1s0x Citations

Crystal structure of the human RORalpha Ligand binding domain in complex with cholesterol sulfate at 2.2 A.

J Biol Chem 279 14033-8 (2004)
Cited: 148 times
EuropePMC logo PMID: 14722075

Abstract

The retinoic acid-related orphan receptor alpha (RORalpha) is an orphan member of the subfamily 1 of nuclear hormone receptors. Our recent structural and functional studies have led to the hypothesis that cholesterol or a cholesterol derivative is the natural ligand of RORalpha. We have now solved the x-ray crystal structure of the ligand binding domain of RORalpha in complex with cholesterol-3-O-sulfate following a ligand exchange experiment. In contrast to the 3-hydroxyl of cholesterol, the 3-O-sulfate group makes additional direct hydrogen bonds with three residues of the RORalpha ligand binding domain, namely NH-Gln(289), NH-Tyr(290), and NH1-Arg(370). When compared with the complex with cholesterol, seven well ordered water molecules have been displaced, and the ligand is slightly shifted toward the hydrophilic part of the ligand binding pocket, which is ideally suited for interactions with a sulfate group. These additional ligand-protein interactions result in an increased affinity of cholesterol sulfate when compared with cholesterol, as shown by mass spectrometry analysis done under native conditions and differential scanning calorimetry. Moreover, mutational studies show that the higher binding affinity of cholesterol sulfate translates into an increased transcriptional activity of RORalpha. Our findings suggest that cholesterol sulfate could play a crucial role in the regulation of RORalpha in vivo.

Reviews - 1s0x mentioned but not cited (3)

  1. ROR nuclear receptors: structures, related diseases, and drug discovery. Zhang Y, Luo XY, Wu DH, Xu Y. Acta Pharmacol Sin 36 71-87 (2015)
  2. Common structural features of cholesterol binding sites in crystallized soluble proteins. Bukiya AN, Dopico AM. J Lipid Res 58 1044-1054 (2017)
  3. Recent advances in modulators of circadian rhythms: an update and perspective. Huang S, Jiao X, Lu D, Pei X, Qi D, Li Z. J Enzyme Inhib Med Chem 35 1267-1286 (2020)

Articles - 1s0x mentioned but not cited (8)

  1. Retrocopy contributions to the evolution of the human genome. Baertsch R, Diekhans M, Kent WJ, Haussler D, Brosius J. BMC Genomics 9 466 (2008)
  2. A maresin 1/RORα/12-lipoxygenase autoregulatory circuit prevents inflammation and progression of nonalcoholic steatohepatitis. Han YH, Shin KO, Kim JY, Khadka DB, Kim HJ, Lee YM, Cho WJ, Cha JY, Lee BJ, Lee MO. J Clin Invest 129 1684-1698 (2019)
  3. Autism-Related Transcription Factors Underlying the Sex-Specific Effects of Prenatal Bisphenol A Exposure on Transcriptome-Interactome Profiles in the Offspring Prefrontal Cortex. Kanlayaprasit S, Thongkorn S, Panjabud P, Jindatip D, Hu VW, Kikkawa T, Osumi N, Sarachana T. Int J Mol Sci 22 13201 (2021)
  4. Structural basis of cholesterol binding by a novel clade of dendritic cell modulators from ticks. Roversi P, Johnson S, Preston SG, Nunn MA, Paesen GC, Austyn JM, Nuttall PA, Lea SM. Sci Rep 7 16057 (2017)
  5. Antitumor Activity and Mechanism of Robustic Acid from Dalbergia benthami Prain via Computational Target Fishing. Huang J, Liang Y, Tian W, Ma J, Huang L, Li B, Chen R, Li D. Molecules 25 E3919 (2020)
  6. Chemical synthesis, biological activities and action on nuclear receptors of 20S(OH)D3, 20S,25(OH)2D3, 20S,23S(OH)2D3 and 20S,23R(OH)2D3. Brzeminski P, Fabisiak A, Slominski RM, Kim TK, Janjetovic Z, Podgorska E, Song Y, Saleem M, Reddy SB, Qayyum S, Song Y, Tuckey RC, Atigadda V, Jetten AM, Sicinski RR, Raman C, Slominski AT. Bioorg Chem 121 105660 (2022)
  7. Protein Targets of Frankincense: A Reverse Docking Analysis of Terpenoids from Boswellia Oleo-Gum Resins. Byler KG, Setzer WN. Medicines (Basel) 5 E96 (2018)
  8. Exploring Ligand Binding Domain Dynamics in the NRs Superfamily. D'Arrigo G, Autiero I, Gianquinto E, Siragusa L, Baroni M, Cruciani G, Spyrakis F. Int J Mol Sci 23 8732 (2022)


Reviews citing this publication (46)

  1. Retinoid-related orphan receptors (RORs): critical roles in development, immunity, circadian rhythm, and cellular metabolism. Jetten AM. Nucl Recept Signal 7 e003 (2009)
  2. Melatonin membrane receptors in peripheral tissues: distribution and functions. Slominski RM, Reiter RJ, Schlabritz-Loutsevitch N, Ostrom RS, Slominski AT. Mol Cell Endocrinol 351 152-166 (2012)
  3. Sensing the environment: regulation of local and global homeostasis by the skin's neuroendocrine system. Slominski AT, Zmijewski MA, Skobowiat C, Zbytek B, Slominski RM, Steketee JD. Adv Anat Embryol Cell Biol 212 v, vii, 1-115 (2012)
  4. REV-ERB and ROR nuclear receptors as drug targets. Kojetin DJ, Burris TP. Nat Rev Drug Discov 13 197-216 (2014)
  5. Nuclear receptors: decoding metabolic disease. Sonoda J, Pei L, Evans RM. FEBS Lett 582 2-9 (2008)
  6. Ligand control of coregulator recruitment to nuclear receptors. Nettles KW, Greene GL. Annu Rev Physiol 67 309-333 (2005)
  7. Action of RORs and their ligands in (patho)physiology. Solt LA, Burris TP. Trends Endocrinol Metab 23 619-627 (2012)
  8. Circadian clocks and metabolism. Marcheva B, Ramsey KM, Peek CB, Affinati A, Maury E, Bass J. Handb Exp Pharmacol 127-155 (2013)
  9. Endogenous ligands for nuclear receptors: digging deeper. Schupp M, Lazar MA. J Biol Chem 285 40409-40415 (2010)
  10. Torpor induction in mammals: recent discoveries fueling new ideas. Melvin RG, Andrews MT. Trends Endocrinol Metab 20 490-498 (2009)
  11. The REV-ERBs and RORs: molecular links between circadian rhythms and lipid homeostasis. Solt LA, Kojetin DJ, Burris TP. Future Med Chem 3 623-638 (2011)
  12. Nuclear receptor signaling in the control of cholesterol homeostasis: have the orphans found a home? Ory DS. Circ Res 95 660-670 (2004)
  13. Retinoic acid actions through mammalian nuclear receptors. Huang P, Chandra V, Rastinejad F. Chem Rev 114 233-254 (2014)
  14. Small molecule modifiers of circadian clocks. Chen Z, Yoo SH, Takahashi JS. Cell Mol Life Sci 70 2985-2998 (2013)
  15. Targeting orphan nuclear receptors for treatment of metabolic diseases and autoimmunity. Burris TP, Busby SA, Griffin PR. Chem Biol 19 51-59 (2012)
  16. Interactions between metabolism and circadian clocks: reciprocal disturbances. Delezie J, Challet E. Ann N Y Acad Sci 1243 30-46 (2011)
  17. ROR alpha in genetic control of cerebellum development: 50 staggering years. Gold DA, Gent PM, Hamilton BA. Brain Res 1140 19-25 (2007)
  18. Nutrient sensing and the circadian clock. Peek CB, Ramsey KM, Marcheva B, Bass J. Trends Endocrinol Metab 23 312-318 (2012)
  19. Oxysterols: novel biologic roles for the 21st century. Javitt NB. Steroids 73 149-157 (2008)
  20. The nuclear hormone receptor family round the clock. Teboul M, Guillaumond F, Gréchez-Cassiau A, Delaunay F. Mol Endocrinol 22 2573-2582 (2008)
  21. Regulation of the cytosolic sulfotransferases by nuclear receptors. Runge-Morris M, Kocarek TA, Falany CN. Drug Metab Rev 45 15-33 (2013)
  22. Ligand regulation of retinoic acid receptor-related orphan receptors: implications for development of novel therapeutics. Solt LA, Griffin PR, Burris TP. Curr Opin Lipidol 21 204-211 (2010)
  23. Transcriptional Control of Circadian Rhythms and Metabolism: A Matter of Time and Space. Kim YH, Lazar MA. Endocr Rev 41 bnaa014 (2020)
  24. How nuclear receptors tell time. Teboul M, Gréchez-Cassiau A, Guillaumond F, Delaunay F. J Appl Physiol (1985) 107 1965-1971 (2009)
  25. Chemical chronobiology: Toward drugs manipulating time. Wallach T, Kramer A. FEBS Lett 589 1530-1538 (2015)
  26. (Inverse) Agonists of Retinoic Acid-Related Orphan Receptor γ: Regulation of Immune Responses, Inflammation, and Autoimmune Disease. Jetten AM, Cook DN. Annu Rev Pharmacol Toxicol 60 371-390 (2020)
  27. SULT2B1: unique properties and characteristics of a hydroxysteroid sulfotransferase family. Falany CN, Rohn-Glowacki KJ. Drug Metab Rev 45 388-400 (2013)
  28. Orphan nuclear receptors in breast cancer pathogenesis and therapeutic response. Riggins RB, Mazzotta MM, Maniya OZ, Clarke R. Endocr Relat Cancer 17 R213-31 (2010)
  29. Orphan nuclear receptors as targets for drug development. Mukherjee S, Mani S. Pharm Res 27 1439-1468 (2010)
  30. Adopting new orphans into the family of metabolic regulators. Hummasti S, Tontonoz P. Mol Endocrinol 22 1743-1753 (2008)
  31. Retinoid-related orphan receptor alpha and the regulation of lipid homeostasis. Fitzsimmons RL, Lau P, Muscat GE. J Steroid Biochem Mol Biol 130 159-168 (2012)
  32. Oxysterol-EBI2 signaling in immune regulation and viral infection. Daugvilaite V, Arfelt KN, Benned-Jensen T, Sailer AW, Rosenkilde MM. Eur J Immunol 44 1904-1912 (2014)
  33. Retinoic Acid Receptor-Related Orphan Receptors: Critical Roles in Tumorigenesis. Fan J, Lv Z, Yang G, Liao TT, Xu J, Wu F, Huang Q, Guo M, Hu G, Zhou M, Duan L, Liu S, Jin Y. Front Immunol 9 1187 (2018)
  34. Circadian control of metabolism and pathological consequences of clock perturbations. Mayeuf-Louchart A, Zecchin M, Staels B, Duez H. Biochimie 143 42-50 (2017)
  35. A role for nuclear receptors in mammalian hibernation. Nelson CJ, Otis JP, Carey HV. J Physiol 587 1863-1870 (2009)
  36. ROR: Nuclear Receptor for Melatonin or Not? Ma H, Kang J, Fan W, He H, Huang F. Molecules 26 2693 (2021)
  37. Nuclear receptors and transcriptional regulation in non-alcoholic fatty liver disease. Xiao Y, Kim M, Lazar MA. Mol Metab 50 101119 (2021)
  38. Revisiting the role of melatonin in human melanocyte physiology: A skin context perspective. Sevilla A, Chéret J, Slominski RM, Slominski AT, Paus R. J Pineal Res 72 e12790 (2022)
  39. Emerging roles of orphan nuclear receptors in regulation of innate immunity. Jin HS, Kim TS, Jo EK. Arch Pharm Res 39 1491-1502 (2016)
  40. Time to target the circadian clock for drug discovery. Rasmussen ES, Takahashi JS, Green CB. Trends Biochem Sci 47 745-758 (2022)
  41. The interplay between retinoic acid receptor-related orphan receptors and human diseases. Ranhotra HS. J Recept Signal Transduct Res 32 181-189 (2012)
  42. Lipid signaling in the atherogenesis context. Smirnov AN. Biochemistry (Mosc) 75 793-810 (2010)
  43. The therapeutic potential of RORγ modulators in the treatment of human disease. Chang MR, Goswami D, Mercer BA, Griffin PR. J Exp Pharmacol 4 141-148 (2012)
  44. Insights into Orphan Nuclear Receptors as Prognostic Markers and Novel Therapeutic Targets for Breast Cancer. Aesoy R, Clyne CD, Chand AL. Front Endocrinol (Lausanne) 6 115 (2015)
  45. Control of gene expression by novel metabolic intermediates. Gustafsson JA. J Steroid Biochem Mol Biol 153 102-104 (2015)
  46. Novel Therapeutic Potential of Retinoid-Related Orphan Receptor α in Cardiovascular Diseases. Chen Y, Zhang SP, Gong WW, Zheng YY, Shen JR, Liu X, Gu YH, Shi JH, Meng GL. Int J Mol Sci 24 3462 (2023)

Articles citing this publication (91)

  1. RORα and ROR γ are expressed in human skin and serve as receptors for endogenously produced noncalcemic 20-hydroxy- and 20,23-dihydroxyvitamin D. Slominski AT, Kim TK, Takeda Y, Janjetovic Z, Brozyna AA, Skobowiat C, Wang J, Postlethwaite A, Li W, Tuckey RC, Jetten AM. FASEB J 28 2775-2789 (2014)
  2. The benzenesulfoamide T0901317 [N-(2,2,2-trifluoroethyl)-N-[4-[2,2,2-trifluoro-1-hydroxy-1-(trifluoromethyl)ethyl]phenyl]-benzenesulfonamide] is a novel retinoic acid receptor-related orphan receptor-alpha/gamma inverse agonist. Kumar N, Solt LA, Conkright JJ, Wang Y, Istrate MA, Busby SA, Garcia-Ordonez RD, Burris TP, Griffin PR. Mol Pharmacol 77 228-236 (2010)
  3. Gene expression profiling reveals a regulatory role for ROR alpha and ROR gamma in phase I and phase II metabolism. Kang HS, Angers M, Beak JY, Wu X, Gimble JM, Wada T, Xie W, Collins JB, Grissom SF, Jetten AM. Physiol Genomics 31 281-294 (2007)
  4. Identification of natural RORγ ligands that regulate the development of lymphoid cells. Santori FR, Huang P, van de Pavert SA, Douglass EF, Leaver DJ, Haubrich BA, Keber R, Lorbek G, Konijn T, Rosales BN, Rozman D, Horvat S, Rahier A, Mebius RE, Rastinejad F, Nes WD, Littman DR. Cell Metab 21 286-298 (2015)
  5. Sterol metabolism controls T(H)17 differentiation by generating endogenous RORγ agonists. Hu X, Wang Y, Hao LY, Liu X, Lesch CA, Sanchez BM, Wendling JM, Morgan RW, Aicher TD, Carter LL, Toogood PL, Glick GD. Nat Chem Biol 11 141-147 (2015)
  6. Structural basis of sterol binding by NPC2, a lysosomal protein deficient in Niemann-Pick type C2 disease. Xu S, Benoff B, Liou HL, Lobel P, Stock AM. J Biol Chem 282 23525-23531 (2007)
  7. Modulation of retinoic acid receptor-related orphan receptor alpha and gamma activity by 7-oxygenated sterol ligands. Wang Y, Kumar N, Solt LA, Richardson TI, Helvering LM, Crumbley C, Garcia-Ordonez RD, Stayrook KR, Zhang X, Novick S, Chalmers MJ, Griffin PR, Burris TP. J Biol Chem 285 5013-5025 (2010)
  8. Retinoic acid-related orphan receptors α and γ: key regulators of lipid/glucose metabolism, inflammation, and insulin sensitivity. Jetten AM, Kang HS, Takeda Y. Front Endocrinol (Lausanne) 4 1 (2013)
  9. The Concise Guide to PHARMACOLOGY 2013/14: nuclear hormone receptors. Alexander SP, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ, CGTP Collaborators. Br J Pharmacol 170 1652-1675 (2013)
  10. The crystal structures of human steroidogenic factor-1 and liver receptor homologue-1. Wang W, Zhang C, Marimuthu A, Krupka HI, Tabrizizad M, Shelloe R, Mehra U, Eng K, Nguyen H, Settachatgul C, Powell B, Milburn MV, West BL. Proc Natl Acad Sci U S A 102 7505-7510 (2005)
  11. Letter Identification of SR1078, a synthetic agonist for the orphan nuclear receptors RORα and RORγ. Wang Y, Kumar N, Nuhant P, Cameron MD, Istrate MA, Roush WR, Griffin PR, Burris TP. ACS Chem Biol 5 1029-1034 (2010)
  12. Identification of SR3335 (ML-176): a synthetic RORα selective inverse agonist. Kumar N, Kojetin DJ, Solt LA, Kumar KG, Nuhant P, Duckett DR, Cameron MD, Butler AA, Roush WR, Griffin PR, Burris TP. ACS Chem Biol 6 218-222 (2011)
  13. Retinoic Acid-Related Orphan Receptors (RORs): Regulatory Functions in Immunity, Development, Circadian Rhythm, and Metabolism. Cook DN, Kang HS, Jetten AM. Nucl Receptor Res 2 101185 (2015)
  14. Dynamic regulation of Drosophila nuclear receptor activity in vivo. Palanker L, Necakov AS, Sampson HM, Ni R, Hu C, Thummel CS, Krause HM. Development 133 3549-3562 (2006)
  15. RORγt and RORα signature genes in human Th17 cells. Castro G, Liu X, Ngo K, De Leon-Tabaldo A, Zhao S, Luna-Roman R, Yu J, Cao T, Kuhn R, Wilkinson P, Herman K, Nelen MI, Blevitt J, Xue X, Fourie A, Fung-Leung WP. PLoS One 12 e0181868 (2017)
  16. Modeling the structure of the StART domains of MLN64 and StAR proteins in complex with cholesterol. Murcia M, Faráldo-Gómez JD, Maxfield FR, Roux B. J Lipid Res 47 2614-2630 (2006)
  17. Retinoid-related Orphan Receptors (RORs): Roles in Cellular Differentiation and Development. Jetten AM, Joo JH. Adv Dev Biol 16 313-355 (2006)
  18. Transcriptional activation of HIF-1 by RORalpha and its role in hypoxia signaling. Kim EJ, Yoo YG, Yang WK, Lim YS, Na TY, Lee IK, Lee MO. Arterioscler Thromb Vasc Biol 28 1796-1802 (2008)
  19. Enhanced susceptibility of staggerer (RORalphasg/sg) mice to lipopolysaccharide-induced lung inflammation. Stapleton CM, Jaradat M, Dixon D, Kang HS, Kim SC, Liao G, Carey MA, Cristiano J, Moorman MP, Jetten AM. Am J Physiol Lung Cell Mol Physiol 289 L144-52 (2005)
  20. Modulatory role for retinoid-related orphan receptor alpha in allergen-induced lung inflammation. Jaradat M, Stapleton C, Tilley SL, Dixon D, Erikson CJ, McCaskill JG, Kang HS, Angers M, Liao G, Collins J, Grissom S, Jetten AM. Am J Respir Crit Care Med 174 1299-1309 (2006)
  21. Retinoic acid-related Orphan Receptor γ (RORγ): connecting sterol metabolism to regulation of the immune system and autoimmune disease. Jetten AM, Takeda Y, Slominski A, Kang HS. Curr Opin Toxicol 8 66-80 (2018)
  22. Characterization of a new pathway that activates lumisterol in vivo to biologically active hydroxylumisterols. Slominski AT, Kim TK, Hobrath JV, Janjetovic Z, Oak ASW, Postlethwaite A, Lin Z, Li W, Takeda Y, Jetten AM, Tuckey RC. Sci Rep 7 11434 (2017)
  23. RORα, a potential tumor suppressor and therapeutic target of breast cancer. Du J, Xu R. Int J Mol Sci 13 15755-15766 (2012)
  24. The orphan Rev-erb nuclear receptors: a link between metabolism, circadian rhythm and inflammation? Ramakrishnan SN, Muscat GE. Nucl Recept Signal 4 e009 (2006)
  25. Structural determinants of the agonist-independent association of human peroxisome proliferator-activated receptors with coactivators. Molnár F, Matilainen M, Carlberg C. J Biol Chem 280 26543-26556 (2005)
  26. Nuclear receptor RORα regulates pathologic retinal angiogenesis by modulating SOCS3-dependent inflammation. Sun Y, Liu CH, SanGiovanni JP, Evans LP, Tian KT, Zhang B, Stahl A, Pu WT, Kamenecka TM, Solt LA, Chen J. Proc Natl Acad Sci U S A 112 10401-10406 (2015)
  27. Potent, selective and cell penetrant inhibitors of SF-1 by functional ultra-high-throughput screening. Madoux F, Li X, Chase P, Zastrow G, Cameron MD, Conkright JJ, Griffin PR, Thacher S, Hodder P. Mol Pharmacol 73 1776-1784 (2008)
  28. Retinoic acid-related orphan receptor α regulates diurnal rhythm and fasting induction of sterol 12α-hydroxylase in bile acid synthesis. Pathak P, Li T, Chiang JY. J Biol Chem 288 37154-37165 (2013)
  29. RORα decreases oxidative stress through the induction of SOD2 and GPx1 expression and thereby protects against nonalcoholic steatohepatitis in mice. Han YH, Kim HJ, Kim EJ, Kim KS, Hong S, Park HG, Lee MO. Antioxid Redox Signal 21 2083-2094 (2014)
  30. RORα and RORγ expression inversely correlates with human melanoma progression. Brożyna AA, Jóźwicki W, Skobowiat C, Jetten A, Slominski AT. Oncotarget 7 63261-63282 (2016)
  31. Retinoic acid receptor-related orphan receptor α-induced activation of adenosine monophosphate-activated protein kinase results in attenuation of hepatic steatosis. Kim EJ, Yoon YS, Hong S, Son HY, Na TY, Lee MH, Kang HJ, Park J, Cho WJ, Kim SG, Koo SH, Park HG, Lee MO. Hepatology 55 1379-1388 (2012)
  32. Activation of aromatase expression by retinoic acid receptor-related orphan receptor (ROR) alpha in breast cancer cells: identification of a novel ROR response element. Odawara H, Iwasaki T, Horiguchi J, Rokutanda N, Hirooka K, Miyazaki W, Koibuchi Y, Shimokawa N, Iino Y, Takeyoshi I, Koibuchi N. J Biol Chem 284 17711-17719 (2009)
  33. Letter RORα is not a receptor for melatonin (response to DOI 10.1002/bies.201600018). Slominski AT, Zmijewski MA, Jetten AM. Bioessays 38 1193-1194 (2016)
  34. SUMOylation of RORalpha potentiates transcriptional activation function. Hwang EJ, Lee JM, Jeong J, Park JH, Yang Y, Lim JS, Kim JH, Baek SH, Kim KI. Biochem Biophys Res Commun 378 513-517 (2009)
  35. Proteomics profiling of nuclear proteins for kidney fibroblasts suggests hypoxia, meiosis, and cancer may meet in the nucleus. Shakib K, Norman JT, Fine LG, Brown LR, Godovac-Zimmermann J. Proteomics 5 2819-2838 (2005)
  36. Control of gene expression by the retinoic acid-related orphan receptor alpha in HepG2 human hepatoma cells. Chauvet C, Vanhoutteghem A, Duhem C, Saint-Auret G, Bois-Joyeux B, Djian P, Staels B, Danan JL. PLoS One 6 e22545 (2011)
  37. The zebrafish retinoid-related orphan receptor (ror) gene family. Flores MV, Hall C, Jury A, Crosier K, Crosier P. Gene Expr Patterns 7 535-543 (2007)
  38. Inhibitory effects of azole-type fungicides on interleukin-17 gene expression via retinoic acid receptor-related orphan receptors α and γ. Kojima H, Muromoto R, Takahashi M, Takeuchi S, Takeda Y, Jetten AM, Matsuda T. Toxicol Appl Pharmacol 259 338-345 (2012)
  39. Structural States of RORγt: X-ray Elucidation of Molecular Mechanisms and Binding Interactions for Natural and Synthetic Compounds. Kallen J, Izaac A, Be C, Arista L, Orain D, Kaupmann K, Guntermann C, Hoegenauer K, Hintermann S. ChemMedChem 12 1014-1021 (2017)
  40. The retinoid-related orphan receptor RORα promotes keratinocyte differentiation via FOXN1. Dai J, Brooks Y, Lefort K, Getsios S, Dotto GP. PLoS One 8 e70392 (2013)
  41. Cholesterol sulfate and cholesterol sulfotransferase inhibit gluconeogenesis by targeting hepatocyte nuclear factor 4α. Shi X, Cheng Q, Xu L, Yan J, Jiang M, He J, Xu M, Stefanovic-Racic M, Sipula I, O'Doherty RM, Ren S, Xie W. Mol Cell Biol 34 485-497 (2014)
  42. Discovering relationships between nuclear receptor signaling pathways, genes, and tissues in Transcriptomine. Becnel LB, Ochsner SA, Darlington YF, McOwiti A, Kankanamge WH, Dehart M, Naumov A, McKenna NJ. Sci Signal 10 eaah6275 (2017)
  43. Identification of the human ApoAV gene as a novel RORalpha target gene. Lind U, Nilsson T, McPheat J, Strömstedt PE, Bamberg K, Balendran C, Kang D. Biochem Biophys Res Commun 330 233-241 (2005)
  44. RORα controls inflammatory state of human macrophages. Nejati Moharrami N, Bjørkøy Tande E, Ryan L, Espevik T, Boyartchuk V. PLoS One 13 e0207374 (2018)
  45. Increasing human Th17 differentiation through activation of orphan nuclear receptor retinoid acid-related orphan receptor γ (RORγ) by a class of aryl amide compounds. Zhang W, Zhang J, Fang L, Zhou L, Wang S, Xiang Z, Li Y, Wisely B, Zhang G, An G, Wang Y, Leung S, Zhong Z. Mol Pharmacol 82 583-590 (2012)
  46. Differential and day-time dependent expression of nuclear receptors RORα, RORβ, RORγ and RXRα in the rodent pancreas and islet. Mühlbauer E, Bazwinsky-Wutschke I, Wolgast S, Labucay K, Peschke E. Mol Cell Endocrinol 365 129-138 (2013)
  47. Therapeutic Effect of a Synthetic RORα/γ Agonist in an Animal Model of Autism. Wang Y, Billon C, Walker JK, Burris TP. ACS Chem Neurosci 7 143-148 (2016)
  48. Identification of human CYP2C8 as a retinoid-related orphan nuclear receptor target gene. Chen Y, Coulter S, Jetten AM, Goldstein JA. J Pharmacol Exp Ther 329 192-201 (2009)
  49. Disrupting Hepatocyte Cyp51 from Cholesterol Synthesis Leads to Progressive Liver Injury in the Developing Mouse and Decreases RORC Signalling. Urlep Ž, Lorbek G, Perše M, Jeruc J, Juvan P, Matz-Soja M, Gebhardt R, Björkhem I, Hall JA, Bonneau R, Littman DR, Rozman D. Sci Rep 7 40775 (2017)
  50. RORα Regulates Cholesterol Metabolism of CD8+ T Cells for Anticancer Immunity. Lee IK, Song H, Kim H, Kim IS, Tran NL, Kim SH, Oh SJ, Lee JM. Cancers (Basel) 12 E1733 (2020)
  51. Regulation of expression of citrate synthase by the retinoic acid receptor-related orphan receptor α (RORα). Crumbley C, Wang Y, Banerjee S, Burris TP. PLoS One 7 e33804 (2012)
  52. Regulation of sulfotransferase and UDP-glucuronosyltransferase gene expression by the PPARs. Runge-Morris M, Kocarek TA. PPAR Res 2009 728941 (2009)
  53. Vitamin D receptors (VDR), hydroxylases CYP27B1 and CYP24A1 and retinoid-related orphan receptors (ROR) level in human uveal tract and ocular melanoma with different melanization levels. Markiewicz A, Brożyna AA, Podgórska E, Elas M, Urbańska K, Jetten AM, Slominski AT, Jóźwicki W, Orłowska-Heitzman J, Dyduch G, Romanowska-Dixon B. Sci Rep 9 9142 (2019)
  54. 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2) signals through retinoic acid receptor-related orphan receptor-alpha but not peroxisome proliferator-activated receptor-gamma in human vascular endothelial cells: the effect of 15d-PGJ2 on tumor necrosis factor-alpha-induced gene expression. Migita H, Morser J. Arterioscler Thromb Vasc Biol 25 710-716 (2005)
  55. RORα modulates semaphorin 3E transcription and neurovascular interaction in pathological retinal angiogenesis. Sun Y, Liu CH, Wang Z, Meng SS, Burnim SB, SanGiovanni JP, Kamenecka TM, Solt LA, Chen J. FASEB J 31 4492-4502 (2017)
  56. Regulation of steroidogenic acute regulatory protein transcription in largemouth bass by orphan nuclear receptor signaling pathways. Kocerha J, Prucha MS, Kroll KJ, Steinhilber D, Denslow N. Endocrinology 151 341-349 (2010)
  57. Small molecule amides as potent ROR-γ selective modulators. Khan PM, El-Gendy Bel-D, Kumar N, Garcia-Ordonez R, Lin L, Ruiz CH, Cameron MD, Griffin PR, Kamenecka TM. Bioorg Med Chem Lett 23 532-536 (2013)
  58. Sp1 elements in SULT2B1b promoter and 5'-untranslated region of mRNA: Sp1/Sp2 induction and augmentation by histone deacetylase inhibition. Lee YC, Higashi Y, Luu C, Shimizu C, Strott CA. FEBS Lett 579 3639-3645 (2005)
  59. The conserved molting/circadian rhythm regulator NHR-23/NR1F1 serves as an essential co-regulator of C. elegans spermatogenesis. Ragle JM, Aita AL, Morrison KN, Martinez-Mendez R, Saeger HN, Ashley GA, Johnson LC, Schubert KA, Shakes DC, Ward JD. Development 147 dev193862 (2020)
  60. RORα suppresses proliferation of vascular smooth muscle cells through activation of AMP-activated protein kinase. Kim EJ, Choi YK, Han YH, Kim HJ, Lee IK, Lee MO. Int J Cardiol 175 515-521 (2014)
  61. Restoration of the molecular clock is tumor suppressive in neuroblastoma. Moreno-Smith M, Milazzo G, Tao L, Fekry B, Zhu B, Mohammad MA, Di Giacomo S, Borkar R, Reddy KRK, Capasso M, Vasudevan SA, Sumazin P, Hicks J, Putluri N, Perini G, Eckel-Mahan K, Burris TP, Barbieri E. Nat Commun 12 4006 (2021)
  62. The nuclear receptor RORα protects against angiotensin II-induced cardiac hypertrophy and heart failure. Beak JY, Kang HS, Huang W, Myers PH, Bowles DE, Jetten AM, Jensen BC. Am J Physiol Heart Circ Physiol 316 H186-H200 (2019)
  63. Intracellular localization of RORalpha is isoform and cell line-dependent. Aschrafi A, Meindl N, Firla B, Brandes RP, Steinhilber D. Biochim Biophys Acta 1763 805-814 (2006)
  64. Overexpression, refolding, and purification of polyhistidine-tagged human retinoic acid related orphan receptor RORalpha4. Lechtken A, Zündorf I, Dingermann T, Firla B, Steinhilber D. Protein Expr Purif 49 114-120 (2006)
  65. Retinoic Acid Receptor-Related Receptor Alpha Ameliorates Autoimmune Arthritis via Inhibiting of Th17 Cells and Osteoclastogenesis. Park JS, Moon SJ, Lim MA, Byun JK, Hwang SH, Yang S, Kim EK, Lee H, Kim SM, Lee J, Kwok SK, Min JK, Lee MO, Shin DY, Park SH, Cho ML. Front Immunol 10 2270 (2019)
  66. The identification of naturally occurring neoruscogenin as a bioavailable, potent, and high-affinity agonist of the nuclear receptor RORα (NR1F1). Helleboid S, Haug C, Lamottke K, Zhou Y, Wei J, Daix S, Cambula L, Rigou G, Hum DW, Walczak R. J Biomol Screen 19 399-406 (2014)
  67. Cholesterol and its anionic derivatives inhibit 5-lipoxygenase activation in polymorphonuclear leukocytes and MonoMac6 cells. Aleksandrov DA, Zagryagskaya AN, Pushkareva MA, Bachschmid M, Peters-Golden M, Werz O, Steinhilber D, Sud'ina GF. FEBS J 273 548-557 (2006)
  68. Research Support, Non-U.S. Gov't The importance of chronobiology to drug discovery. Farrow SN, Solari R, Willson TM. Expert Opin Drug Discov 7 535-541 (2012)
  69. Cerebellar purkinje cell loss in heterozygous rora+/- mice: a longitudinal study. Doulazmi M, Capone F, Frederic F, Bakouche J, Lemaigre-Dubreuil Y, Mariani J. J Neurogenet 20 1-17 (2006)
  70. Inhibitory effects of cholesterol sulfate on progesterone production in human granulosa-like tumor cell line, KGN. Tsutsumi R, Hiroi H, Momoeda M, Hosokawa Y, Nakazawa F, Koizumi M, Yano T, Tsutsumi O, Taketani Y. Endocr J 55 575-581 (2008)
  71. Role for Retinoic Acid-Related Orphan Receptor Alpha (RORα) Expressing Macrophages in Diet-Induced Obesity. Hams E, Roberts J, Bermingham R, Hogan AE, O'Shea D, O'Neill L, Fallon PG. Front Immunol 11 1966 (2020)
  72. Metabolic activation of tachysterol3 to biologically active hydroxyderivatives that act on VDR, AhR, LXRs, and PPARγ receptors. Slominski AT, Kim TK, Slominski RM, Song Y, Janjetovic Z, Podgorska E, Reddy SB, Song Y, Raman C, Tang EKY, Fabisiak A, Brzeminski P, Sicinski RR, Atigadda V, Jetten AM, Holick MF, Tuckey RC. FASEB J 36 e22451 (2022)
  73. Positive ion pair cooperativity exhibited for the binding of phosphate under physiological conditions. Gunning PT. Org Biomol Chem 3 3877-3879 (2005)
  74. N-methylthioureas as new agonists of retinoic acid receptor-related orphan receptor. Park Y, Hong S, Lee M, Jung H, Cho WJ, Kim EJ, Son HY, Lee MO, Park HG. Arch Pharm Res 35 1393-1401 (2012)
  75. Early postnatal Purkinje cells from staggerer mice undergo aberrant development in vitro with characteristic morphologic and gene expression abnormalities. Shirley LT, Messer A. Brain Res Dev Brain Res 152 153-157 (2004)
  76. Identification of potential target genes of ROR-alpha in THP1 and HUVEC cell lines. Gulec C, Coban N, Ozsait-Selcuk B, Sirma-Ekmekci S, Yildirim O, Erginel-Unaltuna N. Exp Cell Res 353 6-15 (2017)
  77. New method for recognition of sterol signalling molecules: methinium salts as receptors for sulphated steroids. Kejík Z, Bříza T, Králová J, Mikula I, Poučková P, Martásek P, Král V. Steroids 94 15-20 (2015)
  78. The role of RORα in salivary gland lesions in patients with primary Sjögren's syndrome. Weng X, Liu Y, Cui S, Cheng B. Arthritis Res Ther 20 205 (2018)
  79. Gender-specific associations between polymorphisms of the circadian gene RORA and cutaneous melanoma susceptibility. Benna C, Rajendran S, Spiro G, Menin C, Dall'Olmo L, Rossi CR, Mocellin S. J Transl Med 19 57 (2021)
  80. Identification of New Nonsteroidal RORα Ligands; Related Structure-Activity Relationships and Docking Studies. Dubernet M, Duguet N, Colliandre L, Berini C, Helleboid S, Bourotte M, Daillet M, Maingot L, Daix S, Delhomel JF, Morin-Allory L, Routier S, Walczak R. ACS Med Chem Lett 4 504-508 (2013)
  81. A fourth subtype of retinoic acid receptor-related orphan receptors is activated by oxidized all-trans retinoic acid in medaka (Oryzias latipes). Sakai K, Fukushima H, Yamamoto Y, Ikeuchi T. Zoological Lett 3 11 (2017)
  82. Effects of heparin and cholesterol sulfate on the activity and stability of human matrix metalloproteinase 7. Samukange V, Yasukawa K, Inouye K. Biosci Biotechnol Biochem 78 41-48 (2014)
  83. 1,5-Disubstituted Acylated 2-Amino-4,5-dihydroimidazoles as a New Class of Retinoic Acid Receptor-Related Orphan Receptor (ROR) Inhibitors. Ortiz MA, Piedrafita FJ, Nefzi A. Int J Mol Sci 23 4433 (2022)
  84. research-article Alleviation of imiquimod-induced psoriasis-like symptoms in Rorα-deficient mouse skin. Park KC, Kim J, Lee A, Lim JS, Kim KI. BMB Rep 56 296-301 (2023)
  85. Cholesterol Sulfate Exerts Protective Effect on Pancreatic β-Cells by Regulating β-Cell Mass and Insulin Secretion. Zhang X, Deng D, Cui D, Liu Y, He S, Zhang H, Xie Y, Yu X, Yang S, Chen Y, Su Z. Front Pharmacol 13 840406 (2022)
  86. Genetic deficiency and pharmacological modulation of RORα regulate laser-induced choroidal neovascularization. Liu CH, Yemanyi F, Bora K, Kushwah N, Blomfield AK, Kamenecka TM, SanGiovanni JP, Sun Y, Solt LA, Chen J. Aging (Albany NY) 15 37-52 (2023)
  87. Structural overview and perspectives of the nuclear receptors, a major family as the direct targets for small-molecule drugs. Li F, Song C, Zhang Y, Wu D. Acta Biochim Biophys Sin (Shanghai) 54 12-24 (2022)
  88. Cholesterol Unbound RORγt Protein Enables a Sensitive Inverse Agonist Screening. Koyama R, Fukuda Y, Kamada Y, Nakagawa H, Witmer D, Ambrus-Aikelin G, Sang BC, Nakayama M, Iwata H. Assay Drug Dev Technol 16 194-204 (2018)
  89. Development of an HTS-compatible assay for discovery of RORα modulators using AlphaScreen® technology. Istrate MA, Spicer TP, Wang Y, Bernard JA, Helvering LM, Bocchinfuso WP, Richardson TI, Zink R, Kumar N, Montrose-Rafizadeh C, Dodge J, Hodder P, Griffin PR. J Biomol Screen 16 183-191 (2011)
  90. Melatonin and Its Metabolites Can Serve as Agonists on the Aryl Hydrocarbon Receptor and Peroxisome Proliferator-Activated Receptor Gamma. Slominski AT, Kim TK, Slominski RM, Song Y, Qayyum S, Placha W, Janjetovic Z, Kleszczyński K, Atigadda V, Song Y, Raman C, Elferink CJ, Hobrath JV, Jetten AM, Reiter RJ. Int J Mol Sci 24 15496 (2023)
  91. PI(4,5)P2 and Cholesterol: Synthesis, Regulation, and Functions. Rosenhouse-Dantsker A, Gazgalis D, Logothetis DE. Adv Exp Med Biol 1422 3-59 (2023)


Related citations provided by authors (1)

  1. X-ray structure of the hRORalpha LBD at 1.63A: Structural and functional data that cholesterol or a cholesterol derivative is the natural ligand of RORalpha. Kallen J, Schlaeppi J-M, Bitsch F, Geisse S, Geiser M, Delhon I, Fournier B Structure 10 1697-1707 (2002)