spacer
spacer

PDBsum entry 1fbg

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Hydrolase(phosphoric monoester) PDB id
1fbg

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
313 a.a. *
Ligands
AHM ×2
Metals
_MN ×2
* Residue conservation analysis
PDB id:
1fbg
Name: Hydrolase(phosphoric monoester)
Title: Crystallographic studies of the catalytic mechanism of the neutral form of fructose-1,6-bisphosphatase
Structure: Fructose 1,6-bisphosphatase. Chain: a, b. Engineered: yes
Source: Sus scrofa. Pig. Organism_taxid: 9823
Biol. unit: Tetramer (from PQS)
Resolution:
3.00Å     R-factor:   0.190    
Authors: Y.Zhang,J.-Y.Liang,S.Huang,H.Ke,W.N.Lipscomb
Key ref:
Y.Zhang et al. (1993). Crystallographic studies of the catalytic mechanism of the neutral form of fructose-1,6-bisphosphatase. Biochemistry, 32, 1844-1857. PubMed id: 8382525 DOI: 10.1021/bi00058a019
Date:
16-Oct-92     Release date:   31-Oct-93    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P00636  (F16P1_PIG) -  Fructose-1,6-bisphosphatase 1 from Sus scrofa
Seq:
Struc:
338 a.a.
313 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 3 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: E.C.3.1.3.11  - fructose-bisphosphatase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

      Pathway:
Pentose Phosphate Pathway (later stages)
      Reaction: beta-D-fructose 1,6-bisphosphate + H2O = beta-D-fructose 6-phosphate + phosphate
beta-D-fructose 1,6-bisphosphate
Bound ligand (Het Group name = AHM)
matches with 95.00% similarity
+ H2O
= beta-D-fructose 6-phosphate
+ phosphate
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1021/bi00058a019 Biochemistry 32:1844-1857 (1993)
PubMed id: 8382525  
 
 
Crystallographic studies of the catalytic mechanism of the neutral form of fructose-1,6-bisphosphatase.
Y.Zhang, J.Y.Liang, S.Huang, H.Ke, W.N.Lipscomb.
 
  ABSTRACT  
 
The crystal structures of fructose-1,6-bisphosphatase (EC 3.1.3.11) complexed with substrate alone or with substrate analogues in the presence of divalent metal ions have been determined. The substrate analogues, 2,5-anhydro-D-glucitol-1,6-bisphosphate (AhG-1,6-P2) and 2,5-anhydro-D-mannitol-1,6-bisphosphate (AhM-1,6-P2), differ from the alpha and beta anomers of fructose-1,6-bisphosphate (Fru-1,6-P2), respectively, in that the OH on C2 is replaced by a hydrogen atom. Structures have been refined at resolutions of 2.5 to 3.0 A to R factors of 0.172 to 0.195 with root-mean-square deviations of 0.012-0.018 A and 2.7-3.8 degrees from the ideal geometries of bond lengths and bond angles, respectively. In addition, the complex of substrate with the enzyme has been determined in the absence of metal. The electron density at 2.5-A resolution does not distinguish between alpha and beta anomers, which differ for the most part only in the position of the 1-phosphate group and the orientation of the C2-hydroxyl group. The positions of the 6-phosphate and the sugar ring of the substrate analogues are almost identical to those of the respective anomer of the substrate. In the presence of metal ions the positions of the 1-phosphate groups of both alpha and beta analogues differ significantly (0.8-1.0 A) from those of anomers of the substrate in the metal-free complex. Two metal ions (Mn2+ or Zn2+) are located at the enzyme active site of complexes of the alpha analogue AhG-1,6-P2. Metal site 1 is coordinated by the carboxylate groups of Glu-97, Asp-118, and Glu-280 and the 1-phosphate group of substrate analogue, while the metal site 2 is coordinated by the carboxylate groups of Glu-97, Asp-118, the 1-phosphate group of substrate analogue, and the carbonyl oxygen of Leu-120. Both metal sites have a distorted tetrahedral geometry. However, only one metal ion (Mg2+ or Mn2+) is found very near the metal site 1 in the enzyme's active site in complexes of the beta analogue AhM-1,6-P2 or for Mg2+ in the complex of the alpha analogue AhG-1,6-P2. This single metal ion is coordinated by the carboxylate groups of Glu-97, Asp-118, Asp-121, and Glu-280 and the 1-phosphate group of substrate analogue in a distorted square pyramidal geometry.(ABSTRACT TRUNCATED AT 400 WORDS)
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
20027624 Z.Li, K.A.Stieglitz, A.L.Shrout, Y.Wei, R.M.Weis, B.Stec, and M.F.Roberts (2010).
Mobile loop mutations in an archaeal inositol monophosphatase: modulating three-metal ion assisted catalysis and lithium inhibition.
  Protein Sci, 19, 309-318.  
19101969 A.Burkhardt, E.T.Spielberg, S.Simon, H.Görls, A.Buchholz, and W.Plass (2009).
Hydrogen Bonds as Structural Directive towards Unusual Polynuclear Complexes: Synthesis, Structure, and Magnetic Properties of Copper(II) and Nickel(II) Complexes with a 2-Aminoglucose Ligand.
  Chemistry, 15, 1261-1271.  
17894826 H.C.Ludwig, F.N.Pardo, J.L.Asenjo, M.A.Maureira, A.J.Yañez, and J.C.Slebe (2007).
Unraveling multistate unfolding of pig kidney fructose-1,6-bisphosphatase using single tryptophan mutants.
  FEBS J, 274, 5337-5349.  
15858264 R.Gill, F.Mohammed, R.Badyal, L.Coates, P.Erskine, D.Thompson, J.Cooper, M.Gore, and S.Wood (2005).
High-resolution structure of myo-inositol monophosphatase, the putative target of lithium therapy.
  Acta Crystallogr D Biol Crystallogr, 61, 545-555.
PDB code: 2bji
  15352380 R.Cazalis, A.Chueca, M.Sahrawy, and J.López-Gorgé (2004).
Construction of chimeric cytosolic fructose-1,6-bisphosphatases by insertion of a chloroplastic redox regulatory cluster.
  J Physiol Biochem, 60, 7.  
12595529 J.Y.Choe, S.W.Nelson, H.J.Fromm, and R.B.Honzatko (2003).
Interaction of Tl+ with product complexes of fructose-1,6-bisphosphatase.
  J Biol Chem, 278, 16008-16014.
PDB codes: 1nuz 1nv0 1nv1 1nv2 1nv3 1nv4 1nv5 1nv6 1nv7
12473676 M.Teufel, V.Saudek, J.P.Ledig, A.Bernhardt, S.Boularand, A.Carreau, N.J.Cairns, C.Carter, D.J.Cowley, D.Duverger, A.J.Ganzhorn, C.Guenet, B.Heintzelmann, V.Laucher, C.Sauvage, and T.Smirnova (2003).
Sequence identification and characterization of human carnosinase and a closely related non-specific dipeptidase.
  J Biol Chem, 278, 6521-6531.  
12552132 V.Hannaert, E.Saavedra, F.Duffieux, J.P.Szikora, D.J.Rigden, P.A.Michels, and F.R.Opperdoes (2003).
Plant-like traits associated with metabolism of Trypanosoma parasites.
  Proc Natl Acad Sci U S A, 100, 1067-1071.  
11455598 N.Kelley-Loughnane, and E.R.Kantrowitz (2001).
Binding of AMP to two of the four subunits of pig kidney fructose-1,6-bisphosphatase induces the allosteric transition.
  Proteins, 44, 255-261.  
11451439 N.Kelley-Loughnane, and E.R.Kantrowitz (2001).
AMP inhibition of pig kidney fructose-1,6-bisphosphatase.
  Biochim Biophys Acta, 1548, 66-71.  
11454337 T.Tanase, T.Takei, M.Hidai, and S.Yano (2001).
Substrate-dependent chemoselective aldose-aldose and aldose-ketose isomerizations of carbohydrates promoted by a combination of calcium ion and monoamines.
  Carbohydr Res, 333, 303-312.  
10913263 J.Y.Choe, H.J.Fromm, and R.B.Honzatko (2000).
Crystal structures of fructose 1,6-bisphosphatase: mechanism of catalysis and allosteric inhibition revealed in product complexes.
  Biochemistry, 39, 8565-8574.
PDB codes: 1eyi 1eyj 1eyk
10998248 S.W.Nelson, C.V.Iancu, J.Y.Choe, R.B.Honzatko, and H.J.Fromm (2000).
Tryptophan fluorescence reveals the conformational state of a dynamic loop in recombinant porcine fructose-1,6-bisphosphatase.
  Biochemistry, 39, 11100-11106.
PDB codes: 1fj6 1fj9
10089399 C.M.Weeks, A.W.Roszak, M.Erman, R.Kaiser, H.Jörnvall, and D.Ghosh (1999).
Structure of rabbit liver fructose 1,6-bisphosphatase at 2.3 A resolution.
  Acta Crystallogr D Biol Crystallogr, 55, 93.
PDB code: 1bk4
10581254 M.Chiadmi, A.Navaza, M.Miginiac-Maslow, J.P.Jacquot, and J.Cherfils (1999).
Redox signalling in the chloroplast: structure of oxidized pea fructose-1,6-bisphosphate phosphatase.
  EMBO J, 18, 6809-6815.
PDB codes: 1d9q 1dbz 1dcu
10074469 S.A.Strobel, and L.Ortoleva-Donnelly (1999).
A hydrogen-bonding triad stabilizes the chemical transition state of a group I ribozyme.
  Chem Biol, 6, 153-165.  
10361087 S.A.Strobel (1999).
A chemogenetic approach to RNA function/structure analysis.
  Curr Opin Struct Biol, 9, 346-352.  
10535916 S.Shan, A.Yoshida, S.Sun, J.A.Piccirilli, and D.Herschlag (1999).
Three metal ions at the active site of the Tetrahymena group I ribozyme.
  Proc Natl Acad Sci U S A, 96, 12299-12304.  
9651342 F.T.Kurbanov, J.Y.Choe, R.B.Honzatko, and H.J.Fromm (1998).
Directed mutations in the poorly defined region of porcine liver fructose-1,6-bisphosphatase significantly affect catalysis and the mechanism of AMP inhibition.
  J Biol Chem, 273, 17511-17516.  
9667939 J.E.Coleman (1998).
Zinc enzymes.
  Curr Opin Chem Biol, 2, 222-234.  
9708979 J.Y.Choe, B.W.Poland, H.J.Fromm, and R.B.Honzatko (1998).
Role of a dynamic loop in cation activation and allosteric regulation of recombinant porcine fructose-1,6-bisphosphatase.
  Biochemistry, 37, 11441-11450.
PDB codes: 1bfl 1cnq
9858750 R.J.Hodgson, Z.Jia, and W.C.Plaxton (1998).
A fluorescence study of ligand-induced conformational changes in cytosolic fructose-1,6-bisphosphatase from germinating castor oil seeds.
  Biochim Biophys Acta, 1388, 285-294.  
9242901 G.J.Narlikar, and D.Herschlag (1997).
Mechanistic aspects of enzymatic catalysis: lessons from comparison of RNA and protein enzymes.
  Annu Rev Biochem, 66, 19-59.  
9057165 J.R.Atack (1997).
Inositol monophosphatase inhibitors--lithium mimetics?
  Med Res Rev, 17, 215-224.  
9210486 K.Rees-Milton, M.Thorne, P.Greasley, J.Churchich, and M.G.Gore (1997).
Detection of metal binding to bovine inositol monophosphatase by changes in the near and far ultraviolet regions of the CD spectrum.
  Eur J Biochem, 246, 211-217.  
  9144768 L.F.Iversen, M.Brzozowski, S.Hastrup, R.Hubbard, J.S.Kastrup, I.K.Larsen, L.Naerum, L.Nørskov-Lauridsen, P.B.Rasmussen, L.Thim, F.C.Wiberg, and K.Lundgren (1997).
Characterization of the allosteric binding pocket of human liver fructose-1,6-bisphosphatase by protein crystallography and inhibitor activity studies.
  Protein Sci, 6, 971-982.  
  8844845 B.Stec, R.Abraham, E.Giroux, and E.R.Kantrowitz (1996).
Crystal structures of the active site mutant (Arg-243-->Ala) in the T and R allosteric states of pig kidney fructose-1,6-bisphosphatase expressed in Escherichia coli.
  Protein Sci, 5, 1541-1553.
PDB codes: 1rdx 1rdy 1rdz
  8931152 G.Lu, B.Stec, E.L.Giroux, and E.R.Kantrowitz (1996).
Evidence for an active T-state pig kidney fructose 1,6-bisphosphatase: interface residue Lys-42 is important for allosteric inhibition and AMP cooperativity.
  Protein Sci, 5, 2333-2342.
PDB code: 1fsa
8969189 L.F.Shyur, A.E.Aleshin, R.B.Honzatko, and H.J.Fromm (1996).
Biochemical properties of mutant and wild-type fructose-1,6-bisphosphatases are consistent with the coupling of intra- and intersubunit conformational changes in the T- and R-state transition.
  J Biol Chem, 271, 33301-33307.  
8608143 R.Zhang, V.Villeret, W.N.Lipscomb, and H.J.Fromm (1996).
Kinetics and mechanisms of activation and inhibition of porcine liver fructose-1,6-bisphosphatase by monovalent cations.
  Biochemistry, 35, 3038-3043.  
7731962 G.J.Narlikar, V.Gopalakrishnan, T.S.McConnell, N.Usman, and D.Herschlag (1995).
Use of binding energy by an RNA enzyme for catalysis by positioning and substrate destabilization.
  Proc Natl Acad Sci U S A, 92, 3668-3672.  
7758462 J.P.Jacquot, J.Lopez-Jaramillo, A.Chueca, J.Cherfils, S.Lemaire, B.Chedozeau, M.Miginiac-Maslow, P.Decottignies, R.Wolosiuk, and J.Lopez-Gorge (1995).
High-level expression of recombinant pea chloroplast fructose-1,6-bisphosphatase and mutagenesis of its regulatory site.
  Eur J Biochem, 229, 675-681.  
7814419 R.Zhang, L.Chen, V.Villeret, and H.J.Fromm (1995).
Glycine 122 is essential for cooperativity and binding of Mg2+ to porcine fructose-1,6-bisphosphatase.
  J Biol Chem, 270, 54-58.  
7568043 V.Villeret, S.Huang, H.J.Fromm, and W.N.Lipscomb (1995).
Crystallographic evidence for the action of potassium, thallium, and lithium ions on fructose-1,6-bisphosphatase.
  Proc Natl Acad Sci U S A, 92, 8916-8920.
PDB codes: 1fpi 1fpj 1fpk 1fpl
7918997 D.Li, F.J.Stevens, M.Schiffer, and L.E.Anderson (1994).
Mechanism of light modulation: identification of potential redox-sensitive cysteines distal to catalytic site in light-activated chloroplast enzymes.
  Biophys J, 67, 29-35.  
8020483 P.J.Greasley, L.G.Hunt, and M.G.Gore (1994).
Bovine inositol monophosphatase. Ligand binding to pyrene-maleimide-labelled enzyme.
  Eur J Biochem, 222, 453-460.  
8016062 S.J.Pollack, J.R.Atack, M.R.Knowles, G.McAllister, C.I.Ragan, R.Baker, S.R.Fletcher, L.L.Iversen, and H.B.Broughton (1994).
Mechanism of inositol monophosphatase, the putative target of lithium therapy.
  Proc Natl Acad Sci U S A, 91, 5766-5770.  
7809062 Y.Xue, S.Huang, J.Y.Liang, Y.Zhang, and W.N.Lipscomb (1994).
Crystal structure of fructose-1,6-bisphosphatase complexed with fructose 2,6-bisphosphate, AMP, and Zn2+ at 2.0-A resolution: aspects of synergism between inhibitors.
  Proc Natl Acad Sci U S A, 91, 12482-12486.
PDB code: 1frp
8384713 J.Y.Liang, Y.Zhang, S.Huang, and W.N.Lipscomb (1993).
Allosteric transition of fructose-1,6-bisphosphatase.
  Proc Natl Acad Sci U S A, 90, 2132-2136.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer