spacer
spacer

PDBsum entry 1b6b

Go to PDB code: 
protein Protein-protein interface(s) links
Transferase PDB id
1b6b

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
168 a.a. *
156 a.a. *
Waters ×132
* Residue conservation analysis
PDB id:
1b6b
Name: Transferase
Title: Melatonin biosynthesis: the structure of serotonin n-acetyltransferase at 2.5 a resolution suggests a catalytic mechanism
Structure: Protein (arylalkylamine n-acetyltransferase). Chain: a, b. Engineered: yes
Source: Ovis aries. Sheep. Organism_taxid: 9940. Expressed in: escherichia coli. Expression_system_taxid: 562
Resolution:
2.50Å     R-factor:   0.217     R-free:   0.282
Authors: A.B.Hickman,D.C.Klein,F.Dyda
Key ref:
A.B.Hickman et al. (1999). Melatonin biosynthesis: the structure of serotonin N-acetyltransferase at 2.5 A resolution suggests a catalytic mechanism. Mol Cell, 3, 23-32. PubMed id: 10024876 DOI: 10.1016/S1097-2765(00)80171-9
Date:
13-Jan-99     Release date:   14-Jan-00    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
Q29495  (SNAT_SHEEP) -  Serotonin N-acetyltransferase from Ovis aries
Seq:
Struc:
207 a.a.
168 a.a.
Protein chain
Pfam   ArchSchema ?
Q29495  (SNAT_SHEEP) -  Serotonin N-acetyltransferase from Ovis aries
Seq:
Struc:
207 a.a.
156 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: Chains A, B: E.C.2.3.1.87  - aralkylamine N-acetyltransferase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: a 2-arylethylamine + acetyl-CoA = an N-acetyl-2-arylethylamine + CoA + H+
2-arylethylamine
+ acetyl-CoA
= N-acetyl-2-arylethylamine
+ CoA
+ H(+)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1016/S1097-2765(00)80171-9 Mol Cell 3:23-32 (1999)
PubMed id: 10024876  
 
 
Melatonin biosynthesis: the structure of serotonin N-acetyltransferase at 2.5 A resolution suggests a catalytic mechanism.
A.B.Hickman, D.C.Klein, F.Dyda.
 
  ABSTRACT  
 
Conversion of serotonin to N-acetylserotonin, the precursor of the circadian neurohormone melatonin, is catalyzed by serotonin N-acetyltransferase (AANAT) in a reaction requiring acetyl coenzyme A (AcCoA). AANAT is a globular protein consisting of an eight-stranded beta sheet flanked by five alpha helices; a conserved motif in the center of the beta sheet forms the cofactor binding site. Three polypeptide loops converge above the AcCoA binding site, creating a hydrophobic funnel leading toward the cofactor and serotonin binding sites in the protein interior. Two conserved histidines not found in other NATs are located at the bottom of the funnel in the active site, suggesting a catalytic mechanism for acetylation involving imidazole groups acting as general acid/base catalysts.
 
  Selected figure(s)  
 
Figure 5.
Figure 5. The Serotonin Binding Site Is Buried in the Protein Interior(A) Hydrophobic residues lining the funnel. For clarity, only the acetyl and β-mercaptoethyl groups of AcCoA are shown modeled in the active site.(B) View into the hydrophobic funnel looking down toward ND1 of His-122 (in blue); the surrounding hydrophobic residues are shown in white. Figure was created by PovChem (P. Thiessen, Chem. Dept., School of Chemical Sciences, U. of Illinois at Urbana-Champaign), a front end for POV-Ray 3.0.
Figure 6.
Figure 6. Proposed Catalytic MechanismThe proposed mechanism involving His-122 as a general base catalyst in substrate deprotonation, and the subsequent formation of a tetravalent intermediate. The conserved residue Tyr-168 is positioned 3.5 Å away from the modeled position of the sulfur atom of AcCoA and could serve as a general acid catalyst to protonate the incipient thiolate anion of CoA. AAA stands for an arylalkylamine substrate.
 
  The above figures are reprinted by permission from Cell Press: Mol Cell (1999, 3, 23-32) copyright 1999.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference Google scholar

  PubMed id Reference
20300652 D.E.Almonacid, E.R.Yera, J.B.Mitchell, and P.C.Babbitt (2010).
Quantitative comparison of catalytic mechanisms and overall reactions in convergently evolved enzymes: implications for classification of enzyme function.
  PLoS Comput Biol, 6, e1000700.  
18362150 J.Pavlicek, S.L.Coon, S.Ganguly, J.L.Weller, S.A.Hassan, D.L.Sackett, and D.C.Klein (2008).
Evidence that proline focuses movement of the floppy loop of arylalkylamine N-acetyltransferase (EC 2.3.1.87).
  J Biol Chem, 283, 14552-14558.  
17164235 D.C.Klein (2007).
Arylalkylamine N-acetyltransferase: "the Timezyme".
  J Biol Chem, 282, 4233-4237.  
17991863 L.Gu, T.W.Geders, B.Wang, W.H.Gerwick, K.Håkansson, J.L.Smith, and D.H.Sherman (2007).
GNAT-like strategy for polyketide chain initiation.
  Science, 318, 970-974.
PDB codes: 2ree 2ref
17924613 L.M.Szewczuk, S.A.Saldanha, S.Ganguly, E.M.Bowers, M.Javoroncov, B.Karanam, J.C.Culhane, M.A.Holbert, D.C.Klein, R.Abagyan, and P.A.Cole (2007).
De novo discovery of serotonin N-acetyltransferase inhibitors.
  J Med Chem, 50, 5330-5338.  
17516632 S.S.Hegde, J.Chandler, M.W.Vetting, M.Yu, and J.S.Blanchard (2007).
Mechanistic and structural analysis of human spermidine/spermine N1-acetyltransferase.
  Biochemistry, 46, 7187-7195.
PDB code: 2jev
16678437 A.K.Gardino, S.J.Smerdon, and M.B.Yaffe (2006).
Structural determinants of 14-3-3 binding specificities and regulation of subcellular localization of 14-3-3-ligand complexes: a comparison of the X-ray crystal structures of all human 14-3-3 isoforms.
  Semin Cancer Biol, 16, 173-182.  
16709232 M.R.Hussein, E.E.Abu-Dief, A.T.Abou El-Ghait, M.A.Adly, and M.H.Abdelraheem (2006).
Morphological evaluation of the radioprotective effects of melatonin against X-ray-induced early and acute testis damage in Albino rats: an animal model.
  Int J Exp Pathol, 87, 237-250.  
16131761 D.L.Burk, B.Xiong, C.Breitbach, and A.M.Berghuis (2005).
Structures of aminoglycoside acetyltransferase AAC(6')-Ii in a novel crystal form: structural and normal-mode analyses.
  Acta Crystallogr D Biol Crystallogr, 61, 1273-1279.
PDB code: 2a4n
15695811 G.L.Card, N.A.Peterson, C.A.Smith, B.Rupp, B.M.Schick, and E.N.Baker (2005).
The crystal structure of Rv1347c, a putative antibiotic resistance protein from Mycobacterium tuberculosis, reveals a GCN5-related fold and suggests an alternative function in siderophore biosynthesis.
  J Biol Chem, 280, 13978-13986.
PDB code: 1yk3
15992934 J.A.Boutin, V.Audinot, G.Ferry, and P.Delagrange (2005).
Molecular tools to study melatonin pathways and actions.
  Trends Pharmacol Sci, 26, 412-419.  
15676032 M.R.Hussein, E.E.Abu-Dief, M.H.Abd El-Reheem, and A.Abd-Elrahman (2005).
Ultrastructural evaluation of the radioprotective effects of melatonin against X-ray-induced skin damage in Albino rats.
  Int J Exp Pathol, 86, 45-55.  
12566434 D.D.Boehr, S.I.Jenkins, and G.D.Wright (2003).
The molecular basis of the expansive substrate specificity of the antibiotic resistance enzyme aminoglycoside acetyltransferase-6'-aminoglycoside phosphotransferase-2". The role of ASP-99 as an active site base important for acetyl transfer.
  J Biol Chem, 278, 12873-12880.  
12592013 D.L.Burk, N.Ghuman, L.E.Wybenga-Groot, and A.M.Berghuis (2003).
X-ray structure of the AAC(6')-Ii antibiotic resistance enzyme at 1.8 A resolution; examination of oligomeric arrangements in GNAT superfamily members.
  Protein Sci, 12, 426-437.
PDB code: 1n71
14578935 W.Zheng, Z.Zhang, S.Ganguly, J.L.Weller, D.C.Klein, and P.A.Cole (2003).
Cellular stabilization of the melatonin rhythm enzyme induced by nonhydrolyzable phosphonate incorporation.
  Nat Struct Biol, 10, 1054-1057.  
12161746 M.W.Vetting, S.S.Hegde, F.Javid-Majd, J.S.Blanchard, and S.L.Roderick (2002).
Aminoglycoside 2'-N-acetyltransferase from Mycobacterium tuberculosis in complex with coenzyme A and aminoglycoside substrates.
  Nat Struct Biol, 9, 653-658.
PDB codes: 1m44 1m4d 1m4g 1m4i
12215431 S.Tsuboi, Y.Kotani, K.Ogawa, T.Hatanaka, S.Yatsushiro, M.Otsuka, and Y.Moriyama (2002).
An intramolecular disulfide bridge as a catalytic switch for serotonin N-acetyltransferase.
  J Biol Chem, 277, 44229-44235.  
11931774 W.T.Watson, T.D.Minogue, D.L.Val, S.B.von Bodman, and M.E.Churchill (2002).
Structural basis and specificity of acyl-homoserine lactone signal production in bacterial quorum sensing.
  Mol Cell, 9, 685-694.
PDB codes: 1k4j 1kzf
11442772 R.Spessert, M.Rapp, and L.Vollrath (2001).
Serine/threonine phosphatase inhibitors decrease adrenergic arylalkylamine n-acetyltransferase induction in the rat pineal gland.
  J Neuroendocrinol, 13, 581-587.  
11559708 S.Ganguly, P.Mummaneni, P.J.Steinbach, D.C.Klein, and S.L.Coon (2001).
Characterization of the Saccharomyces cerevisiae homolog of the melatonin rhythm enzyme arylalkylamine N-acetyltransferase (EC 2.3.1.87).
  J Biol Chem, 276, 47239-47247.  
11395403 S.Y.Roth, J.M.Denu, and C.D.Allis (2001).
Histone acetyltransferases.
  Annu Rev Biochem, 70, 81.  
11371195 T.A.Farazi, G.Waksman, and J.I.Gordon (2001).
Structures of Saccharomyces cerevisiae N-myristoyltransferase with bound myristoylCoA and peptide provide insights about substrate recognition and catalysis.
  Biochemistry, 40, 6335-6343.
PDB codes: 1iic 1iid
11336675 T.Obsil, R.Ghirlando, D.C.Klein, S.Ganguly, and F.Dyda (2001).
Crystal structure of the 14-3-3zeta:serotonin N-acetyltransferase complex. a role for scaffolding in enzyme regulation.
  Cell, 105, 257-267.
PDB code: 1ib1
10940244 F.Dyda, D.C.Klein, and A.B.Hickman (2000).
GCN5-related N-acetyltransferases: a structural overview.
  Annu Rev Biophys Biomol Struct, 29, 81.  
10722724 G.Ferry, A.Loynel, N.Kucharczyk, S.Bertin, M.Rodriguez, P.Delagrange, J.P.Galizzi, E.Jacoby, J.P.Volland, D.Lesieur, P.Renard, E.Canet, J.L.Fauchère, and J.A.Boutin (2000).
Substrate specificity and inhibition studies of human serotonin N-acetyltransferase.
  J Biol Chem, 275, 8794-8805.  
11123906 T.A.Farazi, J.K.Manchester, and J.I.Gordon (2000).
Transient-state kinetic analysis of Saccharomyces cerevisiae myristoylCoA:protein N-myristoyltransferase reveals that a step after chemical transformation is rate limiting.
  Biochemistry, 39, 15807-15816.  
11106757 Y.Yan, N.A.Barlev, R.H.Haley, S.L.Berger, and R.Marmorstein (2000).
Crystal structure of yeast Esa1 suggests a unified mechanism for catalysis and substrate binding by histone acetyltransferases.
  Mol Cell, 6, 1195-1205.
PDB code: 1fy7
10319816 A.B.Hickman, M.A.Namboodiri, D.C.Klein, and F.Dyda (1999).
The structural basis of ordered substrate binding by serotonin N-acetyltransferase: enzyme complex at 1.8 A resolution with a bisubstrate analog.
  Cell, 97, 361-369.
PDB code: 1cjw
10535937 E.M.Khalil, J.De Angelis, M.Ishii, and P.A.Cole (1999).
Mechanism-based inhibition of the melatonin rhythm enzyme: pharmacologic exploitation of active site functional plasticity.
  Proc Natl Acad Sci U S A, 96, 12418-12423.  
10373413 K.G.Tanner, R.C.Trievel, M.H.Kuo, R.M.Howard, S.L.Berger, C.D.Allis, R.Marmorstein, and J.M.Denu (1999).
Catalytic mechanism and function of invariant glutamic acid 173 from the histone acetyltransferase GCN5 transcriptional coactivator.
  J Biol Chem, 274, 18157-18160.  
10430873 R.C.Trievel, J.R.Rojas, D.E.Sterner, R.N.Venkataramani, L.Wang, J.Zhou, C.D.Allis, S.L.Berger, and R.Marmorstein (1999).
Crystal structure and mechanism of histone acetylation of the yeast GCN5 transcriptional coactivator.
  Proc Natl Acad Sci U S A, 96, 8931-8936.
PDB code: 1ygh
10430845 R.Sternglanz, and H.Schindelin (1999).
Structure and mechanism of action of the histone acetyltransferase Gcn5 and similarity to other N-acetyltransferases.
  Proc Natl Acad Sci U S A, 96, 8807-8808.  
10085157 S.L.Coon, V.Bégay, D.Deurloo, J.Falcón, and D.C.Klein (1999).
Two arylalkylamine N-acetyltransferase genes mediate melatonin synthesis in fish.
  J Biol Chem, 274, 9076-9082.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer