 |
PDBsum entry 1i6a
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Transcription
|
PDB id
|
|
|
|
1i6a
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Cell
105:103-113
(2001)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structural basis of the redox switch in the OxyR transcription factor.
|
|
H.Choi,
S.Kim,
P.Mukhopadhyay,
S.Cho,
J.Woo,
G.Storz,
S.Ryu.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The Escherichia coli OxyR transcription factor senses H2O2 and is activated
through the formation of an intramolecular disulfide bond. Here we present the
crystal structures of the regulatory domain of OxyR in its reduced and oxidized
forms, determined at 2.7 A and 2.3 A resolutions, respectively. In the reduced
form, the two redox-active cysteines are separated by approximately 17 A.
Disulfide bond formation in the oxidized form results in a significant
structural change in the regulatory domain. The structural remodeling, which
leads to different oligomeric associations, accounts for the redox-dependent
switch in OxyR and provides a novel example of protein regulation by "fold
editing" through a reversible disulfide bond formation within a folded
domain.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 2.
Figure 2. Structural Transition within MonomerThe
environment of the redox-active cysteines in the reduced (A) and
oxidized (B) forms of OxyR. The redox-active cysteines Cys-199
(Ser-199 in the reduced form) and Cys-208, and the neighboring
residues, are shown in a ball-and-stick representation on a
ribbon diagram of the region. The point of view is approximately
from the left side of the monomers presented in Figure 1
|
 |
Figure 3.
Figure 3. Electron Density Maps of the Redox-Active
Cysteine RegionThe 2Fo−Fc maps of the reduced (A) and oxidized
(B) forms are superposed with the refined models. The maps are
contoured at a 0.9 σ level
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Cell Press:
Cell
(2001,
105,
103-113)
copyright 2001.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
B.C.An,
S.S.Lee,
E.M.Lee,
J.T.Lee,
S.G.Wi,
H.S.Jung,
W.Park,
S.Y.Lee,
and
B.Y.Chung
(2011).
Functional switching of a novel prokaryotic 2-Cys peroxiredoxin (PpPrx) under oxidative stress.
|
| |
Cell Stress Chaperones,
16,
317-328.
|
 |
|
|
|
|
 |
H.Antelmann,
and
J.D.Helmann
(2011).
Thiol-based redox switches and gene regulation.
|
| |
Antioxid Redox Signal,
14,
1049-1063.
|
 |
|
|
|
|
 |
J.M.Sobota,
and
J.A.Imlay
(2011).
Iron enzyme ribulose-5-phosphate 3-epimerase in Escherichia coli is rapidly damaged by hydrogen peroxide but can be protected by manganese.
|
| |
Proc Natl Acad Sci U S A,
108,
5402-5407.
|
 |
|
|
|
|
 |
P.R.Chen,
P.Brugarolas,
and
C.He
(2011).
Redox signaling in human pathogens.
|
| |
Antioxid Redox Signal,
14,
1107-1118.
|
 |
|
|
|
|
 |
S.J.Swanson,
W.G.Choi,
A.Chanoca,
and
S.Gilroy
(2011).
In vivo imaging of Ca2+, pH, and reactive oxygen species using fluorescent probes in plants.
|
| |
Annu Rev Plant Biol,
62,
273-297.
|
 |
|
|
|
|
 |
Z.Liu,
M.Yang,
G.L.Peterfreund,
A.M.Tsou,
N.Selamoglu,
F.Daldal,
Z.Zhong,
B.Kan,
and
J.Zhu
(2011).
Vibrio cholerae anaerobic induction of virulence gene expression is controlled by thiol-based switches of virulence regulator AphB.
|
| |
Proc Natl Acad Sci U S A,
108,
810-815.
|
 |
|
|
|
|
 |
A.J.Meyer,
and
T.P.Dick
(2010).
Fluorescent protein-based redox probes.
|
| |
Antioxid Redox Signal,
13,
621-650.
|
 |
|
|
|
|
 |
B.C.An,
S.S.Lee,
E.M.Lee,
S.G.Wi,
W.Park,
and
B.Y.Chung
(2010).
Global analysis of disulfide bond proteins in Pseudomonas aeruginosa exposed to hydrogen peroxide and gamma rays.
|
| |
Int J Radiat Biol,
86,
400-408.
|
 |
|
|
|
|
 |
B.Enyedi,
P.Várnai,
and
M.Geiszt
(2010).
Redox state of the endoplasmic reticulum is controlled by Ero1L-alpha and intraluminal calcium.
|
| |
Antioxid Redox Signal,
13,
721-729.
|
 |
|
|
|
|
 |
G.S.Knapp,
and
J.C.Hu
(2010).
Specificity of the E. coli LysR-type transcriptional regulators.
|
| |
PLoS One,
5,
e15189.
|
 |
|
|
|
|
 |
H.Chen,
C.Yi,
J.Zhang,
W.Zhang,
Z.Ge,
C.G.Yang,
and
C.He
(2010).
Structural insight into the oxidation-sensing mechanism of the antibiotic resistance of regulator MexR.
|
| |
EMBO Rep,
11,
685-690.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.Yang,
G.L.Lipscomb,
A.M.Keese,
G.J.Schut,
M.Thomm,
M.W.Adams,
B.C.Wang,
and
R.A.Scott
(2010).
SurR regulates hydrogen production in Pyrococcus furiosus by a sulfur-dependent redox switch.
|
| |
Mol Microbiol,
77,
1111-1122.
|
 |
|
|
|
|
 |
K.J.McLaughlin,
C.M.Strain-Damerell,
K.Xie,
D.Brekasis,
A.S.Soares,
M.S.Paget,
and
C.L.Kielkopf
(2010).
Structural basis for NADH/NAD+ redox sensing by a Rex family repressor.
|
| |
Mol Cell,
38,
563-575.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
L.Yin,
L.Wang,
H.Lu,
G.Xu,
H.Chen,
H.Zhan,
B.Tian,
and
Y.Hua
(2010).
DRA0336, another OxyR homolog, involved in the antioxidation mechanisms in Deinococcus radiodurans.
|
| |
J Microbiol,
48,
473-479.
|
 |
|
|
|
|
 |
M.A.Wouters,
S.W.Fan,
and
N.L.Haworth
(2010).
Disulfides as redox switches: from molecular mechanisms to functional significance.
|
| |
Antioxid Redox Signal,
12,
53-91.
|
 |
|
|
|
|
 |
S.Sainsbury,
J.Ren,
J.E.Nettleship,
N.J.Saunders,
D.I.Stuart,
and
R.J.Owens
(2010).
The structure of a reduced form of OxyR from Neisseria meningitidis.
|
| |
BMC Struct Biol,
10,
10.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
V.Duarte,
and
J.M.Latour
(2010).
PerR vs OhrR: selective peroxide sensing in Bacillus subtilis.
|
| |
Mol Biosyst,
6,
316-323.
|
 |
|
|
|
|
 |
Y.J.Yang,
P.F.Wu,
L.H.Long,
D.F.Yu,
W.N.Wu,
Z.L.Hu,
H.Fu,
N.Xie,
Y.Jin,
L.Ni,
J.Z.Wang,
F.Wang,
and
J.G.Chen
(2010).
Reversal of aging-associated hippocampal synaptic plasticity deficits by reductants via regulation of thiol redox and NMDA receptor function.
|
| |
Aging Cell,
9,
709-721.
|
 |
|
|
|
|
 |
Z.Wang,
Z.Zhou,
Z.Y.Guo,
and
C.W.Chi
(2010).
Snapshot of the interaction between HIV envelope glycoprotein 120 and protein disulfide isomerase.
|
| |
Acta Biochim Biophys Sin (Shanghai),
42,
358-362.
|
 |
|
|
|
|
 |
D.A.Traoré,
A.El Ghazouani,
L.Jacquamet,
F.Borel,
J.L.Ferrer,
D.Lascoux,
J.L.Ravanat,
M.Jaquinod,
G.Blondin,
C.Caux-Thang,
V.Duarte,
and
J.M.Latour
(2009).
Structural and functional characterization of 2-oxo-histidine in oxidized PerR protein.
|
| |
Nat Chem Biol,
5,
53-59.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
G.S.Knapp,
and
J.C.Hu
(2009).
The oligomerization of CynR in Escherichia coli.
|
| |
Protein Sci,
18,
2307-2315.
|
 |
|
|
|
|
 |
G.S.Knapp,
J.W.Tsai,
and
J.C.Hu
(2009).
The oligomerization of OxyR in Escherichia coli.
|
| |
Protein Sci,
18,
101-107.
|
 |
|
|
|
|
 |
G.V.Smirnova,
Z.Y.Samoylova,
N.G.Muzyka,
and
O.N.Oktyabrsky
(2009).
Influence of polyphenols on Escherichia coli resistance to oxidative stress.
|
| |
Free Radic Biol Med,
46,
759-768.
|
 |
|
|
|
|
 |
K.S.Jensen,
R.E.Hansen,
and
J.R.Winther
(2009).
Kinetic and thermodynamic aspects of cellular thiol-disulfide redox regulation.
|
| |
Antioxid Redox Signal,
11,
1047-1058.
|
 |
|
|
|
|
 |
L.K.Wood,
and
D.J.Thiele
(2009).
Transcriptional activation in yeast in response to copper deficiency involves copper-zinc superoxide dismutase.
|
| |
J Biol Chem,
284,
404-413.
|
 |
|
|
|
|
 |
P.R.Chen,
S.Nishida,
C.B.Poor,
A.Cheng,
T.Bae,
L.Kuechenmeister,
P.M.Dunman,
D.Missiakas,
and
C.He
(2009).
A new oxidative sensing and regulation pathway mediated by the MgrA homologue SarZ in Staphylococcus aureus.
|
| |
Mol Microbiol,
71,
198-211.
|
 |
|
|
|
|
 |
S.H.Craven,
O.C.Ezezika,
S.Haddad,
R.A.Hall,
C.Momany,
and
E.L.Neidle
(2009).
Inducer responses of BenM, a LysR-type transcriptional regulator from Acinetobacter baylyi ADP1.
|
| |
Mol Microbiol,
72,
881-894.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Sainsbury,
L.A.Lane,
J.Ren,
R.J.Gilbert,
N.J.Saunders,
C.V.Robinson,
D.I.Stuart,
and
R.J.Owens
(2009).
The structure of CrgA from Neisseria meningitidis reveals a new octameric assembly state for LysR transcriptional regulators.
|
| |
Nucleic Acids Res,
37,
4545-4558.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.W.Fan,
R.A.George,
N.L.Haworth,
L.L.Feng,
J.Y.Liu,
and
M.A.Wouters
(2009).
Conformational changes in redox pairs of protein structures.
|
| |
Protein Sci,
18,
1745-1765.
|
 |
|
|
|
|
 |
Y.G.Kim,
S.Lee,
O.S.Kwon,
S.Y.Park,
S.J.Lee,
B.J.Park,
and
K.J.Kim
(2009).
Redox-switch modulation of human SSADH by dynamic catalytic loop.
|
| |
EMBO J,
28,
959-968.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
Z.Ma,
F.E.Jacobsen,
and
D.P.Giedroc
(2009).
Coordination chemistry of bacterial metal transport and sensing.
|
| |
Chem Rev,
109,
4644-4681.
|
 |
|
|
|
|
 |
Z.Xu,
H.Y.Chan,
W.L.Lam,
K.H.Lam,
L.S.Lam,
T.B.Ng,
and
S.W.Au
(2009).
SUMO proteases: redox regulation and biological consequences.
|
| |
Antioxid Redox Signal,
11,
1453-1484.
|
 |
|
|
|
|
 |
C.C.Winterbourn
(2008).
Reconciling the chemistry and biology of reactive oxygen species.
|
| |
Nat Chem Biol,
4,
278-286.
|
 |
|
|
|
|
 |
C.C.Winterbourn,
and
M.B.Hampton
(2008).
Thiol chemistry and specificity in redox signaling.
|
| |
Free Radic Biol Med,
45,
549-561.
|
 |
|
|
|
|
 |
C.Passarelli,
S.Petrini,
A.Pastore,
V.Bonetto,
P.Sale,
L.M.Gaeta,
G.Tozzi,
E.Bertini,
M.Canepari,
R.Rossi,
and
F.Piemonte
(2008).
Myosin as a potential redox-sensor: an in vitro study.
|
| |
J Muscle Res Cell Motil,
29,
119-126.
|
 |
|
|
|
|
 |
F.R.Salsbury,
S.T.Knutson,
L.B.Poole,
and
J.S.Fetrow
(2008).
Functional site profiling and electrostatic analysis of cysteines modifiable to cysteine sulfenic acid.
|
| |
Protein Sci,
17,
299-312.
|
 |
|
|
|
|
 |
H.Chen,
G.Xu,
Y.Zhao,
B.Tian,
H.Lu,
X.Yu,
Z.Xu,
N.Ying,
S.Hu,
and
Y.Hua
(2008).
A novel OxyR sensor and regulator of hydrogen peroxide stress with one cysteine residue in Deinococcus radiodurans.
|
| |
PLoS ONE,
3,
e1602.
|
 |
|
|
|
|
 |
H.Chen,
J.Hu,
P.R.Chen,
L.Lan,
Z.Li,
L.M.Hicks,
A.R.Dinner,
and
C.He
(2008).
The Pseudomonas aeruginosa multidrug efflux regulator MexR uses an oxidation-sensing mechanism.
|
| |
Proc Natl Acad Sci U S A,
105,
13586-13591.
|
 |
|
|
|
|
 |
J.A.Imlay
(2008).
Cellular defenses against superoxide and hydrogen peroxide.
|
| |
Annu Rev Biochem,
77,
755-776.
|
 |
|
|
|
|
 |
J.J.LeBlanc,
A.K.Brassinga,
F.Ewann,
R.J.Davidson,
and
P.S.Hoffman
(2008).
An ortholog of OxyR in Legionella pneumophila is expressed postexponentially and negatively regulates the alkyl hydroperoxide reductase (ahpC2D) operon.
|
| |
J Bacteriol,
190,
3444-3455.
|
 |
|
|
|
|
 |
R.Ieva,
D.Roncarati,
M.M.Metruccio,
K.L.Seib,
V.Scarlato,
and
I.Delany
(2008).
OxyR tightly regulates catalase expression in Neisseria meningitidis through both repression and activation mechanisms.
|
| |
Mol Microbiol,
70,
1152-1165.
|
 |
|
|
|
|
 |
R.R.Thangudu,
M.Manoharan,
N.Srinivasan,
F.Cadet,
R.Sowdhamini,
and
B.Offmann
(2008).
Analysis on conservation of disulphide bonds and their structural features in homologous protein domain families.
|
| |
BMC Struct Biol,
8,
55.
|
 |
|
|
|
|
 |
R.Sanchez,
M.Riddle,
J.Woo,
and
J.Momand
(2008).
Prediction of reversibly oxidized protein cysteine thiols using protein structure properties.
|
| |
Protein Sci,
17,
473-481.
|
 |
|
|
|
|
 |
S.Sainsbury,
J.Ren,
N.J.Saunders,
D.I.Stuart,
and
R.J.Owens
(2008).
Crystallization and preliminary X-ray analysis of CrgA, a LysR-type transcriptional regulator from pathogenic Neisseria meningitidis MC58.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
64,
797-801.
|
 |
|
|
|
|
 |
Y.Guo,
L.Chen,
L.Yang,
and
Q.Wang
(2008).
Counting sulfhydryls and disulfide bonds in peptides and proteins using mercurial ions as an MS-tag.
|
| |
J Am Soc Mass Spectrom,
19,
1108-1113.
|
 |
|
|
|
|
 |
Y.M.Janssen-Heininger,
B.T.Mossman,
N.H.Heintz,
H.J.Forman,
B.Kalyanaraman,
T.Finkel,
J.S.Stamler,
S.G.Rhee,
and
A.van der Vliet
(2008).
Redox-based regulation of signal transduction: principles, pitfalls, and promises.
|
| |
Free Radic Biol Med,
45,
1.
|
 |
|
|
|
|
 |
Y.Yamazaki,
H.Fukusumi,
H.Kamikubo,
and
M.Kataoka
(2008).
Role of the N-terminal region in the function of the photosynthetic bacterium transcription regulator PpsR.
|
| |
Photochem Photobiol,
84,
839-844.
|
 |
|
|
|
|
 |
A.Harrison,
W.C.Ray,
B.D.Baker,
D.W.Armbruster,
L.O.Bakaletz,
and
R.S.Munson
(2007).
The OxyR regulon in nontypeable Haemophilus influenzae.
|
| |
J Bacteriol,
189,
1004-1012.
|
 |
|
|
|
|
 |
B.D'Autréaux,
and
M.B.Toledano
(2007).
ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis.
|
| |
Nat Rev Mol Cell Biol,
8,
813-824.
|
 |
|
|
|
|
 |
C.M.Sanders,
D.Sizov,
P.R.Seavers,
M.Ortiz-Lombardía,
and
A.A.Antson
(2007).
Transcription activator structure reveals redox control of a replication initiation reaction.
|
| |
Nucleic Acids Res,
35,
3504-3515.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
E.A.Veal,
A.M.Day,
and
B.A.Morgan
(2007).
Hydrogen peroxide sensing and signaling.
|
| |
Mol Cell,
26,
1.
|
 |
|
|
|
|
 |
H.Takahashi,
Y.Shin,
S.J.Cho,
W.M.Zago,
T.Nakamura,
Z.Gu,
Y.Ma,
H.Furukawa,
R.Liddington,
D.Zhang,
G.Tong,
H.S.Chen,
and
S.A.Lipton
(2007).
Hypoxia enhances S-nitrosylation-mediated NMDA receptor inhibition via a thiol oxygen sensor motif.
|
| |
Neuron,
53,
53-64.
|
 |
|
|
|
|
 |
K.J.Newberry,
M.Fuangthong,
W.Panmanee,
S.Mongkolsuk,
and
R.G.Brennan
(2007).
Structural mechanism of organic hydroperoxide induction of the transcription regulator OhrR.
|
| |
Mol Cell,
28,
652-664.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.Piotukh,
D.Kosslick,
J.Zimmermann,
E.Krause,
and
C.Freund
(2007).
Reversible disulfide bond formation of intracellular proteins probed by NMR spectroscopy.
|
| |
Free Radic Biol Med,
43,
1263-1270.
|
 |
|
|
|
|
 |
L.H.Ma,
C.L.Takanishi,
and
M.J.Wood
(2007).
Molecular mechanism of oxidative stress perception by the Orp1 protein.
|
| |
J Biol Chem,
282,
31429-31436.
|
 |
|
|
|
|
 |
M.Giorgio,
M.Trinei,
E.Migliaccio,
and
P.G.Pelicci
(2007).
Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals?
|
| |
Nat Rev Mol Cell Biol,
8,
722-728.
|
 |
|
|
|
|
 |
O.C.Ezezika,
S.Haddad,
E.L.Neidle,
and
C.Momany
(2007).
Oligomerization of BenM, a LysR-type transcriptional regulator: structural basis for the aggregation of proteins in this family.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
63,
361-368.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
O.N.Oktyabrsky,
and
G.V.Smirnova
(2007).
Redox regulation of cellular functions.
|
| |
Biochemistry (Mosc),
72,
132-145.
|
 |
|
|
|
|
 |
S.Soonsanga,
M.Fuangthong,
and
J.D.Helmann
(2007).
Mutational analysis of active site residues essential for sensing of organic hydroperoxides by Bacillus subtilis OhrR.
|
| |
J Bacteriol,
189,
7069-7076.
|
 |
|
|
|
|
 |
S.Spiro
(2007).
Regulators of bacterial responses to nitric oxide.
|
| |
FEMS Microbiol Rev,
31,
193-211.
|
 |
|
|
|
|
 |
D.A.Traoré,
A.El Ghazouani,
S.Ilango,
J.Dupuy,
L.Jacquamet,
J.L.Ferrer,
C.Caux-Thang,
V.Duarte,
and
J.M.Latour
(2006).
Crystal structure of the apo-PerR-Zn protein from Bacillus subtilis.
|
| |
Mol Microbiol,
61,
1211-1219.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
E.Pagán-Ramos,
S.S.Master,
C.L.Pritchett,
R.Reimschuessel,
M.Trucksis,
G.S.Timmins,
and
V.Deretic
(2006).
Molecular and physiological effects of mycobacterial oxyR inactivation.
|
| |
J Bacteriol,
188,
2674-2680.
|
 |
|
|
|
|
 |
J.Kóna,
and
T.Brinck
(2006).
A combined molecular dynamics simulation and quantum chemical study on the mechanism for activation of the OxyR transcription factor by hydrogen peroxide.
|
| |
Org Biomol Chem,
4,
3468-3478.
|
 |
|
|
|
|
 |
J.R.Stone,
and
S.Yang
(2006).
Hydrogen peroxide: a signaling messenger.
|
| |
Antioxid Redox Signal,
8,
243-270.
|
 |
|
|
|
|
 |
K.Gábor,
C.S.Veríssimo,
B.C.Cyran,
P.Ter Horst,
N.P.Meijer,
H.Smidt,
W.M.de Vos,
and
J.van der Oost
(2006).
Characterization of CprK1, a CRP/FNR-type transcriptional regulator of halorespiration from Desulfitobacterium hafniense.
|
| |
J Bacteriol,
188,
2604-2613.
|
 |
|
|
|
|
 |
K.Morikawa,
R.L.Ohniwa,
J.Kim,
A.Maruyama,
T.Ohta,
and
K.Takeyasu
(2006).
Bacterial nucleoid dynamics: oxidative stress response in Staphylococcus aureus.
|
| |
Genes Cells,
11,
409-423.
|
 |
|
|
|
|
 |
S.Hishinuma,
M.Yuki,
M.Fujimura,
and
F.Fukumori
(2006).
OxyR regulated the expression of two major catalases, KatA and KatB, along with peroxiredoxin, AhpC in Pseudomonas putida.
|
| |
Environ Microbiol,
8,
2115-2124.
|
 |
|
|
|
|
 |
S.Reindel,
C.L.Schmidt,
S.Anemüller,
and
B.F.Matzanke
(2006).
Expression and regulation pattern of ferritin-like DpsA in the archaeon Halobacterium salinarum.
|
| |
Biometals,
19,
19-29.
|
 |
|
|
|
|
 |
T.C.Galvão,
and
V.de Lorenzo
(2006).
Transcriptional regulators à la carte: engineering new effector specificities in bacterial regulatory proteins.
|
| |
Curr Opin Biotechnol,
17,
34-42.
|
 |
|
|
|
|
 |
V.V.Belousov,
A.F.Fradkov,
K.A.Lukyanov,
D.B.Staroverov,
K.S.Shakhbazov,
A.V.Terskikh,
and
S.Lukyanov
(2006).
Genetically encoded fluorescent indicator for intracellular hydrogen peroxide.
|
| |
Nat Methods,
3,
281-286.
|
 |
|
|
|
|
 |
W.Whangsuk,
and
S.Mongkolsuk
(2006).
Analysis of mutations that alter HO sensing and transcription regulation properties of a global peroxide regulator OxyR in Xanthomonas campestris pv. phaseoli.
|
| |
FEMS Microbiol Lett,
257,
214-220.
|
 |
|
|
|
|
 |
X.Wang,
P.Mukhopadhyay,
M.J.Wood,
F.W.Outten,
J.A.Opdyke,
and
G.Storz
(2006).
Mutational analysis to define an activating region on the redox-sensitive transcriptional regulator OxyR.
|
| |
J Bacteriol,
188,
8335-8342.
|
 |
|
|
|
|
 |
A.Brencic,
and
S.C.Winans
(2005).
Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria.
|
| |
Microbiol Mol Biol Rev,
69,
155-194.
|
 |
|
|
|
|
 |
A.W.Dangel,
J.L.Gibson,
A.P.Janssen,
and
F.R.Tabita
(2005).
Residues that influence in vivo and in vitro CbbR function in Rhodobacter sphaeroides and identification of a specific region critical for co-inducer recognition.
|
| |
Mol Microbiol,
57,
1397-1414.
|
 |
|
|
|
|
 |
C.J.Rosario,
and
R.A.Bender
(2005).
Importance of tetramer formation by the nitrogen assimilation control protein for strong repression of glutamate dehydrogenase formation in Klebsiella pneumoniae.
|
| |
J Bacteriol,
187,
8291-8299.
|
 |
|
|
|
|
 |
E.A.Sickmier,
D.Brekasis,
S.Paranawithana,
J.B.Bonanno,
M.S.Paget,
S.K.Burley,
and
C.L.Kielkopf
(2005).
X-ray structure of a Rex-family repressor/NADH complex insights into the mechanism of redox sensing.
|
| |
Structure,
13,
43-54.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
G.V.Smirnova,
and
O.N.Oktyabrsky
(2005).
Glutathione in bacteria.
|
| |
Biochemistry (Mosc),
70,
1199-1211.
|
 |
|
|
|
|
 |
J.Eichler,
and
M.W.Adams
(2005).
Posttranslational protein modification in Archaea.
|
| |
Microbiol Mol Biol Rev,
69,
393-425.
|
 |
|
|
|
|
 |
M.Hong,
M.Fuangthong,
J.D.Helmann,
and
R.G.Brennan
(2005).
Structure of an OhrR-ohrA operator complex reveals the DNA binding mechanism of the MarR family.
|
| |
Mol Cell,
20,
131-141.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.J.Wood,
and
G.Storz
(2005).
Oxygen, metabolism, and gene expression: the T-Rex connection.
|
| |
Structure,
13,
2-4.
|
 |
|
|
|
|
 |
P.Eaton,
R.M.Bell,
A.C.Cave,
and
M.J.Shattock
(2005).
Ischemic preconditioning: a potential role for protein S-thiolation?
|
| |
Antioxid Redox Signal,
7,
882-888.
|
 |
|
|
|
|
 |
Q.Han,
Y.G.Gao,
H.Robinson,
H.Ding,
S.Wilson,
and
J.Li
(2005).
Crystal structures of Aedes aegypti kynurenine aminotransferase.
|
| |
FEBS J,
272,
2198-2206.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Nakano,
K.N.Erwin,
M.Ralle,
and
P.Zuber
(2005).
Redox-sensitive transcriptional control by a thiol/disulphide switch in the global regulator, Spx.
|
| |
Mol Microbiol,
55,
498-510.
|
 |
|
|
|
|
 |
S.P.Kidd,
A.J.Potter,
M.A.Apicella,
M.P.Jennings,
and
A.G.McEwan
(2005).
NmlR of Neisseria gonorrhoeae: a novel redox responsive transcription factor from the MerR family.
|
| |
Mol Microbiol,
57,
1676-1689.
|
 |
|
|
|
|
 |
S.Reindel,
C.L.Schmidt,
S.Anemüller,
and
B.F.Matzanke
(2005).
Expression and regulation pattern of ferritin-like DpsA in the archaeon Halobacterium Salinarum.
|
| |
Biometals,
18,
387-397.
|
 |
|
|
|
|
 |
W.W.Navarre,
T.A.Halsey,
D.Walthers,
J.Frye,
M.McClelland,
J.L.Potter,
L.J.Kenney,
J.S.Gunn,
F.C.Fang,
and
S.J.Libby
(2005).
Co-regulation of Salmonella enterica genes required for virulence and resistance to antimicrobial peptides by SlyA and PhoP/PhoQ.
|
| |
Mol Microbiol,
56,
492-508.
|
 |
|
|
|
|
 |
Y.H.Feng,
L.Zhou,
Y.Sun,
and
J.G.Douglas
(2005).
Functional diversity of AT2 receptor orthologues in closely related species.
|
| |
Kidney Int,
67,
1731-1738.
|
 |
|
|
|
|
 |
A.Lochowska,
R.Iwanicka-Nowicka,
J.Zaim,
M.Witkowska-Zimny,
K.Bolewska,
and
M.M.Hryniewicz
(2004).
Identification of activating region (AR) of Escherichia coli LysR-type transcription factor CysB and CysB contact site on RNA polymerase alpha subunit at the cysP promoter.
|
| |
Mol Microbiol,
53,
791-806.
|
 |
|
|
|
|
 |
A.T.Saurin,
H.Neubert,
J.P.Brennan,
and
P.Eaton
(2004).
Widespread sulfenic acid formation in tissues in response to hydrogen peroxide.
|
| |
Proc Natl Acad Sci U S A,
101,
17982-17987.
|
 |
|
|
|
|
 |
C.Lee,
S.M.Lee,
P.Mukhopadhyay,
S.J.Kim,
S.C.Lee,
W.S.Ahn,
M.H.Yu,
G.Storz,
and
S.E.Ryu
(2004).
Redox regulation of OxyR requires specific disulfide bond formation involving a rapid kinetic reaction path.
|
| |
Nat Struct Mol Biol,
11,
1179-1185.
|
 |
|
|
|
|
 |
D.R.Littler,
S.J.Harrop,
W.D.Fairlie,
L.J.Brown,
G.J.Pankhurst,
S.Pankhurst,
M.Z.DeMaere,
T.J.Campbell,
A.R.Bauskin,
R.Tonini,
M.Mazzanti,
S.N.Breit,
and
P.M.Curmi
(2004).
The intracellular chloride ion channel protein CLIC1 undergoes a redox-controlled structural transition.
|
| |
J Biol Chem,
279,
9298-9305.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
E.Stec,
M.Witkowska,
M.M.Hryniewicz,
A.M.Brzozowski,
A.J.Wilkinson,
and
G.D.Bujacz
(2004).
Crystallization and preliminary crystallographic studies of the cofactor-binding domain of the LysR-type transcriptional regulator Cbl from Escherichia coli.
|
| |
Acta Crystallogr D Biol Crystallogr,
60,
1654-1657.
|
 |
|
|
|
|
 |
H.Li,
A.K.Singh,
L.M.McIntyre,
and
L.A.Sherman
(2004).
Differential gene expression in response to hydrogen peroxide and the putative PerR regulon of Synechocystis sp. strain PCC 6803.
|
| |
J Bacteriol,
186,
3331-3345.
|
 |
|
|
|
|
 |
H.Lu,
S.Allen,
L.Wardleworth,
P.Savory,
and
K.Tokatlidis
(2004).
Functional TIM10 chaperone assembly is redox-regulated in vivo.
|
| |
J Biol Chem,
279,
18952-18958.
|
 |
|
|
|
|
 |
J.Green,
and
M.S.Paget
(2004).
Bacterial redox sensors.
|
| |
Nat Rev Microbiol,
2,
954-966.
|
 |
|
|
|
|
 |
J.M.Jez,
R.E.Cahoon,
and
S.Chen
(2004).
Arabidopsis thaliana glutamate-cysteine ligase: functional properties, kinetic mechanism, and regulation of activity.
|
| |
J Biol Chem,
279,
33463-33470.
|
 |
|
|
|
|
 |
J.Seshu,
J.A.Boylan,
J.A.Hyde,
K.L.Swingle,
F.C.Gherardini,
and
J.T.Skare
(2004).
A conservative amino acid change alters the function of BosR, the redox regulator of Borrelia burgdorferi.
|
| |
Mol Microbiol,
54,
1352-1363.
|
 |
|
|
|
|
 |
L.B.Poole,
P.A.Karplus,
and
A.Claiborne
(2004).
Protein sulfenic acids in redox signaling.
|
| |
Annu Rev Pharmacol Toxicol,
44,
325-347.
|
 |
|
|
|
|
 |
M.B.Toledano,
A.Delaunay,
L.Monceau,
and
F.Tacnet
(2004).
Microbial H2O2 sensors as archetypical redox signaling modules.
|
| |
Trends Biochem Sci,
29,
351-357.
|
 |
|
|
|
|
 |
M.J.Wood,
G.Storz,
and
N.Tjandra
(2004).
Structural basis for redox regulation of Yap1 transcription factor localization.
|
| |
Nature,
430,
917-921.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
P.Mukhopadhyay,
M.Zheng,
L.A.Bedzyk,
R.A.LaRossa,
and
G.Storz
(2004).
Prominent roles of the NorR and Fur regulators in the Escherichia coli transcriptional response to reactive nitrogen species.
|
| |
Proc Natl Acad Sci U S A,
101,
745-750.
|
 |
|
|
|
|
 |
T.J.Clark,
R.S.Phillips,
B.M.Bundy,
C.Momany,
and
E.L.Neidle
(2004).
Benzoate decreases the binding of cis,cis-muconate to the BenM regulator despite the synergistic effect of both compounds on transcriptional activation.
|
| |
J Bacteriol,
186,
1200-1204.
|
 |
|
|
|
|
 |
A.Wallecha,
J.Correnti,
V.Munster,
and
M.van der Woude
(2003).
Phase variation of Ag43 is independent of the oxidation state of OxyR.
|
| |
J Bacteriol,
185,
2203-2209.
|
 |
|
|
|
|
 |
B.K.Janes,
C.J.Rosario,
and
R.A.Bender
(2003).
Isolation of a negative control mutant of the nitrogen assimilation control protein, NAC, in Klebsiella aerogenes.
|
| |
J Bacteriol,
185,
688-692.
|
 |
|
|
|
|
 |
C.W.Bouwman,
M.Kohli,
A.Killoran,
G.A.Touchie,
R.J.Kadner,
and
N.L.Martin
(2003).
Characterization of SrgA, a Salmonella enterica serovar Typhimurium virulence plasmid-encoded paralogue of the disulfide oxidoreductase DsbA, essential for biogenesis of plasmid-encoded fimbriae.
|
| |
J Bacteriol,
185,
991.
|
 |
|
|
|
|
 |
J.Zaim,
and
A.M.Kierzek
(2003).
The structure of full-length LysR-type transcriptional regulators. Modeling of the full-length OxyR transcription factor dimer.
|
| |
Nucleic Acids Res,
31,
1444-1454.
|
 |
|
|
|
|
 |
K.Linke,
and
U.Jakob
(2003).
Not every disulfide lasts forever: disulfide bond formation as a redox switch.
|
| |
Antioxid Redox Signal,
5,
425-434.
|
 |
|
|
|
|
 |
L.J.Marnett,
J.N.Riggins,
and
J.D.West
(2003).
Endogenous generation of reactive oxidants and electrophiles and their reactions with DNA and protein.
|
| |
J Clin Invest,
111,
583-593.
|
 |
|
|
|
|
 |
M.S.Paget,
and
M.J.Buttner
(2003).
Thiol-based regulatory switches.
|
| |
Annu Rev Genet,
37,
91.
|
 |
|
|
|
|
 |
S.G.Ahn,
and
D.J.Thiele
(2003).
Redox regulation of mammalian heat shock factor 1 is essential for Hsp gene activation and protection from stress.
|
| |
Genes Dev,
17,
516-528.
|
 |
|
|
|
|
 |
S.J.Kim,
J.R.Woo,
Y.S.Hwang,
D.G.Jeong,
D.H.Shin,
K.Kim,
and
S.E.Ryu
(2003).
The tetrameric structure of Haemophilus influenza hybrid Prx5 reveals interactions between electron donor and acceptor proteins.
|
| |
J Biol Chem,
278,
10790-10798.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.Song,
S.L.Dove,
K.H.Lee,
and
R.N.Husson
(2003).
RshA, an anti-sigma factor that regulates the activity of the mycobacterial stress response sigma factor SigH.
|
| |
Mol Microbiol,
50,
949-959.
|
 |
|
|
|
|
 |
A.Wallecha,
V.Munster,
J.Correnti,
T.Chan,
and
M.van der Woude
(2002).
Dam- and OxyR-dependent phase variation of agn43: essential elements and evidence for a new role of DNA methylation.
|
| |
J Bacteriol,
184,
3338-3347.
|
 |
|
|
|
|
 |
C.Blanchetot,
L.G.Tertoolen,
and
J.den Hertog
(2002).
Regulation of receptor protein-tyrosine phosphatase alpha by oxidative stress.
|
| |
EMBO J,
21,
493-503.
|
 |
|
|
|
|
 |
C.E.Cooper,
R.P.Patel,
P.S.Brookes,
and
V.M.Darley-Usmar
(2002).
Nanotransducers in cellular redox signaling: modification of thiols by reactive oxygen and nitrogen species.
|
| |
Trends Biochem Sci,
27,
489-492.
|
 |
|
|
|
|
 |
J.L.Huffman,
and
R.G.Brennan
(2002).
Prokaryotic transcription regulators: more than just the helix-turn-helix motif.
|
| |
Curr Opin Struct Biol,
12,
98.
|
 |
|
|
|
|
 |
J.Messens,
J.C.Martins,
K.Van Belle,
E.Brosens,
A.Desmyter,
M.De Gieter,
J.M.Wieruszeski,
R.Willem,
L.Wyns,
and
I.Zegers
(2002).
All intermediates of the arsenate reductase mechanism, including an intramolecular dynamic disulfide cascade.
|
| |
Proc Natl Acad Sci U S A,
99,
8506-8511.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.L.Posey,
and
F.S.Gimble
(2002).
Insertion of a reversible redox switch into a rare-cutting DNA endonuclease.
|
| |
Biochemistry,
41,
2184-2190.
|
 |
|
|
|
|
 |
M.Fuangthong,
and
J.D.Helmann
(2002).
The OhrR repressor senses organic hydroperoxides by reversible formation of a cysteine-sulfenic acid derivative.
|
| |
Proc Natl Acad Sci U S A,
99,
6690-6695.
|
 |
|
|
|
|
 |
M.Grimm,
M.Spiecker,
R.De Caterina,
W.S.Shin,
and
J.K.Liao
(2002).
Inhibition of major histocompatibility complex class II gene transcription by nitric oxide and antioxidants.
|
| |
J Biol Chem,
277,
26460-26467.
|
 |
|
|
|
|
 |
P.Eaton,
H.L.Byers,
N.Leeds,
M.A.Ward,
and
M.J.Shattock
(2002).
Detection, quantitation, purification, and identification of cardiac proteins S-thiolated during ischemia and reperfusion.
|
| |
J Biol Chem,
277,
9806-9811.
|
 |
|
|
|
|
 |
P.Eaton,
W.Fuller,
and
M.J.Shattock
(2002).
S-thiolation of HSP27 regulates its multimeric aggregate size independently of phosphorylation.
|
| |
J Biol Chem,
277,
21189-21196.
|
 |
|
|
|
|
 |
P.Mallick,
D.R.Boutz,
D.Eisenberg,
and
T.O.Yeates
(2002).
Genomic evidence that the intracellular proteins of archaeal microbes contain disulfide bonds.
|
| |
Proc Natl Acad Sci U S A,
99,
9679-9684.
|
 |
|
|
|
|
 |
S.A.Lipton,
Y.B.Choi,
H.Takahashi,
D.Zhang,
W.Li,
A.Godzik,
and
L.A.Bankston
(2002).
Cysteine regulation of protein function--as exemplified by NMDA-receptor modulation.
|
| |
Trends Neurosci,
25,
474-480.
|
 |
|
|
|
|
 |
S.Masuda,
C.Dong,
D.Swem,
A.T.Setterdahl,
D.B.Knaff,
and
C.E.Bauer
(2002).
Repression of photosynthesis gene expression by formation of a disulfide bond in CrtJ.
|
| |
Proc Natl Acad Sci U S A,
99,
7078-7083.
|
 |
|
|
|
|
 |
S.Mongkolsuk,
and
J.D.Helmann
(2002).
Regulation of inducible peroxide stress responses.
|
| |
Mol Microbiol,
45,
9.
|
 |
|
|
|
|
 |
S.O.Kim,
K.Merchant,
R.Nudelman,
W.F.Beyer,
T.Keng,
J.DeAngelo,
A.Hausladen,
and
J.S.Stamler
(2002).
OxyR: a molecular code for redox-related signaling.
|
| |
Cell,
109,
383-396.
|
 |
|
|
|
|
 |
T.C.Zahrt,
and
V.Deretic
(2002).
Reactive nitrogen and oxygen intermediates and bacterial defenses: unusual adaptations in Mycobacterium tuberculosis.
|
| |
Antioxid Redox Signal,
4,
141-159.
|
 |
|
|
|
|
 |
Z.A.Wood,
L.B.Poole,
R.R.Hantgan,
and
P.A.Karplus
(2002).
Dimers to doughnuts: redox-sensitive oligomerization of 2-cysteine peroxiredoxins.
|
| |
Biochemistry,
41,
5493-5504.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Nordberg,
and
E.S.Arnér
(2001).
Reactive oxygen species, antioxidants, and the mammalian thioredoxin system.
|
| |
Free Radic Biol Med,
31,
1287-1312.
|
 |
|
|
|
|
 |
J.S.Stamler,
S.Lamas,
and
F.C.Fang
(2001).
Nitrosylation. the prototypic redox-based signaling mechanism.
|
| |
Cell,
106,
675-683.
|
 |
|
|
|
|
 |
S.Ehrt,
D.Schnappinger,
S.Bekiranov,
J.Drenkow,
S.Shi,
T.R.Gingeras,
T.Gaasterland,
G.Schoolnik,
and
C.Nathan
(2001).
Reprogramming of the macrophage transcriptome in response to interferon-gamma and Mycobacterium tuberculosis: signaling roles of nitric oxide synthase-2 and phagocyte oxidase.
|
| |
J Exp Med,
194,
1123-1140.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |