spacer
spacer

PDBsum entry 1xcb

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
DNA binding protein PDB id
1xcb

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
(+ 0 more) 205 a.a. *
192 a.a. *
Ligands
NAD ×7
Metals
_CA ×5
* Residue conservation analysis
PDB id:
1xcb
Name: DNA binding protein
Title: X-ray structure of a rex-family repressor/nadh complex from thermus aquaticus
Structure: Redox-sensing transcriptional repressor rex. Chain: a, b, c, d, e, f, g. Synonym: t-rex. Engineered: yes
Source: Thermus aquaticus. Organism_taxid: 271. Gene: rex. Expressed in: escherichia coli. Expression_system_taxid: 562
Biol. unit: Dimer (from PDB file)
Resolution:
2.90Å     R-factor:   0.228     R-free:   0.276
Authors: E.A.Sickmier,D.Brekasis,S.Paranawithana,J.B.Bonanno,S.K.Burley, M.S.Paget,C.L.Kielkopf,New York Sgx Research Center For Structural Genomics (Nysgxrc)
Key ref:
E.A.Sickmier et al. (2005). X-ray structure of a Rex-family repressor/NADH complex insights into the mechanism of redox sensing. Structure, 13, 43-54. PubMed id: 15642260 DOI: 10.1016/j.str.2004.10.012
Date:
01-Sep-04     Release date:   28-Sep-04    
Supersedes: 1r72
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
Q9X2V5  (REX_THEAQ) -  Redox-sensing transcriptional repressor Rex from Thermus aquaticus
Seq:
Struc:
211 a.a.
205 a.a.
Protein chain
Pfam   ArchSchema ?
Q9X2V5  (REX_THEAQ) -  Redox-sensing transcriptional repressor Rex from Thermus aquaticus
Seq:
Struc:
211 a.a.
192 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 

 
DOI no: 10.1016/j.str.2004.10.012 Structure 13:43-54 (2005)
PubMed id: 15642260  
 
 
X-ray structure of a Rex-family repressor/NADH complex insights into the mechanism of redox sensing.
E.A.Sickmier, D.Brekasis, S.Paranawithana, J.B.Bonanno, M.S.Paget, S.K.Burley, C.L.Kielkopf.
 
  ABSTRACT  
 
The redox-sensing repressor Rex regulates transcription of respiratory genes in response to the intra cellular NADH/NAD(+) redox poise. As a step toward elucidating the molecular mechanism of NADH/NAD(+) sensing, the X-ray structure of Thermus aquaticus Rex (T-Rex) bound to effector NADH has been determined at 2.9 A resolution. The fold of the C-terminal domain of T-Rex is characteristic of NAD(H)-dependent enzymes, whereas the N-terminal domain is similar to a winged helix DNA binding motif. T-Rex dimerization is primarily mediated by "domain-swapped" alpha helices. Each NADH molecule binds to the C-terminal domain near the dimer interface. In contrast to NAD(H)-dependent enzymes, the nicotinamide is deeply buried within a hydrophobic pocket that appears to preclude substrate entry. We show that T-Rex binds to the Rex operator, and NADH but not NAD(+) inhibits T-Rex/DNA binding activity. A mechanism for redox sensing by Rex family members is proposed by analogy with domain closure of NAD(H)-dependent enzymes.
 
  Selected figure(s)  
 
Figure 6.
Figure 6. The T-Rex NAD(H) Binding Sites and Comparison with NAD(H)-Dependent Dehydrogenase
(A) T-Rex interactions with the NADH effector molecule, in the conformation with Phe189 inserted between the nicotinamide rings. Average distances between interacting atoms of the three subunits exhibiting this conformation are indicated.
(B) T-Rex interactions with the NADH' molecule bound to the opposite subunit, in the conformation with Phe189 folded back and buried within the hydrophobic core.
(C) LADH interactions with bound NADH, zinc ion (ZN), and DMSO substrate.
 
  The above figure is reprinted by permission from Cell Press: Structure (2005, 13, 43-54) copyright 2005.  
  Figure was selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21402078 E.Wang, T.P.Ikonen, M.Knaapila, D.Svergun, D.T.Logan, and C.von Wachenfeldt (2011).
Small-angle X-ray Scattering Study of a Rex Family Repressor: Conformational Response to NADH and NAD(+) Binding in Solution.
  J Mol Biol, 408, 670-683.  
21199682 J.Pei, Q.Zhou, Q.Jing, L.Li, C.Dai, H.Li, J.Wiegel, and W.Shao (2011).
The mechanism for regulating ethanol fermentation by redox levels in Thermoanaerobacter ethanolicus.
  Metab Eng, 13, 186-193.  
20513431 K.J.McLaughlin, C.M.Strain-Damerell, K.Xie, D.Brekasis, A.S.Soares, M.S.Paget, and C.L.Kielkopf (2010).
Structural basis for NADH/NAD+ redox sensing by a Rex family repressor.
  Mol Cell, 38, 563-575.
PDB codes: 3ikt 3ikv 3il2
20374494 M.Pagels, S.Fuchs, J.Pané-Farré, C.Kohler, L.Menschner, M.Hecker, P.J.McNamarra, M.C.Bauer, C.von Wachenfeldt, M.Liebeke, M.Lalk, G.Sander, C.von Eiff, R.A.Proctor, and S.Engelmann (2010).
Redox sensing by a Rex-family repressor is involved in the regulation of anaerobic gene expression in Staphylococcus aureus.
  Mol Microbiol, 76, 1142-1161.  
19487727 G.A.Somerville, and R.A.Proctor (2009).
At the crossroads of bacterial metabolism and virulence factor synthesis in Staphylococci.
  Microbiol Mol Biol Rev, 73, 233-248.  
19426208 K.M.Kazmierczak, K.J.Wayne, A.Rechtsteiner, and M.E.Winkler (2009).
Roles of rel(Spn) in stringent response, global regulation and virulence of serotype 2 Streptococcus pneumoniae D39.
  Mol Microbiol, 72, 590-611.  
18485070 E.Wang, M.C.Bauer, A.Rogstam, S.Linse, D.T.Logan, and C.von Wachenfeldt (2008).
Structure and functional properties of the Bacillus subtilis transcriptional repressor Rex.
  Mol Microbiol, 69, 466-478.
PDB codes: 2vt2 2vt3
18266702 M.Guilbaud, I.Chafsey, M.F.Pilet, F.Leroi, H.Prévost, M.Hébraud, and X.Dousset (2008).
Response of Listeria monocytogenes to liquid smoke.
  J Appl Microbiol, 104, 1744-1753.  
17154156 A.Nakamura, A.Sosa, H.Komori, A.Kita, and K.Miki (2007).
Crystal structure of TTHA1657 (AT-rich DNA-binding protein; p25) from Thermus thermophilus HB8 at 2.16 A resolution.
  Proteins, 66, 755-759.
PDB code: 2dt5
17372348 R.M.Keegan, and M.D.Winn (2007).
Automated search-model discovery and preparation for structure solution by molecular replacement.
  Acta Crystallogr D Biol Crystallogr, 63, 447-457.  
17125150 R.L.Rich, and D.G.Myszka (2006).
Survey of the year 2005 commercial optical biosensor literature.
  J Mol Recognit, 19, 478-534.  
17015645 S.Gyan, Y.Shiohira, I.Sato, M.Takeuchi, and T.Sato (2006).
Regulatory loop between redox sensing of the NADH/NAD(+) ratio by Rex (YdiH) and oxidation of NADH by NADH dehydrogenase Ndh in Bacillus subtilis.
  J Bacteriol, 188, 7062-7071.  
16473537 W.Weber, N.Link, and M.Fussenegger (2006).
A genetic redox sensor for mammalian cells.
  Metab Eng, 8, 273-280.  
15642255 M.J.Wood, and G.Storz (2005).
Oxygen, metabolism, and gene expression: the T-Rex connection.
  Structure, 13, 2-4.  
15831786 M.Pellegrini-Calace, and J.M.Thornton (2005).
Detecting DNA-binding helix-turn-helix structural motifs using sequence and structure information.
  Nucleic Acids Res, 33, 2129-2140.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer