spacer
spacer

PDBsum entry 1q0c

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Oxidoreductase PDB id
1q0c

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
319 a.a. *
Ligands
DHY ×4
Metals
_FE ×4
Waters ×373
* Residue conservation analysis
PDB id:
1q0c
Name: Oxidoreductase
Title: Anerobic substrate complex of homoprotocatechuate 2,3-dioxygenase from brevibacterium fuscum. (Complex with 3,4-dihydroxyphenylacetate)
Structure: Homoprotocatechuate 2,3-dioxygenase. Chain: a, b, c, d. Synonym: 3,4-dihydroxyphenylacetate 2,3-dioxygenase. Engineered: yes
Source: Brevibacterium fuscum. Organism_taxid: 47914. Expressed in: escherichia coli. Expression_system_taxid: 562
Biol. unit: Tetramer (from PQS)
Resolution:
2.10Å     R-factor:   0.170     R-free:   0.234
Authors: M.W.Vetting,L.P.Wackett,L.Que,J.D.Lipscomb,D.H.Ohlendorf
Key ref: M.W.Vetting et al. (2004). Crystallographic comparison of manganese- and iron-dependent homoprotocatechuate 2,3-dioxygenases. J Bacteriol, 186, 1945-1958. PubMed id: 15028678
Date:
15-Jul-03     Release date:   29-Jul-03    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
Q45135  (Q45135_9MICO) -  Homoprotocatechuate 2,3-dioxygenase from Brevibacterium fuscum
Seq:
Struc:
365 a.a.
319 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.1.13.11.15  - 3,4-dihydroxyphenylacetate 2,3-dioxygenase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: 3,4-dihydroxyphenylacetate + O2 = 2-hydroxy-5-carboxymethylmuconate semialdehyde + H+
3,4-dihydroxyphenylacetate
Bound ligand (Het Group name = DHY)
corresponds exactly
+ O2
= 2-hydroxy-5-carboxymethylmuconate semialdehyde
+ H(+)
      Cofactor: Fe cation
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
J Bacteriol 186:1945-1958 (2004)
PubMed id: 15028678  
 
 
Crystallographic comparison of manganese- and iron-dependent homoprotocatechuate 2,3-dioxygenases.
M.W.Vetting, L.P.Wackett, L.Que, J.D.Lipscomb, D.H.Ohlendorf.
 
  ABSTRACT  
 
The X-ray crystal structures of homoprotocatechuate 2,3-dioxygenases isolated from Arthrobacter globiformis and Brevibacterium fuscum have been determined to high resolution. These enzymes exhibit 83% sequence identity, yet their activities depend on different transition metals, Mn2+ and Fe2+, respectively. The structures allow the origins of metal ion selectivity and aspects of the molecular mechanism to be examined in detail. The homotetrameric enzymes belong to the type I family of extradiol dioxygenases (vicinal oxygen chelate superfamily); each monomer has four betaalphabetabetabeta modules forming two structurally homologous N-terminal and C-terminal barrel-shaped domains. The active-site metal is located in the C-terminal barrel and is ligated by two equatorial ligands, H214NE1 and E267OE1; one axial ligand, H155NE1; and two to three water molecules. The first and second coordination spheres of these enzymes are virtually identical (root mean square difference over all atoms, 0.19 A), suggesting that the metal selectivity must be due to changes at a significant distance from the metal and/or changes that occur during folding. The substrate (2,3-dihydroxyphenylacetate [HPCA]) chelates the metal asymmetrically at sites trans to the two imidazole ligands and interacts with a unique, mobile C-terminal loop. The loop closes over the bound substrate, presumably to seal the active site as the oxygen activation process commences. An "open" coordination site trans to E267 is the likely binding site for O2. The geometry of the enzyme-substrate complexes suggests that if a transiently formed metal-superoxide complex attacks the substrate without dissociation from the metal, it must do so at the C-3 position. Second-sphere active-site residues that are positioned to interact with the HPCA and/or bound O2 during catalysis are identified and discussed in the context of current mechanistic hypotheses.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
21153851 A.J.Fielding, E.G.Kovaleva, E.R.Farquhar, J.D.Lipscomb, and L.Que (2011).
A hyperactive cobalt-substituted extradiol-cleaving catechol dioxygenase.
  J Biol Inorg Chem, 16, 341-355.
PDB codes: 3ojj 3ojk 3ojn 3ojt
21279661 E.R.Farquhar, J.P.Emerson, K.D.Koehntop, M.F.Reynolds, M.Trmčić, and L.Que (2011).
In vivo self-hydroxylation of an iron-substituted manganese-dependent extradiol cleaving catechol dioxygenase.
  J Biol Inorg Chem, 16, 589-597.  
20059399 L.M.Blank, B.E.Ebert, K.Buehler, and B.Bühler (2010).
Redox biocatalysis and metabolism: molecular mechanisms and metabolic network analysis.
  Antioxid Redox Signal, 13, 349-394.  
20837547 M.M.Mbughuni, M.Chakrabarti, J.A.Hayden, E.L.Bominaar, M.P.Hendrich, E.Münck, and J.D.Lipscomb (2010).
Trapping and spectroscopic characterization of an FeIII-superoxo intermediate from a nonheme mononuclear iron-containing enzyme.
  Proc Natl Acad Sci U S A, 107, 16788-16793.  
19566698 H.Suenaga, S.Mizuta, and K.Miyazaki (2009).
The molecular basis for adaptive evolution in novel extradiol dioxygenases retrieved from the metagenome.
  FEMS Microbiol Ecol, 69, 472-480.  
19828456 J.H.Cho, D.K.Jung, K.Lee, and S.Rhee (2009).
Crystal structure and functional analysis of the extradiol dioxygenase LapB from a long-chain alkylphenol degradation pathway in Pseudomonas.
  J Biol Chem, 284, 34321-34330.
PDB codes: 3hpv 3hpy 3hq0
19360824 M.Wagner, C.Limberg, and T.Tietz (2009).
A novel tripodal ligand containing three different N-heterocyclic donor functions and its application in catechol dioxygenase mimicking.
  Chemistry, 15, 5567-5576.  
19754880 S.Leitgeb, G.D.Straganz, and B.Nidetzky (2009).
Functional characterization of an orphan cupin protein from Burkholderia xenovorans reveals a mononuclear nonheme Fe2+-dependent oxygenase that cleaves beta-diketones.
  FEBS J, 276, 5983-5997.  
19101977 X.Wu, P.M.Flatt, H.Xu, and T.Mahmud (2009).
Biosynthetic Gene Cluster of Cetoniacytone A, an Unusual Aminocyclitol from the Endosymbiotic Bacterium Actinomyces sp. Lu 9419.
  Chembiochem, 10, 304-314.  
18508968 A.F.Miller (2008).
The shortest wire.
  Proc Natl Acad Sci U S A, 105, 7341-7342.  
18826259 E.G.Kovaleva, and J.D.Lipscomb (2008).
Intermediate in the O-O bond cleavage reaction of an extradiol dioxygenase.
  Biochemistry, 47, 11168-11170.
PDB codes: 3ecj 3eck
18791196 I.Mulako, J.M.Farrant, H.Collett, and N.Illing (2008).
Expression of Xhdsi-1VOC, a novel member of the vicinal oxygen chelate (VOC) metalloenzyme superfamily, is up-regulated in leaves and roots during desiccation in the resurrection plant Xerophyta humilis (Bak) Dur and Schinz.
  J Exp Bot, 59, 3885-3901.  
19007887 J.D.Lipscomb (2008).
Mechanism of extradiol aromatic ring-cleaving dioxygenases.
  Curr Opin Struct Biol, 18, 644-649.  
18492808 J.P.Emerson, E.G.Kovaleva, E.R.Farquhar, J.D.Lipscomb, and L.Que (2008).
Swapping metals in Fe- and Mn-dependent dioxygenases: evidence for oxygen activation without a change in metal redox state.
  Proc Natl Acad Sci U S A, 105, 7347-7352.
PDB code: 3bza
18502868 M.J.Moonen, N.M.Kamerbeek, A.H.Westphal, S.A.Boeren, D.B.Janssen, M.W.Fraaije, and W.J.van Berkel (2008).
Elucidation of the 4-hydroxyacetophenone catabolic pathway in Pseudomonas fluorescens ACB.
  J Bacteriol, 190, 5190-5198.  
18502867 M.J.Moonen, S.A.Synowsky, W.A.van den Berg, A.H.Westphal, A.J.Heck, R.H.van den Heuvel, M.W.Fraaije, and W.J.van Berkel (2008).
Hydroquinone dioxygenase from pseudomonas fluorescens ACB: a novel member of the family of nonheme-iron(II)-dependent dioxygenases.
  J Bacteriol, 190, 5199-5209.  
18458966 V.Georgiev, T.Borowski, M.R.Blomberg, and P.E.Siegbahn (2008).
A comparison of the reaction mechanisms of iron- and manganese-containing 2,3-HPCD: an important spin transition for manganese.
  J Biol Inorg Chem, 13, 929-940.  
18839948 W.A.Gunderson, A.I.Zatsman, J.P.Emerson, E.R.Farquhar, L.Que, J.D.Lipscomb, and M.P.Hendrich (2008).
Electron paramagnetic resonance detection of intermediates in the enzymatic cycle of an extradiol dioxygenase.
  J Am Chem Soc, 130, 14465-14467.  
17446402 E.G.Kovaleva, and J.D.Lipscomb (2007).
Crystal structures of Fe2+ dioxygenase superoxo, alkylperoxo, and bound product intermediates.
  Science, 316, 453-457.
PDB codes: 2ig9 2iga
17567087 E.G.Kovaleva, M.B.Neibergall, S.Chakrabarty, and J.D.Lipscomb (2007).
Finding intermediates in the O2 activation pathways of non-heme iron oxygenases.
  Acc Chem Res, 40, 475-483.  
17686025 H.Suenaga, T.Ohnuki, and K.Miyazaki (2007).
Functional screening of a metagenomic library for genes involved in microbial degradation of aromatic compounds.
  Environ Microbiol, 9, 2289-2297.  
17194220 E.F.Mongodin, N.Shapir, S.C.Daugherty, R.T.DeBoy, J.B.Emerson, A.Shvartzbeyn, D.Radune, J.Vamathevan, F.Riggs, V.Grinberg, H.Khouri, L.P.Wackett, K.E.Nelson, and M.J.Sadowsky (2006).
Secrets of soil survival revealed by the genome sequence of Arthrobacter aurescens TC1.
  PLoS Genet, 2, e214.  
16734718 L.Siani, A.Viggiani, E.Notomista, A.Pezzella, and A.Di Donato (2006).
The role of residue Thr249 in modulating the catalytic efficiency and substrate specificity of catechol-2,3-dioxygenase from Pseudomonas stutzeri OX1.
  FEBS J, 273, 2963-2976.  
16507141 S.D.Brown, J.A.Gerlt, J.L.Seffernick, and P.C.Babbitt (2006).
A gold standard set of mechanistically diverse enzyme superfamilies.
  Genome Biol, 7, R8.  
  17012798 T.Adachi, A.Izumi, D.Rea, S.Y.Park, J.R.Tame, and D.I.Roper (2006).
Expression, purification and crystallization of 2-oxo-hept-4-ene-1,7-dioate hydratase (HpcG) from Escherichia coli C.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 62, 1010-1012.  
16791641 V.Georgiev, T.Borowski, and P.E.Siegbahn (2006).
Theoretical study of the catalytic reaction mechanism of MndD.
  J Biol Inorg Chem, 11, 571-585.  
16522801 X.Li, M.Guo, J.Fan, W.Tang, D.Wang, H.Ge, H.Rong, M.Teng, L.Niu, Q.Liu, and Q.Hao (2006).
Crystal structure of 3-hydroxyanthranilic acid 3,4-dioxygenase from Saccharomyces cerevisiae: a special subgroup of the type III extradiol dioxygenases.
  Protein Sci, 15, 761-773.  
16217642 J.P.Emerson, M.L.Wagner, M.F.Reynolds, L.Que, M.J.Sadowsky, and L.P.Wackett (2005).
The role of histidine 200 in MndD, the Mn(II)-dependent 3,4-dihydroxyphenylacetate 2,3-dioxygenase from Arthrobacter globiformis CM-2, a site-directed mutagenesis study.
  J Biol Inorg Chem, 10, 751-760.  
15487948 C.K.Brown, M.W.Vetting, C.A.Earhart, and D.H.Ohlendorf (2004).
Biophysical analyses of designed and selected mutants of protocatechuate 3,4-dioxygenase1.
  Annu Rev Microbiol, 58, 555-585.
PDB codes: 2bum 2buq 2bur 2but 2buv
15583384 K.Iwata, H.Noguchi, Y.Usami, J.W.Nam, Z.Fujimoto, H.Mizuno, H.Habe, H.Yamane, T.Omori, and H.Nojiri (2004).
Crystallization and preliminary crystallographic analysis of the 2'-aminobiphenyl-2,3-diol 1,2-dioxygenase from the carbazole-degrader Pseudomonas resinovorans strain CA10.
  Acta Crystallogr D Biol Crystallogr, 60, 2340-2342.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer