spacer
spacer

PDBsum entry 1q9y

Go to PDB code: 
protein dna_rna ligands metals links
Transferase, replication/DNA PDB id
1q9y

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
902 a.a. *
DNA/RNA
Ligands
DCP
Metals
_CA ×3
Waters ×84
* Residue conservation analysis
PDB id:
1q9y
Name: Transferase, replication/DNA
Title: Crystal structure of enterobacteria phage rb69 gp43 DNA polymerase complexed with 8-oxoguanosine containing DNA
Structure: 5'-ac(8-oxoguanosine)ggtaagcagtccgcg-3'. Chain: t. Engineered: yes. 5'-gcggactgcttac(dideoxycytidine)-3'. Chain: p. Engineered: yes. DNA polymerase. Chain: a. Synonym: gp43.
Source: Synthetic: yes. Other_details: DNA synthesizer. Enterobacteria phage rb69. Organism_taxid: 12353. Gene: 43. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Trimer (from PQS)
Resolution:
2.80Å     R-factor:   0.207     R-free:   0.271
Authors: E.Freisinger,A.P.Grollman,H.Miller,C.Kisker
Key ref:
E.Freisinger et al. (2004). Lesion (in)tolerance reveals insights into DNA replication fidelity. EMBO J, 23, 1494-1505. PubMed id: 15057282 DOI: 10.1038/sj.emboj.7600158
Date:
26-Aug-03     Release date:   27-Apr-04    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
Q38087  (DPOL_BPR69) -  DNA-directed DNA polymerase from Escherichia phage RB69
Seq:
Struc:
 
Seq:
Struc:
903 a.a.
902 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 2 residue positions (black crosses)

DNA/RNA chains
  A-C-8OG-G-G-T-A-A-G-C-A-G-T-C-C-G-C-G 18 bases
  G-C-G-G-A-C-T-G-C-T-T-A-C-DOC 14 bases

 Enzyme reactions 
   Enzyme class: E.C.2.7.7.7  - DNA-directed Dna polymerase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: DNA(n) + a 2'-deoxyribonucleoside 5'-triphosphate = DNA(n+1) + diphosphate
DNA(n)
+ 2'-deoxyribonucleoside 5'-triphosphate
= DNA(n+1)
+ diphosphate
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    Added reference    
 
 
DOI no: 10.1038/sj.emboj.7600158 EMBO J 23:1494-1505 (2004)
PubMed id: 15057282  
 
 
Lesion (in)tolerance reveals insights into DNA replication fidelity.
E.Freisinger, A.P.Grollman, H.Miller, C.Kisker.
 
  ABSTRACT  
 
The initial encounter of an unrepaired DNA lesion is likely to be with a replicative DNA polymerase, and the outcome of this event determines whether an error-prone or error-free damage avoidance pathway is taken. To understand the atomic details of this critical encounter, we have determined the crystal structures of the pol alpha family RB69 DNA polymerase with DNA containing the two most prevalent, spontaneously generated premutagenic lesions, an abasic site and 2'-deoxy-7,8-dihydro-8-oxoguanosine (8-oxodG). Identification of the interactions between these damaged nucleotides and the active site provides insight into the capacity of the polymerase to incorporate a base opposite the lesion. A novel open, catalytically inactive conformation of the DNA polymerase has been identified in the complex with a primed abasic site template. This structure provides the first molecular characterization of the DNA synthesis barrier caused by an abasic site and suggests a general mechanism for polymerase fidelity. In contrast, the structure of the ternary 8-oxodG:dCTP complex is almost identical to the replicating complex containing unmodified DNA, explaining the relative ease and fidelity by which this lesion is bypassed.
 
  Selected figure(s)  
 
Figure 1.
Figure 1 Oligonucleotide sequences and DNA adducts. (A) The 14 nt primers are identical in all trials and terminated by ddC (indicated by C^*). Template strands are 18 nt long with a 3'-dG overhang. X denotes the position of the lesion for primer/template combinations (1) and (2), and the arrow the position of dNTP incorporation. (B) Structures of the lesions at position X in the templates 8-oxodG and tetrahydrofuran (abasic site model).
Figure 7.
Figure 7 Influence of Gly 568 on DNA binding to the polymerase active site. Column (I) shows the event of nucleotide insertion opposite an unmodified template strand with adenine in the active site, while column (II) depicts the case of a template containing an abasic site as in the AP:dG complex. Vertical arrows specify the strained (red) or the relaxed state (green), respectively. Diagonal arrows indicate whether the polymerase is in the closed (red) or open conformation (green). The template strand is depicted in magenta and the incoming nucleotide in green. The yellow box indicates the position of Gly 568. (IA) and (IIA) show the polymerase in the strained state and the open conformation. Transition into the relaxed state presumably causes the adenine base of the unmodified template to be pushed back (IB), while the AP-containing template is unaffected (IIB). (IC) and (IIC) depict an incoming dNTP bound to the base of the fingers domains. Transition to the closed and strained conformation ensures the correct positioning of all residues to enable the catalytic phosphodiester bond formation (ID). In the case of AP, a closed and relaxed conformation is feasible (IID). The missing complementary base causes the dNTP to be held in place less tightly and phosphodiester bond formation is less efficient (IIE).
 
  The above figures are reprinted from an Open Access publication published by Macmillan Publishers Ltd: EMBO J (2004, 23, 1494-1505) copyright 2004.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
  21465580 B.Knobloch, A.Mucha, B.P.Operschall, H.Sigel, M.Jeżowska-Bojczuk, H.KozÅ‚owski, and R.K.Sigel (2011).
Stability and structure of mixed-ligand metal ion complexes that contain Ni2+, Cu2+, or Zn2+, and Histamine, as well as adenosine 5'-triphosphate (ATP4-) or uridine 5'-triphosphate (UTP(4-): an intricate network of equilibria.
  Chemistry, 17, 5393-5403.  
21062827 C.J.Hansen, L.Wu, J.D.Fox, B.Arezi, and H.H.Hogrefe (2011).
Engineered split in Pfu DNA polymerase fingers domain improves incorporation of nucleotide gamma-phosphate derivative.
  Nucleic Acids Res, 39, 1801-1810.  
20411947 J.Beckman, M.Wang, G.Blaha, J.Wang, and W.H.Konigsberg (2010).
Substitution of Ala for Tyr567 in RB69 DNA polymerase allows dAMP to be inserted opposite 7,8-dihydro-8-oxoguanine .
  Biochemistry, 49, 4116-4125.
PDB codes: 3lzi 3lzj
20166748 M.Hogg, J.Rudnicki, J.Midkiff, L.Reha-Krantz, S.Doublié, and S.S.Wallace (2010).
Kinetics of mismatch formation opposite lesions by the replicative DNA polymerase from bacteriophage RB69.
  Biochemistry, 49, 2317-2325.
PDB code: 3lds
20166752 P.Aller, Y.Ye, S.S.Wallace, C.J.Burrows, and S.Doublié (2010).
Crystal structure of a replicative DNA polymerase bound to the oxidized guanine lesion guanidinohydantoin.
  Biochemistry, 49, 2502-2509.
PDB code: 3l8b
20400942 S.Obeid, N.Blatter, R.Kranaster, A.Schnur, K.Diederichs, W.Welte, and A.Marx (2010).
Replication through an abasic DNA lesion: structural basis for adenine selectivity.
  EMBO J, 29, 1738-1747.
PDB codes: 3lwl 3lwm
21070945 T.D.Silverstein, R.Jain, R.E.Johnson, L.Prakash, S.Prakash, and A.K.Aggarwal (2010).
Structural basis for error-free replication of oxidatively damaged DNA by yeast DNA polymerase η.
  Structure, 18, 1463-1470.
PDB codes: 3oha 3ohb
20064374 F.Wang, and W.Yang (2009).
Structural insight into translesion synthesis by DNA Pol II.
  Cell, 139, 1279-1289.
PDB codes: 3k57 3k58 3k59 3k5a 3k5l 3k5m 3k5n 3k5o 3maq
19758983 G.E.Damsma, and P.Cramer (2009).
Molecular basis of transcriptional mutagenesis at 8-oxoguanine.
  J Biol Chem, 284, 31658-31663.
PDB codes: 3i4m 3i4n
19228037 M.Wang, H.R.Lee, and W.Konigsberg (2009).
Effect of A and B metal ion site occupancy on conformational changes in an RB69 DNA polymerase ternary complex.
  Biochemistry, 48, 2075-2086.  
19446528 O.Rechkoblit, L.Malinina, Y.Cheng, N.E.Geacintov, S.Broyde, and D.J.Patel (2009).
Impact of conformational heterogeneity of OxoG lesions and their pairing partners on bypass fidelity by Y family polymerases.
  Structure, 17, 725-736.
PDB codes: 3gii 3gij 3gik 3gil 3gim
19515847 R.L.Eoff, R.Sanchez-Ponce, and F.P.Guengerich (2009).
Conformational Changes during Nucleotide Selection by Sulfolobus solfataricus DNA Polymerase Dpo4.
  J Biol Chem, 284, 21090-21099.  
19492058 R.Vasquez-Del Carpio, T.D.Silverstein, S.Lone, M.K.Swan, J.R.Choudhury, R.E.Johnson, S.Prakash, L.Prakash, and A.K.Aggarwal (2009).
Structure of human DNA polymerase kappa inserting dATP opposite an 8-OxoG DNA lesion.
  PLoS One, 4, e5766.
PDB codes: 3hed 3in5
19282446 S.D.McCulloch, R.J.Kokoska, P.Garg, P.M.Burgers, and T.A.Kunkel (2009).
The efficiency and fidelity of 8-oxo-guanine bypass by DNA polymerases delta and eta.
  Nucleic Acids Res, 37, 2830-2840.  
19124465 S.M.Sherrer, J.A.Brown, L.R.Pack, V.P.Jasti, J.D.Fowler, A.K.Basu, and Z.Suo (2009).
Mechanistic Studies of the Bypass of a Bulky Single-base Lesion Catalyzed by a Y-family DNA Polymerase.
  J Biol Chem, 284, 6379-6388.  
19200715 S.Schneider, S.Schorr, and T.Carell (2009).
Crystal structure analysis of DNA lesion repair and tolerance mechanisms.
  Curr Opin Struct Biol, 19, 87-95.  
19759017 W.A.Beard, D.D.Shock, V.K.Batra, L.C.Pedersen, and S.H.Wilson (2009).
DNA polymerase beta substrate specificity: side chain modulation of the "A-rule".
  J Biol Chem, 284, 31680-31689.
PDB codes: 3isb 3isc 3isd
18827944 A.Mucha, B.Knobloch, M.Jezowska-Bojczuk, H.Kozłowski, and R.K.Sigel (2008).
Effect of the ribose versus 2'-deoxyribose residue on the metal ion-binding properties of purine nucleotides.
  Dalton Trans, (), 5368-5377.  
18652487 A.Sheriff, E.Motea, I.Lee, and A.J.Berdis (2008).
Mechanism and dynamics of translesion DNA synthesis catalyzed by the Escherichia coli Klenow fragment.
  Biochemistry, 47, 8527-8537.  
18471977 V.K.Batra, W.A.Beard, D.D.Shock, L.C.Pedersen, and S.H.Wilson (2008).
Structures of DNA polymerase beta with active-site mismatches suggest a transient abasic site intermediate during misincorporation.
  Mol Cell, 30, 315-324.
PDB codes: 3c2k 3c2l 3c2m
18503083 X.Zhong, L.C.Pedersen, and T.A.Kunkel (2008).
Characterization of a replicative DNA polymerase mutant with reduced fidelity and increased translesion synthesis capacity.
  Nucleic Acids Res, 36, 3892-3904.
PDB code: 3cq8
17607682 A.J.Berdis, and D.McCutcheon (2007).
The use of non-natural nucleotides to probe template-independent DNA synthesis.
  Chembiochem, 8, 1399-1408.  
17611604 A.J.Berman, S.Kamtekar, J.L.Goodman, J.M.Lázaro, M.de Vega, L.Blanco, M.Salas, and T.A.Steitz (2007).
Structures of phi29 DNA polymerase complexed with substrate: the mechanism of translocation in B-family polymerases.
  EMBO J, 26, 3494-3505.
PDB codes: 2py5 2pyj 2pyl 2pzs
17988102 A.P.Silverman, Q.Jiang, M.F.Goodman, and E.T.Kool (2007).
Steric and electrostatic effects in DNA synthesis by the SOS-induced DNA polymerases II and IV of Escherichia coli.
  Biochemistry, 46, 13874-13881.  
17702757 E.Fidalgo da Silva, and L.J.Reha-Krantz (2007).
DNA polymerase proofreading: active site switching catalyzed by the bacteriophage T4 DNA polymerase.
  Nucleic Acids Res, 35, 5452-5463.  
17766250 H.Zhang, W.Cao, E.Zakharova, W.Konigsberg, and E.M.De La Cruz (2007).
Fluorescence of 2-aminopurine reveals rapid conformational changes in the RB69 DNA polymerase-primer/template complexes upon binding and incorporation of matched deoxynucleoside triphosphates.
  Nucleic Acids Res, 35, 6052-6062.  
17098747 M.Hogg, P.Aller, W.Konigsberg, S.S.Wallace, and S.Doublié (2007).
Structural and biochemical investigation of the role in proofreading of a beta hairpin loop found in the exonuclease domain of a replicative DNA polymerase of the B family.
  J Biol Chem, 282, 1432-1444.
PDB code: 2dtu
17652324 M.de Vega, and M.Salas (2007).
A highly conserved Tyrosine residue of family B DNA polymerases contributes to dictate translesion synthesis past 8-oxo-7,8-dihydro-2'-deoxyguanosine.
  Nucleic Acids Res, 35, 5096-5107.  
17468100 R.L.Eoff, A.Irimia, K.C.Angel, M.Egli, and F.P.Guengerich (2007).
Hydrogen bonding of 7,8-dihydro-8-oxodeoxyguanosine with a charged residue in the little finger domain determines miscoding events in Sulfolobus solfataricus DNA polymerase Dpo4.
  J Biol Chem, 282, 19831-19843.
PDB codes: 2uvr 2uvu 2uvv 2uvw
17293403 Y.Wang, S.Reddy, W.A.Beard, S.H.Wilson, and T.Schlick (2007).
Differing conformational pathways before and after chemistry for insertion of dATP versus dCTP opposite 8-oxoG in DNA polymerase beta.
  Biophys J, 92, 3063-3070.  
17313689 Y.Wang, and T.Schlick (2007).
Distinct energetics and closing pathways for DNA polymerase beta with 8-oxoG template and different incoming nucleotides.
  BMC Struct Biol, 7, 7.  
16415021 E.P.Tchesnokov, C.Gilbert, G.Boivin, and M.Götte (2006).
Role of helix P of the human cytomegalovirus DNA polymerase in resistance and hypersusceptibility to the antiviral drug foscarnet.
  J Virol, 80, 1440-1450.  
16306039 H.Zang, A.Irimia, J.Y.Choi, K.C.Angel, L.V.Loukachevitch, M.Egli, and F.P.Guengerich (2006).
Efficient and high fidelity incorporation of dCTP opposite 7,8-dihydro-8-oxodeoxyguanosine by Sulfolobus solfataricus DNA polymerase Dpo4.
  J Biol Chem, 281, 2358-2372.
PDB codes: 2c22 2c28 2c2d 2c2e 2c2r
16707660 L.V.Gening, S.A.Klincheva, A.Reshetnjak, A.P.Grollman, and H.Miller (2006).
RNA aptamers selected against DNA polymerase beta inhibit the polymerase activities of DNA polymerases beta and kappa.
  Nucleic Acids Res, 34, 2579-2586.  
16679449 M.A.Kalam, K.Haraguchi, S.Chandani, E.L.Loechler, M.Moriya, M.M.Greenberg, and A.K.Basu (2006).
Genetic effects of oxidative DNA damages: comparative mutagenesis of the imidazole ring-opened formamidopyrimidines (Fapy lesions) and 8-oxo-purines in simian kidney cells.
  Nucleic Acids Res, 34, 2305-2315.  
16545956 M.Garcia-Diaz, and T.A.Kunkel (2006).
Mechanism of a genetic glissando: structural biology of indel mutations.
  Trends Biochem Sci, 31, 206-214.  
16687658 M.Hogg, W.Cooper, L.Reha-Krantz, and S.S.Wallace (2006).
Kinetics of error generation in homologous B-family DNA polymerases.
  Nucleic Acids Res, 34, 2528-2535.  
16379496 O.Rechkoblit, L.Malinina, Y.Cheng, V.Kuryavyi, S.Broyde, N.E.Geacintov, and D.J.Patel (2006).
Stepwise translocation of Dpo4 polymerase during error-free bypass of an oxoG lesion.
  PLoS Biol, 4, e11.
PDB codes: 2asd 2asj 2asl 2atl 2au0
16705640 R.Shi, A.Azzi, C.Gilbert, G.Boivin, and S.X.Lin (2006).
Three-dimensional modeling of cytomegalovirus DNA polymerase and preliminary analysis of drug resistance.
  Proteins, 64, 301-307.  
16876489 S.D.McCulloch, and T.A.Kunkel (2006).
Multiple solutions to inefficient lesion bypass by T7 DNA polymerase.
  DNA Repair (Amst), 5, 1373-1383.  
16024777 A.A.Ishchenko, X.Yang, D.Ramotar, and M.Saparbaev (2005).
The 3'->5' exonuclease of Apn1 provides an alternative pathway to repair 7,8-dihydro-8-oxodeoxyguanosine in Saccharomyces cerevisiae.
  Mol Cell Biol, 25, 6380-6390.  
15743815 K.D.Carlson, and M.T.Washington (2005).
Mechanism of efficient and accurate nucleotide incorporation opposite 7,8-dihydro-8-oxoguanine by Saccharomyces cerevisiae DNA polymerase eta.
  Mol Cell Biol, 25, 2169-2176.  
16271888 L.G.Brieba, R.J.Kokoska, K.Bebenek, T.A.Kunkel, and T.Ellenberger (2005).
A lysine residue in the fingers subdomain of T7 DNA polymerase modulates the miscoding potential of 8-oxo-7,8-dihydroguanosine.
  Structure, 13, 1653-1659.
PDB code: 1zyq
16271879 W.A.Beard, and S.H.Wilson (2005).
Syn-full behavior by T7 DNA polymerase.
  Structure, 13, 1580-1582.  
15385534 G.W.Hsu, J.R.Kiefer, D.Burnouf, O.J.Becherel, R.P.Fuchs, and L.S.Beese (2004).
Observing translesion synthesis of an aromatic amine DNA adduct by a high-fidelity DNA polymerase.
  J Biol Chem, 279, 50280-50285.
PDB codes: 1ua0 1ua1
15322558 G.W.Hsu, M.Ober, T.Carell, and L.S.Beese (2004).
Error-prone replication of oxidatively damaged DNA by a high-fidelity DNA polymerase.
  Nature, 431, 217-221.
PDB codes: 1u45 1u47 1u48 1u49 1u4b
15297882 L.G.Brieba, B.F.Eichman, R.J.Kokoska, S.Doublié, T.A.Kunkel, and T.Ellenberger (2004).
Structural basis for the dual coding potential of 8-oxoguanosine by a high-fidelity DNA polymerase.
  EMBO J, 23, 3452-3461.
PDB codes: 1t8e 1tk0 1tk5 1tk8 1tkd
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer