spacer
spacer

PDBsum entry 2b6b

Go to PDB code: 
protein links
Virus/receptor PDB id
2b6b
Contents
Protein chains
389 a.a.*
128 a.a.* *
* Residue conservation analysis
* C-alpha coords only
PDB id:
2b6b
Name: Virus/receptor
Title: Cryo em structure of dengue complexed with crd of dc-sign
Structure: Envelope glycoprotein. Chain: a, b, c. Cd209 antigen. Chain: d. Synonym: dendritic cell-specific icam-3-grabbing nonintegrin 1, dc- sign1, dc-sign. Engineered: yes
Source: Dengue virus. Organism_taxid: 12637. Homo sapiens. Human. Organism_taxid: 9606. Gene: cd209. Expressed in: escherichia coli. Expression_system_taxid: 562
Authors: E.Pokidysheva,Y.Zhang,A.J.Battisti,C.M.Bator-Kelly,P.R.Chipman, G.Gregorio,W.A.Hendrickson,R.J.Kuhn,M.G.Rossmann
Key ref:
E.Pokidysheva et al. (2006). Cryo-EM reconstruction of dengue virus in complex with the carbohydrate recognition domain of DC-SIGN. Cell, 124, 485-493. PubMed id: 16469696 DOI: 10.1016/j.cell.2005.11.042
Date:
30-Sep-05     Release date:   07-Mar-06    
 Headers
 References

Protein chains
Pfam   ArchSchema ?
Q9WDA7  (Q9WDA7_9FLAV) -  Genome polyprotein from dengue virus type 2
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
3391 a.a.
389 a.a.*
Protein chain
Pfam   ArchSchema ?
Q9NNX6  (CD209_HUMAN) -  CD209 antigen from Homo sapiens
Seq:
Struc:
404 a.a.
128 a.a.
Key:    PfamA domain  Secondary structure
* PDB and UniProt seqs differ at 4 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class 1: Chains A, B, C: E.C.3.4.21.91  - flavivirin.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Selective hydrolysis of Xaa-Xaa-|-Xbb bonds in which each of the Xaa can be either Arg or Lys and Xbb can be either Ser or Ala.
   Enzyme class 2: Chains A, B, C: E.C.3.6.1.15  - nucleoside-triphosphate phosphatase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: a ribonucleoside 5'-triphosphate + H2O = a ribonucleoside 5'-diphosphate + phosphate + H+
ribonucleoside 5'-triphosphate
+ H2O
= ribonucleoside 5'-diphosphate
+ phosphate
+ H(+)
   Enzyme class 3: Chains A, B, C: E.C.3.6.4.13  - Rna helicase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: ATP + H2O = ADP + phosphate + H+
ATP
+ H2O
= ADP
+ phosphate
+ H(+)
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1016/j.cell.2005.11.042 Cell 124:485-493 (2006)
PubMed id: 16469696  
 
 
Cryo-EM reconstruction of dengue virus in complex with the carbohydrate recognition domain of DC-SIGN.
E.Pokidysheva, Y.Zhang, A.J.Battisti, C.M.Bator-Kelly, P.R.Chipman, C.Xiao, G.G.Gregorio, W.A.Hendrickson, R.J.Kuhn, M.G.Rossmann.
 
  ABSTRACT  
 
Dengue virus (DENV) is a significant human pathogen that causes millions of infections and results in about 24,000 deaths each year. Dendritic cell-specific ICAM3 grabbing nonintegrin (DC-SIGN), abundant in immature dendritic cells, was previously reported as being an ancillary receptor interacting with the surface of DENV. The structure of DENV in complex with the carbohydrate recognition domain (CRD) of DC-SIGN was determined by cryo-electron microscopy at 25 A resolution. One CRD monomer was found to bind to two glycosylation sites at Asn67 of two neighboring glycoproteins in each icosahedral asymmetric unit, leaving the third Asn67 residue vacant. The vacancy at the third Asn67 site is a result of the nonequivalence of the glycoprotein environments, leaving space for the primary receptor binding to domain III of E. The use of carbohydrate moieties for receptor binding sites suggests a mechanism for avoiding immune surveillance.
 
  Selected figure(s)  
 
Figure 1.
Figure 1. Structure of DC-SIGN
Figure 3.
Figure 3. Diagrammatic Representation of a DC-SIGN Tetrameric Molecule Interacting with the DENV Surface
 
  The above figures are reprinted by permission from Cell Press: Cell (2006, 124, 485-493) copyright 2006.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21219187 B.R.Murphy, and S.S.Whitehead (2011).
Immune response to dengue virus and prospects for a vaccine.
  Annu Rev Immunol, 29, 587-619.  
20369024 B.Shrestha, J.D.Brien, S.Sukupolvi-Petty, S.K.Austin, M.A.Edeling, T.Kim, K.M.O'Brien, C.A.Nelson, S.Johnson, D.H.Fremont, and M.S.Diamond (2010).
The development of therapeutic antibodies that neutralize homologous and heterologous genotypes of dengue virus type 1.
  PLoS Pathog, 6, e1000823.  
20219924 E.Lee, S.K.Leang, A.Davidson, and M.Lobigs (2010).
Both E protein glycans adversely affect dengue virus infectivity but are beneficial for virion release.
  J Virol, 84, 5171-5180.  
20372965 I.A.Rodenhuis-Zybert, J.Wilschut, and J.M.Smit (2010).
Dengue virus life cycle: viral and host factors modulating infectivity.
  Cell Mol Life Sci, 67, 2773-2786.  
20519400 J.Junjhon, T.J.Edwards, U.Utaipat, V.D.Bowman, H.A.Holdaway, W.Zhang, P.Keelapang, C.Puttikhunt, R.Perera, P.R.Chipman, W.Kasinrerk, P.Malasit, R.J.Kuhn, and N.Sittisombut (2010).
Influence of pr-M cleavage on the heterogeneity of extracellular dengue virus particles.
  J Virol, 84, 8353-8358.  
19833723 N.P.Chung, S.K.Breun, A.Bashirova, J.G.Baumann, T.D.Martin, J.M.Karamchandani, J.W.Rausch, S.F.Le Grice, L.Wu, M.Carrington, and V.N.Kewalramani (2010).
HIV-1 transmission by dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN) is regulated by determinants in the carbohydrate recognition domain that are absent in liver/lymph node-SIGN (L-SIGN).
  J Biol Chem, 285, 2100-2112.  
20550721 R.A.Gadkari, and N.Srinivasan (2010).
Prediction of protein-protein interactions in dengue virus coat proteins guided by low resolution cryoEM structures.
  BMC Struct Biol, 10, 17.  
20592088 S.Sukupolvi-Petty, S.K.Austin, M.Engle, J.D.Brien, K.A.Dowd, K.L.Williams, S.Johnson, R.Rico-Hesse, E.Harris, T.C.Pierson, D.H.Fremont, and M.S.Diamond (2010).
Structure and function analysis of therapeutic monoclonal antibodies against dengue virus type 2.
  J Virol, 84, 9227-9239.  
  20165556 B.J.Geiss, H.Stahla, A.M.Hannah, H.H.Gari, and S.M.Keenan (2009).
Focus on flaviviruses: current and future drug targets.
  Future Med Chem, 1, 327.  
  19941667 D.G.Nielsen (2009).
The relationship of interacting immunological components in dengue pathogenesis.
  Virol J, 6, 211.  
19909355 J.A.Hamerman, M.Ni, J.R.Killebrew, C.L.Chu, and C.A.Lowell (2009).
The expanding roles of ITAM adapters FcRgamma and DAP12 in myeloid cells.
  Immunol Rev, 232, 42-58.  
19494052 K.Hacker, L.White, and A.M.de Silva (2009).
N-Linked glycans on dengue viruses grown in mammalian and insect cells.
  J Gen Virol, 90, 2097-2106.  
19264660 R.Rajamanonmani, C.Nkenfou, P.Clancy, Y.H.Yau, S.G.Shochat, S.Sukupolvi-Petty, W.Schul, M.S.Diamond, S.G.Vasudevan, and J.Lescar (2009).
On a mouse monoclonal antibody that neutralizes all four dengue virus serotypes.
  J Gen Virol, 90, 799-809.  
19337372 W.D.Crill, H.R.Hughes, M.J.Delorey, and G.J.Chang (2009).
Humoral immune responses of dengue fever patients using epitope-specific serotype-2 virus-like particle antigens.
  PLoS ONE, 4, e4991.  
18585795 R.Perera, M.Khaliq, and R.J.Kuhn (2008).
Closing the door on flaviviruses: entry as a target for antiviral drug design.
  Antiviral Res, 80, 11-22.  
18644250 R.Perera, and R.J.Kuhn (2008).
Structural proteomics of dengue virus.
  Curr Opin Microbiol, 11, 369-377.  
18264114 S.M.Lok, V.Kostyuchenko, G.E.Nybakken, H.A.Holdaway, A.J.Battisti, S.Sukupolvi-Petty, D.Sedlak, D.H.Fremont, P.R.Chipman, J.T.Roehrig, M.S.Diamond, R.J.Kuhn, and M.G.Rossmann (2008).
Binding of a neutralizing antibody to dengue virus alters the arrangement of surface glycoproteins.
  Nat Struct Mol Biol, 15, 312-317.
PDB codes: 2r29 2r69 2r6p
18496526 S.T.Chen, Y.L.Lin, M.T.Huang, M.F.Wu, S.C.Cheng, H.Y.Lei, C.K.Lee, T.W.Chiou, C.H.Wong, and S.L.Hsieh (2008).
CLEC5A is critical for dengue-virus-induced lethal disease.
  Nature, 453, 672-676.  
  18471342 T.C.Pierson, and M.S.Diamond (2008).
Molecular mechanisms of antibody-mediated neutralisation of flavivirus infection.
  Expert Rev Mol Med, 10, e12.  
17728239 H.M.van der Schaar, M.J.Rust, B.L.Waarts, H.van der Ende-Metselaar, R.J.Kuhn, J.Wilschut, X.Zhuang, and J.M.Smit (2007).
Characterization of the early events in dengue virus cell entry by biochemical assays and single-virus tracking.
  J Virol, 81, 12019-12028.  
17459925 J.A.Mondotte, P.Y.Lozach, A.Amara, and A.V.Gamarnik (2007).
Essential role of dengue virus envelope protein N glycosylation at asparagine-67 during viral propagation.
  J Virol, 81, 7136-7148.  
17387010 J.T.Huiskonen, and S.J.Butcher (2007).
Membrane-containing viruses with icosahedrally symmetric capsids.
  Curr Opin Struct Biol, 17, 229-236.  
17522223 P.W.Hong, S.Nguyen, S.Young, S.V.Su, and B.Lee (2007).
Identification of the optimal DC-SIGN binding site on human immunodeficiency virus type 1 gp120.
  J Virol, 81, 8325-8336.  
17420467 S.Hafenstein, L.M.Palermo, V.A.Kostyuchenko, C.Xiao, M.C.Morais, C.D.Nelson, V.D.Bowman, A.J.Battisti, P.R.Chipman, C.R.Parrish, and M.G.Rossmann (2007).
Asymmetric binding of transferrin receptor to parvovirus capsids.
  Proc Natl Acad Sci U S A, 104, 6585-6589.
PDB code: 2nsu
17501583 V.L.Lorman, and S.B.Rochal (2007).
Density-wave theory of the capsid structure of small icosahedral viruses.
  Phys Rev Lett, 98, 185502.  
16895988 B.Kaufmann, G.E.Nybakken, P.R.Chipman, W.Zhang, M.S.Diamond, D.H.Fremont, R.J.Kuhn, and M.G.Rossmann (2006).
West Nile virus in complex with the Fab fragment of a neutralizing monoclonal antibody.
  Proc Natl Acad Sci U S A, 103, 12400-12404.  
17001080 C.W.Davis, L.M.Mattei, H.Y.Nguyen, C.Ansarah-Sobrinho, R.W.Doms, and T.C.Pierson (2006).
The location of asparagine-linked glycans on West Nile virions controls their interactions with CD209 (dendritic cell-specific ICAM-3 grabbing nonintegrin).
  J Biol Chem, 281, 37183-37194.  
16987985 G.E.Nybakken, C.A.Nelson, B.R.Chen, M.S.Diamond, and D.H.Fremont (2006).
Crystal structure of the West Nile virus envelope glycoprotein.
  J Virol, 80, 11467-11474.
PDB code: 2hg0
16791836 J.Fink, F.Gu, and S.G.Vasudevan (2006).
Role of T cells, cytokines and antibody in dengue fever and dengue haemorrhagic fever.
  Rev Med Virol, 16, 263-275.  
16928749 K.Clyde, J.L.Kyle, and E.Harris (2006).
Recent advances in deciphering viral and host determinants of dengue virus replication and pathogenesis.
  J Virol, 80, 11418-11431.  
16943291 R.Kanai, K.Kar, K.Anthony, L.H.Gould, M.Ledizet, E.Fikrig, W.A.Marasco, R.A.Koski, and Y.Modis (2006).
Crystal structure of west nile virus envelope glycoprotein reveals viral surface epitopes.
  J Virol, 80, 11000-11008.
PDB code: 2i69
16940865 S.Green, and A.Rothman (2006).
Immunopathological mechanisms in dengue and dengue hemorrhagic fever.
  Curr Opin Infect Dis, 19, 429-436.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer