2e33 Citations

Structural basis for the selection of glycosylated substrates by SCF(Fbs1) ubiquitin ligase.

Proc Natl Acad Sci U S A 104 5777-81 (2007)
Related entries: 2e31, 2e32

Cited: 50 times
EuropePMC logo PMID: 17389369

Abstract

The ubiquitin ligase complex SCF(Fbs1), which contributes to the ubiquitination of glycoproteins, is involved in the endoplasmic reticulum-associated degradation pathway. In SCF ubiquitin ligases, a diverse array of F-box proteins confers substrate specificity. Fbs1/Fbx2, a member of the F-box protein family, recognizes high-mannose oligosaccharides. To elucidate the structural basis of SCF(Fbs1) function, we determined the crystal structures of the Skp1-Fbs1 complex and the sugar-binding domain (SBD) of the Fbs1-glycoprotein complex. The mechanistic model indicated by the structures appears to be well conserved among the SCF ubiquitin ligases. The structure of the SBD-glycoprotein complex indicates that the SBD primarily recognizes Man(3)GlcNAc(2), thereby explaining the broad activity of the enzyme against various glycoproteins. Comparison of two crystal structures of the Skp1-Fbs1 complex revealed the relative motion of a linker segment between the F-box and the SBD domains, which might underlie the ability of the complex to recognize different acceptor lysine residues for ubiquitination.

Reviews - 2e33 mentioned but not cited (1)

  1. An inventory of crosstalk between ubiquitination and other post-translational modifications in orchestrating cellular processes. Barbour H, Nkwe NS, Estavoyer B, Messmer C, Gushul-Leclaire M, Villot R, Uriarte M, Boulay K, Hlayhel S, Farhat B, Milot E, Mallette FA, Daou S, Affar EB. iScience 26 106276 (2023)

Articles - 2e33 mentioned but not cited (3)

  1. Structural basis for the selection of glycosylated substrates by SCF(Fbs1) ubiquitin ligase. Mizushima T, Yoshida Y, Kumanomidou T, Hasegawa Y, Suzuki A, Yamane T, Tanaka K. Proc Natl Acad Sci U S A 104 5777-5781 (2007)
  2. Characterization of non-specific cytotoxic cell receptor protein 1: a new member of the lectin-type subfamily of F-box proteins. Kallio H, Tolvanen M, Jänis J, Pan PW, Laurila E, Kallioniemi A, Kilpinen S, Tuominen VJ, Isola J, Valjakka J, Pastorekova S, Pastorek J, Parkkila S. PLoS One 6 e27152 (2011)
  3. HumanLectome, an update of UniLectin for the annotation and prediction of human lectins. Schnider B, M'Rad Y, El Ahmadie J, de Brevern AG, Imberty A, Lisacek F. Nucleic Acids Res 52 D1683-D1693 (2024)


Reviews citing this publication (14)

  1. Diversity of degradation signals in the ubiquitin-proteasome system. Ravid T, Hochstrasser M. Nat Rev Mol Cell Biol 9 679-690 (2008)
  2. Structural insights into the catalysis and regulation of E3 ubiquitin ligases. Buetow L, Huang DT. Nat Rev Mol Cell Biol 17 626-642 (2016)
  3. Mechanism of CRL4(Cdt2), a PCNA-dependent E3 ubiquitin ligase. Havens CG, Walter JC. Genes Dev 25 1568-1582 (2011)
  4. Structural regulation of cullin-RING ubiquitin ligase complexes. Duda DM, Scott DC, Calabrese MF, Zimmerman ES, Zheng N, Schulman BA. Curr Opin Struct Biol 21 257-264 (2011)
  5. Effect of posttranslational modifications on enzyme function and assembly. Ryšlavá H, Doubnerová V, Kavan D, Vaněk O. J Proteomics 92 80-109 (2013)
  6. Glycan regulation of ER-associated degradation through compartmentalization. Benyair R, Ogen-Shtern N, Lederkremer GZ. Semin Cell Dev Biol 41 99-109 (2015)
  7. Twists and turns in ubiquitin-like protein conjugation cascades. Schulman BA. Protein Sci 20 1941-1954 (2011)
  8. Oxygen sensing by protozoans: how they catch their breath. West CM, Blader IJ. Curr Opin Microbiol 26 41-47 (2015)
  9. Ubiquitin ligases: guardians of mammalian development. Cruz Walma DA, Chen Z, Bullock AN, Yamada KM. Nat Rev Mol Cell Biol 23 350-367 (2022)
  10. F-box proteins that contain sugar-binding domains. Yoshida Y. Biosci Biotechnol Biochem 71 2623-2631 (2007)
  11. Sugar-Recognizing Ubiquitin Ligases: Action Mechanisms and Physiology. Yoshida Y, Mizushima T, Tanaka K. Front Physiol 10 104 (2019)
  12. Nucleocytoplasmic O-glycosylation in protists. West CM, Kim HW. Curr Opin Struct Biol 56 204-212 (2019)
  13. Intracellular lectins are involved in quality control of glycoproteins. Yamamoto K. Proc Jpn Acad Ser B Phys Biol Sci 90 67-82 (2014)
  14. Comprehensive Analysis of the Structure and Function of Peptide:N-Glycanase 1 and Relationship with Congenital Disorder of Deglycosylation. Miao X, Wu J, Chen H, Lu G. Nutrients 14 1690 (2022)

Articles citing this publication (32)

  1. Crystal structure of UbcH5b~ubiquitin intermediate: insight into the formation of the self-assembled E2~Ub conjugates. Sakata E, Satoh T, Yamamoto S, Yamaguchi Y, Yagi-Utsumi M, Kurimoto E, Tanaka K, Wakatsuki S, Kato K. Structure 18 138-147 (2010)
  2. Diversity in tissue expression, substrate binding, and SCF complex formation for a lectin family of ubiquitin ligases. Glenn KA, Nelson RF, Wen HM, Mallinger AJ, Paulson HL. J Biol Chem 283 12717-12729 (2008)
  3. The mechanism of ubiquitination in the cullin-RING E3 ligase machinery: conformational control of substrate orientation. Liu J, Nussinov R. PLoS Comput Biol 5 e1000527 (2009)
  4. Molecular dynamics reveal the essential role of linker motions in the function of cullin-RING E3 ligases. Liu J, Nussinov R. J Mol Biol 396 1508-1523 (2010)
  5. Structural basis of dimerization-dependent ubiquitination by the SCF(Fbx4) ubiquitin ligase. Li Y, Hao B. J Biol Chem 285 13896-13906 (2010)
  6. Distribution and evolution of the lectin family in soybean (Glycine max). Van Holle S, Van Damme EJ. Molecules 20 2868-2891 (2015)
  7. Aberrant Expression of FBXO2 Disrupts Glucose Homeostasis Through Ubiquitin-Mediated Degradation of Insulin Receptor in Obese Mice. Liu B, Lu H, Li D, Xiong X, Gao L, Wu Z, Lu Y. Diabetes 66 689-698 (2017)
  8. Protein-protein interactions regulate Ubl conjugation. Knipscheer P, Sixma TK. Curr Opin Struct Biol 17 665-673 (2007)
  9. Glycosylation of Skp1 affects its conformation and promotes binding to a model f-box protein. Sheikh MO, Schafer CM, Powell JT, Rodgers KK, Mooers BH, West CM. Biochemistry 53 1657-1669 (2014)
  10. An engineered high affinity Fbs1 carbohydrate binding protein for selective capture of N-glycans and N-glycopeptides. Chen M, Shi X, Duke RM, Ruse CI, Dai N, Taron CH, Samuelson JC. Nat Commun 8 15487 (2017)
  11. Epstein-Barr virus activates F-box protein FBXO2 to limit viral infectivity by targeting glycoprotein B for degradation. Zhang HJ, Tian J, Qi XK, Xiang T, He GP, Zhang H, Yu X, Zhang X, Zhao B, Feng QS, Chen MY, Zeng MS, Zeng YX, Feng L. PLoS Pathog 14 e1007208 (2018)
  12. Comparative Study of Lectin Domains in Model Species: New Insights into Evolutionary Dynamics. Van Holle S, De Schutter K, Eggermont L, Tsaneva M, Dang L, Van Damme EJM. Int J Mol Sci 18 E1136 (2017)
  13. Electrostatic potentials of the S-locus F-box proteins contribute to the pollen S specificity in self-incompatibility in Petunia hybrida. Li J, Zhang Y, Song Y, Zhang H, Fan J, Li Q, Zhang D, Xue Y. Plant J 89 45-57 (2017)
  14. Energetics of OCP1-OCP2 complex formation. Tan A, Tanner JJ, Henzl MT. Biophys Chem 134 64-71 (2008)
  15. Fbs1 protects the malfolded glycoproteins from the attack of peptide:N-glycanase. Yamaguchi Y, Hirao T, Sakata E, Kamiya Y, Kurimoto E, Yoshida Y, Suzuki T, Tanaka K, Kato K. Biochem Biophys Res Commun 362 712-716 (2007)
  16. Glycosylation Promotes the Random Coil to Helix Transition in a Region of a Protist Skp1 Associated with F-Box Binding. Xu X, Eletsky A, Sheikh MO, Prestegard JH, West CM. Biochemistry 57 511-515 (2018)
  17. Molecular dynamics simulations elucidate the mode of protein recognition by Skp1 and the F-box domain in the SCF complex. Chandra Dantu S, Nathubhai Kachariya N, Kumar A. Proteins 84 159-171 (2016)
  18. Epitope located N-glycans impair the MHC-I epitope generation and presentation. Chiritoiu GN, Jandus C, Munteanu CV, Ghenea S, Gannon PO, Romero P, Petrescu SM. Electrophoresis 37 1448-1460 (2016)
  19. FBXO2 Promotes Proliferation of Endometrial Cancer by Ubiquitin-Mediated Degradation of FBN1 in the Regulation of the Cell Cycle and the Autophagy Pathway. Che X, Jian F, Wang Y, Zhang J, Shen J, Cheng Q, Wang X, Jia N, Feng W. Front Cell Dev Biol 8 843 (2020)
  20. The plant proteome folding project: structure and positive selection in plant protein families. Pentony MM, Winters P, Penfold-Brown D, Drew K, Narechania A, DeSalle R, Bonneau R, Purugganan MD. Genome Biol Evol 4 360-371 (2012)
  21. FBXO2 targets glycosylated SUN2 for ubiquitination and degradation to promote ovarian cancer development. Ji J, Shen J, Xu Y, Xie M, Qian Q, Qiu T, Shi W, Ren D, Ma J, Liu W, Liu B. Cell Death Dis 13 442 (2022)
  22. The Structural Differences between a Glycoprotein Specific F-Box Protein Fbs1 and Its Homologous Protein FBG3. Kumanomidou T, Nishio K, Takagi K, Nakagawa T, Suzuki A, Yamane T, Tokunaga F, Iwai K, Murakami A, Yoshida Y, Tanaka K, Mizushima T. PLoS One 10 e0140366 (2015)
  23. Conformational changes associated with post-translational modifications of Pro(143) in Skp1 of Dictyostelium--a dipeptide model system. Karunaratne CV, Weldeghiorghis TK, West CM, Taylor CM. J Am Chem Soc 136 15170-15175 (2014)
  24. Loss of peptide:N-glycanase causes proteasome dysfunction mediated by a sugar-recognizing ubiquitin ligase. Yoshida Y, Asahina M, Murakami A, Kawawaki J, Yoshida M, Fujinawa R, Iwai K, Tozawa R, Matsuda N, Tanaka K, Suzuki T. Proc Natl Acad Sci U S A 118 e2102902118 (2021)
  25. A new set of ESTs from chickpea (Cicer arietinum L.) embryo reveals two novel F-box genes, CarF-box_PP2 and CarF-box_LysM, with potential roles in seed development. Gupta S, Garg V, Bhatia S. PLoS One 10 e0121100 (2015)
  26. Backbone and side chain assignments of human cell cycle regulatory protein S-phase kinase-associated protein 1. Kachariya NN, Dantu SC, Kumar A. Biomol NMR Assign 10 351-355 (2016)
  27. Site-specific N-glycosylation of integrin α2 mediates collagen-dependent cell survival. Huang YL, Liang CY, Labitzky V, Ritz D, Oliveira T, Cumin C, Estermann M, Lange T, Everest-Dass AV, Jacob F. iScience 24 103168 (2021)
  28. Structure of the FP domain of Fbxo7 reveals a novel mode of protein-protein interaction. Shang J, Wang G, Yang Y, Huang X, Du Z. Acta Crystallogr D Biol Crystallogr 70 155-164 (2014)
  29. HSP90 promotes radioresistance of cervical cancer cells via reducing FBXO6-mediated CD147 polyubiquitination. Song Q, Wen J, Li W, Xue J, Zhang Y, Liu H, Han J, Ning T, Lu Z. Cancer Sci 113 1463-1474 (2022)
  30. The FP domains of PI31 and Fbxo7 have the same protein fold but very different modes of protein-protein interaction. Shang J, Huang X, Du Z. J Biomol Struct Dyn 33 1528-1538 (2015)
  31. Conformational stabilities of guinea pig OCP1 and OCP2. Tan A, Henzl MT. Biophys Chem 144 108-118 (2009)
  32. Expression, purification and crystallization of the FP domain of the human F-box protein Fbxo7. Shang J, Wang G, Yang Y, Huang X, Du Z. Acta Crystallogr Sect F Struct Biol Cryst Commun 69 1097-1099 (2013)