spacer
spacer

PDBsum entry 2hg0

Go to PDB code: 
protein ligands links
Viral protein PDB id
2hg0

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
400 a.a.
Ligands
NAG-NDG-FUL
Waters ×25
PDB id:
2hg0
Name: Viral protein
Title: Structure of the west nile virus envelope glycoprotein
Structure: Envelope glycoprotein. Chain: a. Fragment: ectodomain (residues 291-692). Engineered: yes
Source: West nile virus. Organism_taxid: 11082. Strain: ny 1999. Expressed in: spodoptera frugiperda. Expression_system_taxid: 7108.
Resolution:
3.00Å     R-factor:   0.261     R-free:   0.307
Authors: G.E.Nybakken,C.A.Nelson,B.R.Chen,M.S.Diamond,D.H.Fremont
Key ref: G.E.Nybakken et al. (2006). Crystal structure of the West Nile virus envelope glycoprotein. J Virol, 80, 11467-11474. PubMed id: 16987985
Date:
26-Jun-06     Release date:   07-Nov-06    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
Q91R00  (Q91R00_WNV) -  Envelope glycoprotein (Fragment) from West Nile virus
Seq:
Struc:
426 a.a.
400 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 

 
J Virol 80:11467-11474 (2006)
PubMed id: 16987985  
 
 
Crystal structure of the West Nile virus envelope glycoprotein.
G.E.Nybakken, C.A.Nelson, B.R.Chen, M.S.Diamond, D.H.Fremont.
 
  ABSTRACT  
 
The envelope glycoprotein (E) of West Nile virus (WNV) undergoes a conformational rearrangement triggered by low pH that results in a class II fusion event required for viral entry. Herein we present the 3.0-A crystal structure of the ectodomain of WNV E, which reveals insights into the flavivirus life cycle. We found that WNV E adopts a three-domain architecture that is shared by the E proteins from dengue and tick-borne encephalitis viruses and forms a rod-shaped configuration similar to that observed in immature flavivirus particles. Interestingly, the single N-linked glycosylation site on WNV E is displaced by a novel alpha-helix, which could potentially alter lectin-mediated attachment. The localization of histidines within the hinge regions of E implicates these residues in pH-induced conformational transitions. Most strikingly, the WNV E ectodomain crystallized as a monomer, in contrast to other flavivirus E proteins, which have crystallized as antiparallel dimers. WNV E assembles in a crystalline lattice of perpendicular molecules, with the fusion loop of one E protein buried in a hydrophobic pocket at the DI-DIII interface of another. Dimeric E proteins pack their fusion loops into analogous pockets at the dimer interface. We speculate that E proteins could pivot around the fusion loop-pocket junction, allowing virion conformational transitions while minimizing fusion loop exposure.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
21322763 D.W.Beasley (2011).
Vaccines and immunotherapeutics for the prevention and treatment of infections with West Nile virus.
  Immunotherapy, 3, 269-285.  
21228127 M.A.Martín-Acebes, and J.C.Saiz (2011).
A West Nile virus mutant with increased resistance to acid-induced inactivation.
  J Gen Virol, 92, 831-840.  
21360544 M.Laassri, B.Bidzhieva, J.Speicher, A.G.Pletnev, and K.Chumakov (2011).
Microarray hybridization for assessment of the genetic stability of chimeric West Nile/dengue 4 virus.
  J Med Virol, 83, 910-920.  
19776238 A.J.Schuh, L.Li, R.B.Tesh, B.L.Innis, and A.D.Barrett (2010).
Genetic characterization of early isolates of Japanese encephalitis virus: genotype II has been circulating since at least 1951.
  J Gen Virol, 91, 95.  
20975939 A.Zheng, M.Umashankar, and M.Kielian (2010).
In vitro and in vivo studies identify important features of dengue virus pr-E protein interactions.
  PLoS Pathog, 6, e1001157.  
20956322 B.Kaufmann, M.R.Vogt, J.Goudsmit, H.A.Holdaway, A.A.Aksyuk, P.R.Chipman, R.J.Kuhn, M.S.Diamond, and M.G.Rossmann (2010).
Neutralization of West Nile virus by cross-linking of its surface proteins with Fab fragments of the human monoclonal antibody CR4354.
  Proc Natl Acad Sci U S A, 107, 18950-18955.
PDB codes: 3iyw 3n9g
20372965 I.A.Rodenhuis-Zybert, J.Wilschut, and J.M.Smit (2010).
Dengue virus life cycle: viral and host factors modulating infectivity.
  Cell Mol Life Sci, 67, 2773-2786.  
20582308 J.M.Costin, E.Jenwitheesuk, S.M.Lok, E.Hunsperger, K.A.Conrads, K.A.Fontaine, C.R.Rees, M.G.Rossmann, S.Isern, R.Samudrala, and S.F.Michael (2010).
Structural optimization and de novo design of dengue virus entry inhibitory peptides.
  PLoS Negl Trop Dis, 4, e721.  
  20462412 M.D.Dunn, S.L.Rossi, D.M.Carter, M.R.Vogt, E.Mehlhop, M.S.Diamond, and T.M.Ross (2010).
Enhancement of anti-DIII antibodies by the C3d derivative P28 results in lower viral titers and augments protection in mice.
  Virol J, 7, 95.  
21546978 M.Kielian, C.Chanel-Vos, and M.Liao (2010).
Alphavirus Entry and Membrane Fusion.
  Viruses, 2, 796-825.  
20529314 R.Hasebe, T.Suzuki, Y.Makino, M.Igarashi, S.Yamanouchi, A.Maeda, M.Horiuchi, H.Sawa, and T.Kimura (2010).
Transcellular transport of West Nile virus-like particles across human endothelial cells depends on residues 156 and 159 of envelope protein.
  BMC Microbiol, 10, 165.  
20333252 W.M.Wahala, E.F.Donaldson, R.de Alwis, M.A.Accavitti-Loper, R.S.Baric, and A.M.de Silva (2010).
Natural strain variation and antibody neutralization of dengue serotype 3 viruses.
  PLoS Pathog, 6, e1000821.  
19478866 B.S.Thompson, B.Moesker, J.M.Smit, J.Wilschut, M.S.Diamond, and D.H.Fremont (2009).
A therapeutic antibody against west nile virus neutralizes infection by blocking fusion within endosomes.
  PLoS Pathog, 5, e1000453.  
19796949 C.Sánchez-San Martín, C.Y.Liu, and M.Kielian (2009).
Dealing with low pH: entry and exit of alphaviruses and flaviviruses.
  Trends Microbiol, 17, 514-521.  
19818466 D.E.Volk, F.J.May, S.H.Gandham, A.Anderson, J.J.Von Lindern, D.W.Beasley, A.D.Barrett, and D.G.Gorenstein (2009).
Structure of yellow fever virus envelope protein domain III.
  Virology, 394, 12-18.
PDB code: 2jqm
  19607722 D.M.Chisenhall, and C.N.Mores (2009).
Diversification of West Nile virus in a subtropical region.
  Virol J, 6, 106.  
  19837377 E.Mehlhop, S.Nelson, C.A.Jost, S.Gorlatov, S.Johnson, D.H.Fremont, M.S.Diamond, and T.C.Pierson (2009).
Complement protein C1q reduces the stoichiometric threshold for antibody-mediated neutralization of West Nile virus.
  Cell Host Microbe, 6, 381-391.  
19759134 I.M.Yu, H.A.Holdaway, P.R.Chipman, R.J.Kuhn, M.G.Rossmann, and J.Chen (2009).
Association of the pr peptides with dengue virus at acidic pH blocks membrane fusion.
  J Virol, 83, 12101-12107.
PDB code: 3iya
19386704 M.R.Vogt, B.Moesker, J.Goudsmit, M.Jongeneelen, S.K.Austin, T.Oliphant, S.Nelson, T.C.Pierson, J.Wilschut, M.Throsby, and M.S.Diamond (2009).
Human monoclonal antibodies against West Nile virus induced by natural infection neutralize at a postattachment step.
  J Virol, 83, 6494-6507.  
19501622 M.S.Diamond (2009).
Progress on the development of therapeutics against West Nile virus.
  Antiviral Res, 83, 214-227.  
19713934 M.V.Cherrier, B.Kaufmann, G.E.Nybakken, S.M.Lok, J.T.Warren, B.R.Chen, C.A.Nelson, V.A.Kostyuchenko, H.A.Holdaway, P.R.Chipman, R.J.Kuhn, M.S.Diamond, M.G.Rossmann, and D.H.Fremont (2009).
Structural basis for the preferential recognition of immature flaviviruses by a fusion-loop antibody.
  EMBO J, 28, 3269-3276.
PDB codes: 3i50 3ixx 3ixy
18996430 N.Bonafé, J.A.Rininger, R.G.Chubet, H.G.Foellmer, S.Fader, J.F.Anderson, S.L.Bushmich, K.Anthony, M.Ledizet, E.Fikrig, R.A.Koski, and P.Kaplan (2009).
A recombinant West Nile virus envelope protein vaccine candidate produced in Spodoptera frugiperda expresSF+ cells.
  Vaccine, 27, 213-222.  
19223625 Q.Y.Wang, S.J.Patel, E.Vangrevelinghe, H.Y.Xu, R.Rao, D.Jaber, W.Schul, F.Gu, O.Heudi, N.L.Ma, M.K.Poh, W.Y.Phong, T.H.Keller, E.Jacoby, and S.G.Vasudevan (2009).
A small-molecule dengue virus entry inhibitor.
  Antimicrob Agents Chemother, 53, 1823-1831.  
19264660 R.Rajamanonmani, C.Nkenfou, P.Clancy, Y.H.Yau, S.G.Shochat, S.Sukupolvi-Petty, W.Schul, M.S.Diamond, S.G.Vasudevan, and J.Lescar (2009).
On a mouse monoclonal antibody that neutralizes all four dengue virus serotypes.
  J Gen Virol, 90, 799-809.  
19241120 R.Yennamalli, N.Subbarao, T.Kampmann, R.P.McGeary, P.R.Young, and B.Kobe (2009).
Identification of novel target sites and an inhibitor of the dengue virus E protein.
  J Comput Aided Mol Des, 23, 333-341.  
19553320 S.Kiermayr, K.Stiasny, and F.X.Heinz (2009).
Impact of quaternary organization on the antigenic structure of the tick-borne encephalitis virus envelope glycoprotein E.
  J Virol, 83, 8482-8491.  
19776132 S.Nelson, S.Poddar, T.Y.Lin, and T.C.Pierson (2009).
Protonation of individual histidine residues is not required for the pH-dependent entry of west nile virus: evaluation of the "histidine switch" hypothesis.
  J Virol, 83, 12631-12635.  
19244332 V.Nayak, M.Dessau, K.Kucera, K.Anthony, M.Ledizet, and Y.Modis (2009).
Crystal structure of dengue virus type 1 envelope protein in the postfusion conformation and its implications for membrane fusion.
  J Virol, 83, 4338-4344.
PDB code: 3g7t
19631955 W.M.Wahala, A.A.Kraus, L.B.Haymore, M.A.Accavitti-Loper, and A.M.de Silva (2009).
Dengue virus neutralization by human immune sera: role of envelope protein domain III-reactive antibody.
  Virology, 392, 103-113.  
17904654 A.Pereboev, V.Borisevich, G.Tsuladze, M.Shakhmatov, D.Hudman, E.Kazachinskaia, I.Razumov, V.Svyatchenko, V.Loktev, and V.Yamshchikov (2008).
Genetically delivered antibody protects against West Nile virus.
  Antiviral Res, 77, 6.  
  19064260 C.Sánchez-San Martín, H.Sosa, and M.Kielian (2008).
A stable prefusion intermediate of the alphavirus fusion protein reveals critical features of class II membrane fusion.
  Cell Host Microbe, 4, 600-608.  
19636893 D.E.Volk, K.M.Anderson, S.H.Gandham, F.J.May, L.Li, D.W.Beasley, A.D.Barrett, and D.G.Gorenstein (2008).
NMR assignments of the sylvatic dengue 1 virus envelope protein domain III.
  Biomol NMR Assign, 2, 155-157.  
18369148 I.M.Yu, W.Zhang, H.A.Holdaway, L.Li, V.A.Kostyuchenko, P.R.Chipman, R.J.Kuhn, M.G.Rossmann, and J.Chen (2008).
Structure of the immature dengue virus at low pH primes proteolytic maturation.
  Science, 319, 1834-1837.
PDB code: 3c6r
18837784 M.S.Diamond, T.C.Pierson, and D.H.Fremont (2008).
The structural immunology of antibody protection against West Nile virus.
  Immunol Rev, 225, 212-225.  
18061925 M.V.Bogachek, E.V.Protopopova, V.B.Loktev, B.N.Zaitsev, M.Favre, S.K.Sekatskii, and G.Dietler (2008).
Immunochemical and single molecule force spectroscopy studies of specific interaction between the laminin binding protein and the West Nile virus surface glycoprotein E domain II.
  J Mol Recognit, 21, 55-62.  
18936253 R.Fritz, K.Stiasny, and F.X.Heinz (2008).
Identification of specific histidines as pH sensors in flavivirus membrane fusion.
  J Cell Biol, 183, 353-361.  
18585795 R.Perera, M.Khaliq, and R.J.Kuhn (2008).
Closing the door on flaviviruses: entry as a target for antiviral drug design.
  Antiviral Res, 80, 11-22.  
  18471342 T.C.Pierson, and M.S.Diamond (2008).
Molecular mechanisms of antibody-mediated neutralisation of flavivirus infection.
  Expert Rev Mol Med, 10, e12.  
17409163 C.B.Whitehurst, E.J.Soderblom, M.L.West, R.Hernandez, M.B.Goshe, and D.T.Brown (2007).
Location and role of free cysteinyl residues in the Sindbis virus E1 and E2 glycoproteins.
  J Virol, 81, 6231-6240.  
17395234 D.E.Volk, Y.C.Lee, X.Li, V.Thiviyanathan, G.D.Gromowski, L.Li, A.R.Lamb, D.W.Beasley, A.D.Barrett, and D.G.Gorenstein (2007).
Solution structure of the envelope protein domain III of dengue-4 virus.
  Virology, 364, 147-154.
PDB code: 2h0p
  17803826 J.Ren, T.Ding, W.Zhang, J.Song, and W.Ma (2007).
Does Japanese encephalitis virus share the same cellular receptor with other mosquito-borne flaviviruses on the C6/36 mosquito cells?
  Virol J, 4, 83.  
17387010 J.T.Huiskonen, and S.J.Butcher (2007).
Membrane-containing viruses with icosahedrally symmetric capsids.
  Curr Opin Struct Biol, 17, 229-236.  
17670824 K.Stiasny, S.Brandler, C.Kössl, and F.X.Heinz (2007).
Probing the flavivirus membrane fusion mechanism by using monoclonal antibodies.
  J Virol, 81, 11526-11531.  
18190253 M.Ledizet, K.Kar, H.G.Foellmer, N.Bonafé, K.G.Anthony, L.H.Gould, S.L.Bushmich, E.Fikrig, and R.A.Koski (2007).
Antibodies targeting linear determinants of the envelope protein protect mice against West Nile virus.
  J Infect Dis, 196, 1741-1748.  
17408368 M.Throsby, J.Ter Meulen, C.Geuijen, J.Goudsmit, and J.de Kruif (2007).
Mapping and analysis of West Nile virus-specific monoclonal antibodies: prospects for vaccine development.
  Expert Rev Vaccines, 6, 183-191.  
17881453 S.Sukupolvi-Petty, S.K.Austin, W.E.Purtha, T.Oliphant, G.E.Nybakken, J.J.Schlesinger, J.T.Roehrig, G.D.Gromowski, A.D.Barrett, D.H.Fremont, and M.S.Diamond (2007).
Type- and subcomplex-specific neutralizing antibodies against domain III of dengue virus type 2 envelope protein recognize adjacent epitopes.
  J Virol, 81, 12816-12826.  
  18005691 T.C.Pierson, Q.Xu, S.Nelson, T.Oliphant, G.E.Nybakken, D.H.Fremont, and M.S.Diamond (2007).
The stoichiometry of antibody-mediated neutralization and enhancement of West Nile virus infection.
  Cell Host Microbe, 1, 135-145.  
17715236 T.Oliphant, G.E.Nybakken, S.K.Austin, Q.Xu, J.Bramson, M.Loeb, M.Throsby, D.H.Fremont, T.C.Pierson, and M.S.Diamond (2007).
Induction of epitope-specific neutralizing antibodies against West Nile virus.
  J Virol, 81, 11828-11839.  
17376919 Y.Zhang, B.Kaufmann, P.R.Chipman, R.J.Kuhn, and M.G.Rossmann (2007).
Structure of immature West Nile virus.
  J Virol, 81, 6141-6145.
PDB code: 2of6
17035317 T.Oliphant, G.E.Nybakken, M.Engle, Q.Xu, C.A.Nelson, S.Sukupolvi-Petty, A.Marri, B.E.Lachmi, U.Olshevsky, D.H.Fremont, T.C.Pierson, and M.S.Diamond (2006).
Antibody recognition and neutralization determinants on domains I and II of West Nile Virus envelope protein.
  J Virol, 80, 12149-12159.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer