spacer
spacer

PDBsum entry 1fro

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Lactoylglutathione lyase PDB id
1fro

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
176 a.a. *
Ligands
GSB ×4
Metals
_ZN ×4
Waters ×360
* Residue conservation analysis
PDB id:
1fro
Name: Lactoylglutathione lyase
Title: Human glyoxalase i with benzyl-glutathione inhibitor
Structure: Lactoylglutathione lyase. Chain: a, b, c, d. Synonym: glyoxalase i. Engineered: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Dimer (from PDB file)
Resolution:
2.20Å     R-factor:   0.211     R-free:   0.234
Authors: A.D.Cameron,T.A.Jones
Key ref:
A.D.Cameron et al. (1997). Crystal structure of human glyoxalase I--evidence for gene duplication and 3D domain swapping. Embo J, 16, 3386-3395. PubMed id: 9218781 DOI: 10.1093/emboj/16.12.3386
Date:
25-Feb-97     Release date:   16-Jun-97    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
Q04760  (LGUL_HUMAN) -  Lactoylglutathione lyase from Homo sapiens
Seq:
Struc:
184 a.a.
176 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.4.4.1.5  - lactoylglutathione lyase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: (R)-S-lactoylglutathione = methylglyoxal + glutathione
(R)-S-lactoylglutathione
Bound ligand (Het Group name = GSB)
matches with 79.31% similarity
= methylglyoxal
+ glutathione
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1093/emboj/16.12.3386 Embo J 16:3386-3395 (1997)
PubMed id: 9218781  
 
 
Crystal structure of human glyoxalase I--evidence for gene duplication and 3D domain swapping.
A.D.Cameron, B.Olin, M.Ridderström, B.Mannervik, T.A.Jones.
 
  ABSTRACT  
 
The zinc metalloenzyme glyoxalase I catalyses the glutathione-dependent inactivation of toxic methylglyoxal. The structure of the dimeric human enzyme in complex with S-benzyl-glutathione has been determined by multiple isomorphous replacement (MIR) and refined at 2.2 A resolution. Each monomer consists of two domains. Despite only low sequence homology between them, these domains are structurally equivalent and appear to have arisen by a gene duplication. On the other hand, there is no structural homology to the 'glutathione binding domain' found in other glutathione-linked proteins. 3D domain swapping of the N- and C-terminal domains has resulted in the active site being situated in the dimer interface, with the inhibitor and essential zinc ion interacting with side chains from both subunits. Two structurally equivalent residues from each domain contribute to a square pyramidal coordination of the zinc ion, rarely seen in zinc enzymes. Comparison of glyoxalase I with other known structures shows the enzyme to belong to a new structural family which includes the Fe2+-dependent dihydroxybiphenyl dioxygenase and the bleomycin resistance protein. This structural family appears to allow members to form with or without domain swapping.
 
  Selected figure(s)  
 
Figure 1.
Figure 1 Schematic representation of glyoxalase I. (A) Monomer; (B) dimer. The dimer has been colour ramped according to residue number, starting with red at the N-terminus of one molecule, passing through yellow at the C-terminus of that molecule and finishing with blue at the C-terminus of the other monomer. The zinc and its coordinating residues are shown in a ball and stick representation with the zinc coloured green. The active site is situated in a barrel which is formed only on dimerization. Residue 114 is situated at the end of the red/yellow domain and residue 123 at the beginning of the blue/green domain (see the text). Prepared using MOLSCRIPT (Kraulis, 1991) modified by R.Esnouf (Oxford University, unpublished). (C) A similar view of the dihydroxybiphenyl dioxygenase (DHBD) enzyme (Han et al., 1995) after superposition on the human glyoxalase I enzyme. Again the molecule has been colour ramped according to residue number, starting with red at the N-terminus and finishing with blue at the C-terminus. Despite having only 14% sequence identity (using the structures to align the sequences), 79 C pairs from the C-terminal domains of this enzyme (blue and green) can be aligned on glyoxalase I with an r.m.s.d. of 2 Å. The colouring scheme clearly shows that the suggested domain swapping in glyoxalase I is not present in DHBD. The ferrous iron seen in DHBD is situated in a similar position to one of the zincs in glyoxalase I. The residues coordinating the iron are structurally equivalent to those binding the zinc.
Figure 5.
Figure 5 Proposed reaction mechanism for glyoxalase I. A shielded base (B) is proposed to abstract the proton from the C1 atom of the hemithioacetal of glutathione and a 2-oxoaldehyde and then reprotonate at C2.
 
  The above figures are reprinted from an Open Access publication published by Macmillan Publishers Ltd: Embo J (1997, 16, 3386-3395) copyright 1997.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21310259 M.Urscher, R.Alisch, and M.Deponte (2011).
The glyoxalase system of malaria parasites-Implications for cell biology and general glyoxalase research.
  Semin Cell Dev Biol, 22, 262-270.  
21320620 M.Xue, N.Rabbani, and P.J.Thornalley (2011).
Glyoxalase in ageing.
  Semin Cell Dev Biol, 22, 293-301.  
21310258 U.Suttisansanee, and J.F.Honek (2011).
Bacterial glyoxalase enzymes.
  Semin Cell Dev Biol, 22, 285-292.  
20976204 C.H.Chu, W.C.Lo, H.W.Wang, Y.C.Hsu, J.K.Hwang, P.C.Lyu, T.W.Pai, and C.Y.Tang (2010).
Detection and alignment of 3D domain swapping proteins using angle-distance image-based secondary structural matching techniques.
  PLoS One, 5, e13361.  
  21212464 C.Q.Scheckhuber, S.J.Mack, I.Strobel, F.Ricciardi, S.Gispert, and H.D.Osiewacz (2010).
Modulation of the glyoxalase system in the aging model Podospora anserina: effects on growth and lifespan.
  Aging (Albany NY), 2, 969-980.  
19513813 F.Lin, J.Xu, J.Shi, H.Li, and B.Li (2010).
Molecular cloning and characterization of a novel glyoxalase I gene TaGly I in wheat (Triticum aestivum L.).
  Mol Biol Rep, 37, 729-735.  
20454679 G.Birkenmeier, C.Stegemann, R.Hoffmann, R.Günther, K.Huse, and C.Birkemeyer (2010).
Posttranslational modification of human glyoxalase 1 indicates redox-dependent regulation.
  PLoS One, 5, e10399.  
  20634983 K.Shameer, G.Pugalenthi, K.K.Kandaswamy, P.N.Suganthan, G.Archunan, and R.Sowdhamini (2010).
Insights into Protein Sequence and Structure-Derived Features Mediating 3D Domain Swapping Mechanism using Support Vector Machine Based Approach.
  Bioinform Biol Insights, 4, 33-42.  
20822442 M.Morar, and G.D.Wright (2010).
The genomic enzymology of antibiotic resistance.
  Annu Rev Genet, 44, 25-51.  
19477421 H.Xu, Y.Zhang, J.Yang, T.Mahmud, L.Bai, and Z.Deng (2009).
Alternative epimerization in C(7)N-aminocyclitol biosynthesis is catalyzed by ValD, a large protein of the vicinal oxygen chelate superfamily.
  Chem Biol, 16, 567-576.  
19731367 L.Shi, P.Gao, X.X.Yan, and D.C.Liang (2009).
Crystal structure of a putative methylmalonyl-coenzyme a epimerase from Thermoanaerobacter tengcongensis at 2.0 A resolution.
  Proteins, 77, 994-999.
PDB code: 3gm5
18782082 P.Limphong, M.W.Crowder, B.Bennett, and C.A.Makaroff (2009).
Arabidopsis thaliana GLX2-1 contains a dinuclear metal binding site, but is not a glyoxalase 2.
  Biochem J, 417, 323-330.  
19199007 V.de Hemptinne, D.Rondas, M.Toepoel, and K.Vancompernolle (2009).
Phosphorylation on Thr-106 and NO-modification of glyoxalase I suppress the TNF-induced transcriptional activity of NF-kappaB.
  Mol Cell Biochem, 325, 169-178.  
19528316 W.Zhang, L.Wang, Y.Liu, J.Xu, G.Zhu, H.Cang, X.Li, M.Bartlam, K.Hensley, G.Li, Z.Rao, and X.C.Zhang (2009).
Structure of human lanthionine synthetase C-like protein 1 and its interaction with Eps8 and glutathione.
  Genes Dev, 23, 1387-1392.
PDB codes: 3e6u 3e73
19101977 X.Wu, P.M.Flatt, H.Xu, and T.Mahmud (2009).
Biosynthetic Gene Cluster of Cetoniacytone A, an Unusual Aminocyclitol from the Endosymbiotic Bacterium Actinomyces sp. Lu 9419.
  Chembiochem, 10, 304-314.  
18791196 I.Mulako, J.M.Farrant, H.Collett, and N.Illing (2008).
Expression of Xhdsi-1VOC, a novel member of the vicinal oxygen chelate (VOC) metalloenzyme superfamily, is up-regulated in leaves and roots during desiccation in the resurrection plant Xerophyta humilis (Bak) Dur and Schinz.
  J Exp Bot, 59, 3885-3901.  
18695250 M.Kawatani, H.Okumura, K.Honda, N.Kanoh, M.Muroi, N.Dohmae, M.Takami, M.Kitagawa, Y.Futamura, M.Imoto, and H.Osada (2008).
The identification of an osteoclastogenesis inhibitor through the inhibition of glyoxalase I.
  Proc Natl Acad Sci U S A, 105, 11691-11696.
PDB code: 2za0
17664277 M.Deponte, N.Sturm, S.Mittler, M.Harner, H.Mack, and K.Becker (2007).
Allosteric coupling of two different functional active sites in monomeric Plasmodium falciparum glyoxalase I.
  J Biol Chem, 282, 28419-28430.  
16430697 A.Ariza, T.J.Vickers, N.Greig, K.A.Armour, M.J.Dixon, I.M.Eggleston, A.H.Fairlamb, and C.S.Bond (2006).
Specificity of the trypanothione-dependent Leishmania major glyoxalase I: structure and biochemical comparison with the human enzyme.
  Mol Microbiol, 59, 1239-1248.
PDB code: 2c21
16493657 B.Nocek, M.Cuff, E.Evdokimova, A.Edwards, A.Joachimiak, and A.Savchenko (2006).
1.6 A crystal structure of a PA2721 protein from pseudomonas aeruginosa--a potential drug-resistance protein.
  Proteins, 63, 1102-1105.
PDB code: 1u69
  16511153 A.Ariza, T.J.Vickers, N.Greig, A.H.Fairlamb, and C.S.Bond (2005).
Crystallization and preliminary X-ray analysis of Leishmania major glyoxalase I.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 61, 769-772.  
15386471 M.A.Junaid, D.Kowal, M.Barua, P.S.Pullarkat, S.Sklower Brooks, and R.K.Pullarkat (2004).
Proteomic studies identified a single nucleotide polymorphism in glyoxalase I as autism susceptibility factor.
  Am J Med Genet A, 131, 11-17.  
15028678 M.W.Vetting, L.P.Wackett, L.Que, J.D.Lipscomb, and D.H.Ohlendorf (2004).
Crystallographic comparison of manganese- and iron-dependent homoprotocatechuate 2,3-dioxygenases.
  J Bacteriol, 186, 1945-1958.
PDB codes: 1f1r 1f1u 1f1v 1f1x 1q0c 1q0o
14976196 T.Irsch, and R.L.Krauth-Siegel (2004).
Glyoxalase II of African trypanosomes is trypanothione-dependent.
  J Biol Chem, 279, 22209-22217.  
12121648 T.W.Martin, Z.Dauter, Y.Devedjiev, P.Sheffield, F.Jelen, M.He, D.H.Sherman, J.Otlewski, Z.S.Derewenda, and U.Derewenda (2002).
Molecular basis of mitomycin C resistance in streptomyces: structure and function of the MRD protein.
  Structure, 10, 933-942.
PDB codes: 1kll 1kmz
12021428 Y.Liu, and D.Eisenberg (2002).
3D domain swapping: as domains continue to swap.
  Protein Sci, 11, 1285-1299.  
11470438 A.A.McCarthy, H.M.Baker, S.C.Shewry, M.L.Patchett, and E.N.Baker (2001).
Crystal structure of methylmalonyl-coenzyme A epimerase from P. shermanii: a novel enzymatic function on an ancient metal binding scaffold.
  Structure, 9, 637-646.
PDB codes: 1jc4 1jc5
11344301 F.Rousseau, J.W.Schymkowitz, H.R.Wilkinson, and L.S.Itzhaki (2001).
Three-dimensional domain swapping in p13suc1 occurs in the unfolded state and is controlled by conserved proline residues.
  Proc Natl Acad Sci U S A, 98, 5596-5601.  
11294624 G.Davidson, S.L.Clugston, J.F.Honek, and M.J.Maroney (2001).
An XAS investigation of product and inhibitor complexes of Ni-containing GlxI from Escherichia coli: mechanistic implications.
  Biochemistry, 40, 4569-4582.  
11395407 J.A.Gerlt, and P.C.Babbitt (2001).
Divergent evolution of enzymatic function: mechanistically diverse superfamilies and functionally distinct suprafamilies.
  Annu Rev Biochem, 70, 209-246.  
11382366 I.S.Mian, and I.Dubchak (2000).
Representing and reasoning about protein families using generative and discriminative methods.
  J Comput Biol, 7, 849-862.  
11015195 K.V.Ramana, B.L.Dixit, S.Srivastava, G.K.Balendiran, S.K.Srivastava, and A.Bhatnagar (2000).
Selective recognition of glutathiolated aldehydes by aldose reductase.
  Biochemistry, 39, 12172-12180.  
10913283 M.M.He, S.L.Clugston, J.F.Honek, and B.W.Matthews (2000).
Determination of the structure of Escherichia coli glyoxalase I suggests a structural basis for differential metal activation.
  Biochemistry, 39, 8719-8727.
PDB codes: 1f9z 1fa5 1fa6 1fa7 1fa8
11076500 R.N.Armstrong (2000).
Mechanistic diversity in a metalloenzyme superfamily.
  Biochemistry, 39, 13625-13632.  
10508780 A.D.Cameron, M.Ridderström, B.Olin, and B.Mannervik (1999).
Crystal structure of human glyoxalase II and its complex with a glutathione thiolester substrate analogue.
  Structure, 7, 1067-1078.
PDB codes: 1qh3 1qh5
10360943 B.A.Bernat, L.T.Laughlin, and R.N.Armstrong (1999).
Elucidation of a monovalent cation dependence and characterization of the divalent cation binding site of the fosfomycin resistance protein (FosA).
  Biochemistry, 38, 7462-7469.  
10467142 L.Serre, A.Sailland, D.Sy, P.Boudec, A.Rolland, E.Pebay-Peyroula, and C.Cohen-Addad (1999).
Crystal structure of Pseudomonas fluorescens 4-hydroxyphenylpyruvate dioxygenase: an enzyme involved in the tyrosine degradation pathway.
  Structure, 7, 977-988.
PDB code: 1cjx
10226043 M.J.Maroney (1999).
Structure/function relationships in nickel metallobiochemistry.
  Curr Opin Chem Biol, 3, 188-199.  
10205896 Veena, V.S.Reddy, and S.K.Sopory (1999).
Glyoxalase I from Brassica juncea: molecular cloning, regulation and its over-expression confer tolerance in transgenic tobacco under stress.
  Plant J, 17, 385-395.  
9671502 A.P.Saint-Jean, K.R.Phillips, D.J.Creighton, and M.J.Stone (1998).
Active monomeric and dimeric forms of Pseudomonas putida glyoxalase I: evidence for 3D domain swapping.
  Biochemistry, 37, 10345-10353.  
9818186 J.A.Gerlt, and P.C.Babbitt (1998).
Mechanistically diverse enzyme superfamilies: the importance of chemistry in the evolution of catalysis.
  Curr Opin Chem Biol, 2, 607-612.  
  9697098 J.M.Dunwell (1998).
Sequence analysis of the cupin gene family in Synechocystis PCC6803.
  Microb Comp Genomics, 3, 141-148.  
9666334 L.Holm (1998).
Unification of protein families.
  Curr Opin Struct Biol, 8, 372-379.  
  10082363 M.Bergdoll, L.D.Eltis, A.D.Cameron, P.Dumas, and J.T.Bolin (1998).
All in the family: structural and evolutionary relationships among three modular proteins with diverse functions and variable assembly.
  Protein Sci, 7, 1661-1670.  
9705294 M.Ridderström, A.D.Cameron, T.A.Jones, and B.Mannervik (1998).
Involvement of an active-site Zn2+ ligand in the catalytic mechanism of human glyoxalase I.
  J Biol Chem, 273, 21623-21628.
PDB code: 1bh5
9818188 R.N.Armstrong (1998).
Mechanistic imperatives for the evolution of glutathione transferases.
  Curr Opin Chem Biol, 2, 618-623.  
9501915 S.A.Weston, R.Camble, J.Colls, G.Rosenbrock, I.Taylor, M.Egerton, A.D.Tucker, A.Tunnicliffe, A.Mistry, F.Mancia, E.de la Fortelle, J.Irwin, G.Bricogne, and R.A.Pauptit (1998).
Crystal structure of the anti-fungal target N-myristoyl transferase.
  Nat Struct Biol, 5, 213-221.
PDB code: 1nmt
9628737 S.L.Clugston, J.F.Barnard, R.Kinach, D.Miedema, R.Ruman, E.Daub, and J.F.Honek (1998).
Overproduction and characterization of a dimeric non-zinc glyoxalase I from Escherichia coli: evidence for optimal activation by nickel ions.
  Biochemistry, 37, 8754-8763.  
9810225 S.Melino, C.Capo, B.Dragani, A.Aceto, and R.Petruzzelli (1998).
A zinc-binding motif conserved in glyoxalase II, beta-lactamase and arylsulfatases.
  Trends Biochem Sci, 23, 381-382.  
9388188 P.C.Babbitt, and J.A.Gerlt (1997).
Understanding enzyme superfamilies. Chemistry As the fundamental determinant in the evolution of new catalytic activities.
  J Biol Chem, 272, 30591-30594.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer