
Role of the N-terminal peptides of viral envelope proteins in membrane fusion.
|
| |
Adv Drug Deliv Rev,
38,
233-255.
|
 |
|
|
|
|
 |
K.C.Leitmeyer,
D.W.Vaughn,
D.M.Watts,
R.Salas,
I.Villalobos,
de Chacon,
C.Ramos,
and
R.Rico-Hesse
(1999).
Dengue virus structural differences that correlate with pathogenesis.
|
| |
J Virol,
73,
4738-4747.
|
 |
|
|
|
|
 |
L.Jindrák,
and
L.Grubhoffer
(1999).
Animal virus receptors.
|
| |
Folia Microbiol (Praha),
44,
467-486.
|
 |
|
|
|
|
 |
S.L.Allison,
K.Stiasny,
K.Stadler,
C.W.Mandl,
and
F.X.Heinz
(1999).
Mapping of functional elements in the stem-anchor region of tick-borne encephalitis virus envelope protein E.
|
| |
J Virol,
73,
5605-5612.
|
 |
|
|
|
|
 |
S.Wang,
R.He,
and
R.Anderson
(1999).
PrM- and cell-binding domains of the dengue virus E protein.
|
| |
J Virol,
73,
2547-2551.
|
 |
|
|
|
|
 |
T.J.Chambers,
A.Nestorowicz,
P.W.Mason,
and
C.M.Rice
(1999).
Yellow fever/Japanese encephalitis chimeric viruses: construction and biological properties.
|
| |
J Virol,
73,
3095-3101.
|
 |
|
|
|
|
 |
T.S.Baker,
N.H.Olson,
and
S.D.Fuller
(1999).
Adding the third dimension to virus life cycles: three-dimensional reconstruction of icosahedral viruses from cryo-electron micrographs.
|
| |
Microbiol Mol Biol Rev,
63,
862.
|
 |
|
|
|
|
 |
W.P.Duprex,
I.Duffy,
S.McQuaid,
L.Hamill,
S.L.Cosby,
M.A.Billeter,
J.Schneider-Schaulies,
V.ter Meulen,
and
B.K.Rima
(1999).
The H gene of rodent brain-adapted measles virus confers neurovirulence to the Edmonston vaccine strain.
|
| |
J Virol,
73,
6916-6922.
|
 |
|
|
|
|
 |
C.W.Mandl,
H.Holzmann,
T.Meixner,
S.Rauscher,
P.F.Stadler,
S.L.Allison,
and
F.X.Heinz
(1998).
Spontaneous and engineered deletions in the 3' noncoding region of tick-borne encephalitis virus: construction of highly attenuated mutants of a flavivirus.
|
| |
J Virol,
72,
2132-2140.
|
 |
|
|
|
|
 |
E.I.Pecheur,
I.Martin,
J.M.Ruysschaert,
A.Bienvenue,
and
D.Hoekstra
(1998).
Membrane fusion induced by 11-mer anionic and cationic peptides: a structure-function study.
|
| |
Biochemistry,
37,
2361-2371.
|
 |
|
|
|
|
 |
H.Qiao,
S.L.Pelletier,
L.Hoffman,
J.Hacker,
R.T.Armstrong,
and
J.M.White
(1998).
Specific single or double proline substitutions in the "spring-loaded" coiled-coil region of the influenza hemagglutinin impair or abolish membrane fusion activity.
|
| |
J Cell Biol,
141,
1335-1347.
|
 |
|
|
|
|
 |
M.Bray,
R.Men,
I.Tokimatsu,
and
C.J.Lai
(1998).
Genetic determinants responsible for acquisition of dengue type 2 virus mouse neurovirulence.
|
| |
J Virol,
72,
1647-1651.
|
 |
|
|
|
|
 |
M.L.Muñoz,
A.Cisneros,
J.Cruz,
P.Das,
R.Tovar,
and
A.Ortega
(1998).
Putative dengue virus receptors from mosquito cells.
|
| |
FEMS Microbiol Lett,
168,
251-258.
|
 |
|
|
|
|
 |
P.Desprès,
M.P.Frenkiel,
P.E.Ceccaldi,
C.Duarte Dos Santos,
and
V.Deubel
(1998).
Apoptosis in the mouse central nervous system in response to infection with mouse-neurovirulent dengue viruses.
|
| |
J Virol,
72,
823-829.
|
 |
|
|
|
|
 |
P.J.Klasse,
R.Bron,
and
M.Marsh
(1998).
Mechanisms of enveloped virus entry into animal cells.
|
| |
Adv Drug Deliv Rev,
34,
65-91.
|
 |
|
|
|
|
 |
A.K.Basak,
J.M.Grimes,
P.Gouet,
P.Roy,
and
D.I.Stuart
(1997).
Structures of orbivirus VP7: implications for the role of this protein in the viral life cycle.
|
| |
Structure,
5,
871-883.
|
 |
|
|
|
|
 |
D.S.Dimitrov
(1997).
How do viruses enter cells? The HIV coreceptors teach us a lesson of complexity.
|
| |
Cell,
91,
721-730.
|
 |
|
|
|
|
 |
E.I.Pécheur,
D.Hoekstra,
J.Sainte-Marie,
L.Maurin,
A.Bienvenüe,
and
J.R.Philippot
(1997).
Membrane anchorage brings about fusogenic properties in a short synthetic peptide.
|
| |
Biochemistry,
36,
3773-3781.
|
 |
|
|
|
|
 |
E.J.Platt,
N.Madani,
S.L.Kozak,
and
D.Kabat
(1997).
Infectious properties of human immunodeficiency virus type 1 mutants with distinct affinities for the CD4 receptor.
|
| |
J Virol,
71,
883-890.
|
 |
|
|
|
|
 |
J.R.Putnak,
N.Kanesa-Thasan,
and
B.L.Innis
(1997).
A putative cellular receptor for dengue viruses.
|
| |
Nat Med,
3,
828-829.
|
 |
|
|
|
|
 |
J.S.Salas-Benito,
and
R.M.del Angel
(1997).
Identification of two surface proteins from C6/36 cells that bind dengue type 4 virus.
|
| |
J Virol,
71,
7246-7252.
|
 |
|
|
|
|
 |
S.R.Durell,
I.Martin,
J.M.Ruysschaert,
Y.Shai,
and
R.Blumenthal
(1997).
What studies of fusion peptides tell us about viral envelope glycoprotein-mediated membrane fusion (review).
|
| |
Mol Membr Biol,
14,
97.
|
 |
|
|
|
|
 |
S.Steinbacher,
S.Miller,
U.Baxa,
A.Weintraub,
and
R.Seckler
(1997).
Interaction of Salmonella phage P22 with its O-antigen receptor studied by X-ray crystallography.
|
| |
Biol Chem,
378,
337-343.
|
 |
|
|
|
|
 |
Y.Chen,
T.Maguire,
R.E.Hileman,
J.R.Fromm,
J.D.Esko,
R.J.Linhardt,
and
R.M.Marks
(1997).
Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate.
|
| |
Nat Med,
3,
866-871.
|
 |
|
|
|
|
 |
C.F.Arias,
P.Romero,
V.Alvarez,
and
S.López
(1996).
Trypsin activation pathway of rotavirus infectivity.
|
| |
J Virol,
70,
5832-5839.
|
 |
|
|
|
|
 |
D.C.Siess,
S.L.Kozak,
and
D.Kabat
(1996).
Exceptional fusogenicity of Chinese hamster ovary cells with murine retroviruses suggests roles for cellular factor(s) and receptor clusters in the membrane fusion process.
|
| |
J Virol,
70,
3432-3439.
|
 |
|
|
|
|
 |
D.Fass,
S.C.Harrison,
and
P.S.Kim
(1996).
Retrovirus envelope domain at 1.7 angstrom resolution.
|
| |
Nat Struct Biol,
3,
465-469.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.Holzmann,
M.Kundi,
K.Stiasny,
J.Clement,
P.McKenna,
C.Kunz,
and
F.X.Heinz
(1996).
Correlation between ELISA, hemagglutination inhibition, and neutralization tests after vaccination against tick-borne encephalitis.
|
| |
J Med Virol,
48,
102-107.
|
 |
|
|
|
|
 |
J.E.Johnson,
and
M.Stewart
(1996).
Macromolecular assemblages Atomic-resolution structural biology of the cell: a progress report.
|
| |
Curr Opin Struct Biol,
6,
139-141.
|
 |
|
|
|
|
 |
J.Schalich,
S.L.Allison,
K.Stiasny,
C.W.Mandl,
C.Kunz,
and
F.X.Heinz
(1996).
Recombinant subviral particles from tick-borne encephalitis virus are fusogenic and provide a model system for studying flavivirus envelope glycoprotein functions.
|
| |
J Virol,
70,
4549-4557.
|
 |
|
|
|
|
 |
K.Stiasny,
S.L.Allison,
A.Marchler-Bauer,
C.Kunz,
and
F.X.Heinz
(1996).
Structural requirements for low-pH-induced rearrangements in the envelope glycoprotein of tick-borne encephalitis virus.
|
| |
J Virol,
70,
8142-8147.
|
 |
|
|
|
|
 |
L.D.Hernandez,
L.R.Hoffman,
T.G.Wolfsberg,
and
J.M.White
(1996).
Virus-cell and cell-cell fusion.
|
| |
Annu Rev Cell Dev Biol,
12,
627-661.
|
 |
|
|
|
|
 |
L.Liljas
(1996).
Viruses.
|
| |
Curr Opin Struct Biol,
6,
151-156.
|
 |
|
|
|
|
 |
T.M.Gallagher
(1996).
Murine coronavirus membrane fusion is blocked by modification of thiols buried within the spike protein.
|
| |
J Virol,
70,
4683-4690.
|
 |
|
|
|
|
 |
Y.Chen,
T.Maguire,
and
R.M.Marks
(1996).
Demonstration of binding of dengue virus envelope protein to target cells.
|
| |
J Virol,
70,
8765-8772.
|
 |
|
|
|
|
 |
D.I.Stuart,
and
E.Y.Jones
(1995).
Recognition at the cell surface: recent structural insights.
|
| |
Curr Opin Struct Biol,
5,
735-743.
|
 |
|
|
|
|
 |
D.Stuart,
and
P.Gouet
(1995).
Viral envelope glycoproteins swing into action.
|
| |
Structure,
3,
645-648.
|
 |
|
|
|
|
 |
F.M.Hughson
(1995).
Molecular mechanisms of protein-mediated membrane fusion.
|
| |
Curr Opin Struct Biol,
5,
507-513.
|
 |
|
|
|
|
 |
M.G.Rossmann
(1995).
Ab initio phase determination and phase extension using non-crystallographic symmetry.
|
| |
Curr Opin Struct Biol,
5,
650-655.
|
 |
|
|
|
|
 |
S.J.Butcher,
D.H.Bamford,
and
S.D.Fuller
(1995).
DNA packaging orders the membrane of bacteriophage PRD1.
|
| |
EMBO J,
14,
6078-6086.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |