spacer
spacer

PDBsum entry 2ban

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Transferase PDB id
2ban

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
552 a.a. *
427 a.a. *
Ligands
357
Metals
_MN
Waters ×1
* Residue conservation analysis
PDB id:
2ban
Name: Transferase
Title: Crystal structure of HIV-1 reverse transcriptase (rt) in complex with janssen-r157208
Structure: Reverse transcriptase p66 subunit. Chain: a. Fragment: residues 599-1158. Synonym: HIV-1 rt. Engineered: yes. Mutation: yes. Reverse transcriptase p51 subunit. Chain: b. Fragment: residues 599-1028.
Source: Human immunodeficiency virus 1. Organism_taxid: 11676. Strain: bh10 isolate. Expressed in: escherichia coli. Expression_system_taxid: 562. Other_details: HIV-1 clone 12. Other_details: HIV-1 clone 12
Biol. unit: Dimer (from PQS)
Resolution:
2.95Å     R-factor:   0.243     R-free:   0.305
Authors: K.Das,E.Arnold
Key ref: D.M.Himmel et al. (2005). Crystal structures for HIV-1 reverse transcriptase in complexes with three pyridinone derivatives: a new class of non-nucleoside inhibitors effective against a broad range of drug-resistant strains. J Med Chem, 48, 7582-7591. PubMed id: 16302798 DOI: 10.1021/jm0500323
Date:
14-Oct-05     Release date:   06-Dec-05    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P03366  (POL_HV1B1) -  Gag-Pol polyprotein from Human immunodeficiency virus type 1 group M subtype B (isolate BH10)
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
1447 a.a.
552 a.a.*
Protein chain
Pfam   ArchSchema ?
P03366  (POL_HV1B1) -  Gag-Pol polyprotein from Human immunodeficiency virus type 1 group M subtype B (isolate BH10)
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
1447 a.a.
427 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 2 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class 1: Chains A, B: E.C.2.7.7.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 2: Chains A, B: E.C.2.7.7.49  - RNA-directed Dna polymerase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: DNA(n) + a 2'-deoxyribonucleoside 5'-triphosphate = DNA(n+1) + diphosphate
DNA(n)
+ 2'-deoxyribonucleoside 5'-triphosphate
= DNA(n+1)
+ diphosphate
   Enzyme class 3: Chains A, B: E.C.2.7.7.7  - DNA-directed Dna polymerase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: DNA(n) + a 2'-deoxyribonucleoside 5'-triphosphate = DNA(n+1) + diphosphate
DNA(n)
+ 2'-deoxyribonucleoside 5'-triphosphate
= DNA(n+1)
+ diphosphate
   Enzyme class 4: Chains A, B: E.C.3.1.-.-
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 5: Chains A, B: E.C.3.1.13.2  - exoribonuclease H.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Exonucleolytic cleavage to 5'-phosphomonoester oligonucleotides in both 5'- to 3'- and 3'- to 5'-directions.
   Enzyme class 6: Chains A, B: E.C.3.1.26.13  - retroviral ribonuclease H.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 7: Chains A, B: E.C.3.4.23.16  - HIV-1 retropepsin.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Specific for a P1 residue that is hydrophobic, and P1' variable, but often Pro.
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1021/jm0500323 J Med Chem 48:7582-7591 (2005)
PubMed id: 16302798  
 
 
Crystal structures for HIV-1 reverse transcriptase in complexes with three pyridinone derivatives: a new class of non-nucleoside inhibitors effective against a broad range of drug-resistant strains.
D.M.Himmel, K.Das, A.D.Clark, S.H.Hughes, A.Benjahad, S.Oumouch, J.Guillemont, S.Coupa, A.Poncelet, I.Csoka, C.Meyer, K.Andries, C.H.Nguyen, D.S.Grierson, E.Arnold.
 
  ABSTRACT  
 
In the treatment of AIDS, the efficacy of all drugs, including non-nucleoside inhibitors (NNRTIs) of HIV-1 reverse transcriptase (RT), has been limited by the rapid appearance of drug-resistant viruses. Lys103Asn, Tyr181Cys, and Tyr188Leu are some of the most common RT mutations that cause resistance to NNRTIs in the clinic. We report X-ray crystal structures for RT complexed with three different pyridinone derivatives, R157208, R165481, and R221239, at 2.95, 2.9, and 2.43 A resolution, respectively. All three ligands exhibit nanomolar or subnanomolar inhibitory activity against wild-type RT, but varying activities against drug-resistant mutants. R165481 and R221239 differ from most NNRTIs in that binding does not involve significant contacts with Tyr181. These compounds strongly inhibit wild-type HIV-1 RT and drug-resistant variants, including Tyr181Cys and Lys103Asn RT. These properties result in part from an iodine atom on the pyridinone ring of both inhibitors that interacts with the main-chain carbonyl oxygen of Tyr188. An acrylonitrile substituent on R165481 substantially improves the activity of the compound against wild-type RT (and several mutants) and provides a way to generate novel inhibitors that could interact with conserved elements of HIV-1 RT at the polymerase catalytic site. In R221239, there is a flexible linker to a furan ring that permits interactions with Val106, Phe227, and Pro236. These contacts appear to enhance the inhibitory activity of R221239 against the HIV-1 strains that carry the Val106Ala, Tyr188Leu, and Phe227Cys mutations.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
21365086 E.Parisini, P.Metrangolo, T.Pilati, G.Resnati, and G.Terraneo (2011).
Halogen bonding in halocarbon-protein complexes: a structural survey.
  Chem Soc Rev, 40, 2267-2278.  
21290074 W.Zierkiewicz, R.Wieczorek, P.Hobza, and D.Michalska (2011).
Halogen bonded complexes between volatile anaesthetics (chloroform, halothane, enflurane, isoflurane) and formaldehyde: a theoretical study.
  Phys Chem Chem Phys, 13, 5105-5113.  
20345171 C.Bissantz, B.Kuhn, and M.Stahl (2010).
A medicinal chemist's guide to molecular interactions.
  J Med Chem, 53, 5061-5084.  
20304641 C.S.Leung, J.G.Zeevaart, R.A.Domaoal, M.Bollini, V.V.Thakur, K.A.Spasov, K.S.Anderson, and W.L.Jorgensen (2010).
Eastern extension of azoles as non-nucleoside inhibitors of HIV-1 reverse transcriptase; cyano group alternatives.
  Bioorg Med Chem Lett, 20, 2485-2488.  
20428531 Y.Lu, Y.Wang, and W.Zhu (2010).
Nonbonding interactions of organic halogens in biological systems: implications for drug discovery and biomolecular design.
  Phys Chem Chem Phys, 12, 4543-4551.  
19775161 M.D.Cullen, W.C.Ho, J.D.Bauman, K.Das, E.Arnold, T.L.Hartman, K.M.Watson, R.W.Buckheit, C.Pannecouque, E.De Clercq, and M.Cushman (2009).
Crystallographic study of a novel subnanomolar inhibitor provides insight on the binding interactions of alkenyldiarylmethanes with human immunodeficiency virus-1 reverse transcriptase.
  J Med Chem, 52, 6467-6473.
PDB codes: 3irx 3is9
19374380 S.E.Nichols, R.A.Domaoal, V.V.Thakur, J.Tirado-Rives, K.S.Anderson, and W.L.Jorgensen (2009).
Discovery of wild-type and Y181C mutant non-nucleoside HIV-1 reverse transcriptase inhibitors using virtual screening with multiple protein structures.
  J Chem Inf Model, 49, 1272-1279.  
18727160 Y.X.Lu, J.W.Zou, J.C.Fan, W.N.Zhao, Y.J.Jiang, and Q.S.Yu (2009).
Ab initio calculations on halogen-bonded complexes and comparison with density functional methods.
  J Comput Chem, 30, 725-732.  
18588301 J.G.Zeevaart, L.Wang, V.V.Thakur, C.S.Leung, J.Tirado-Rives, C.M.Bailey, R.A.Domaoal, K.S.Anderson, and W.L.Jorgensen (2008).
Optimization of azoles as anti-human immunodeficiency virus agents guided by free-energy calculations.
  J Am Chem Soc, 130, 9492-9499.  
17904371 K.Danel, L.M.Larsen, E.B.Pedersen, G.Sanna, P.La Colla, and R.Loddo (2008).
Synthesis and antiviral activity of new dimeric inhibitors against HIV-1.
  Bioorg Med Chem, 16, 511-517.  
18230722 K.Das, J.D.Bauman, A.D.Clark, Y.V.Frenkel, P.J.Lewi, A.J.Shatkin, S.H.Hughes, and E.Arnold (2008).
High-resolution structures of HIV-1 reverse transcriptase/TMC278 complexes: strategic flexibility explains potency against resistance mutations.
  Proc Natl Acad Sci U S A, 105, 1466-1471.
PDB codes: 2zd1 2ze2 3bgr
18081133 M.Radi, C.Falciani, L.Contemori, E.Petricci, G.Maga, A.Samuele, S.Zanoli, M.Terrazas, M.Castria, A.Togninelli, J.A.Esté, I.Clotet-Codina, M.Armand-Ugón, and M.Botta (2008).
A multidisciplinary approach for the identification of novel HIV-1 non-nucleoside reverse transcriptase inhibitors: S-DABOCs and DAVPs.
  ChemMedChem, 3, 573-593.  
17918923 G.Barreiro, J.T.Kim, C.R.Guimarães, C.M.Bailey, R.A.Domaoal, L.Wang, K.S.Anderson, and W.L.Jorgensen (2007).
From docking false-positive to active anti-HIV agent.
  J Med Chem, 50, 5324-5329.  
17477343 J.L.Medina-Franco, K.Martínez-Mayorga, C.Juárez-Gordiano, and R.Castillo (2007).
Pyridin-2(1H)-ones: A Promising Class of HIV-1 Non-nucleoside Reverse Transcriptase Inhibitors.
  ChemMedChem, 2, 1141-1147.  
17089434 A.Lavecchia, R.Costi, M.Artico, G.Miele, E.Novellino, A.Bergamini, E.Crespan, G.Maga, and R.Di Santo (2006).
Arylthiopyrrole (AThP) derivatives as non-nucleoside HIV-1 reverse transcriptase inhibitors: synthesis, structure-activity relationships, and docking studies (part 2).
  ChemMedChem, 1, 1379-1390.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer