2jfl Citations

Activation segment dimerization: a mechanism for kinase autophosphorylation of non-consensus sites.

EMBO J 27 704-14 (2008)
Related entries: 2j51, 2j7t, 2j90, 2jfm, 2uv2

Cited: 118 times
EuropePMC logo PMID: 18239682

Abstract

Protein kinase autophosphorylation of activation segment residues is a common regulatory mechanism in phosphorylation-dependent signalling cascades. However, the molecular mechanisms that guarantee specific and efficient phosphorylation of these sites have not been elucidated. Here, we report on three novel and diverse protein kinase structures that reveal an exchanged activation segment conformation. This dimeric arrangement results in an active kinase conformation in trans, with activation segment phosphorylation sites in close proximity to the active site of the interacting protomer. Analytical ultracentrifugation and chemical cross-linking confirmed the presence of dimers in solution. Consensus substrate sequences for each kinase showed that the identified activation segment autophosphorylation sites are non-consensus substrate sites. Based on the presented structural and functional data, a model for specific activation segment phosphorylation at non-consensus substrate sites is proposed that is likely to be common to other kinases from diverse subfamilies.

Reviews - 2jfl mentioned but not cited (1)

  1. Substrate and docking interactions in serine/threonine protein kinases. Goldsmith EJ, Akella R, Min X, Zhou T, Humphreys JM. Chem Rev 107 5065-5081 (2007)

Articles - 2jfl mentioned but not cited (8)

  1. Activation segment dimerization: a mechanism for kinase autophosphorylation of non-consensus sites. Pike AC, Rellos P, Niesen FH, Turnbull A, Oliver AW, Parker SA, Turk BE, Pearl LH, Knapp S. EMBO J 27 704-714 (2008)
  2. Molecular mechanism of Aurora A kinase autophosphorylation and its allosteric activation by TPX2. Zorba A, Buosi V, Kutter S, Kern N, Pontiggia F, Cho YJ, Kern D. Elife 3 e02667 (2014)
  3. Crystal structure of domain-swapped STE20 OSR1 kinase domain. Lee SJ, Cobb MH, Goldsmith EJ. Protein Sci 18 304-313 (2009)
  4. OGlcNAcylation and phosphorylation have similar structural effects in α-helices: post-translational modifications as inducible start and stop signals in α-helices, with greater structural effects on threonine modification. Elbaum MB, Zondlo NJ. Biochemistry 53 2242-2260 (2014)
  5. A conserved salt bridge in the G loop of multiple protein kinases is important for catalysis and for in vivo Lyn function. Barouch-Bentov R, Che J, Lee CC, Yang Y, Herman A, Jia Y, Velentza A, Watson J, Sternberg L, Kim S, Ziaee N, Miller A, Jackson C, Fujimoto M, Young M, Batalov S, Liu Y, Warmuth M, Wiltshire T, Cooke MP, Sauer K. Mol Cell 33 43-52 (2009)
  6. Structure determination of glycogen synthase kinase-3 from Leishmania major and comparative inhibitor structure-activity relationships with Trypanosoma brucei GSK-3. Ojo KK, Arakaki TL, Napuli AJ, Inampudi KK, Keyloun KR, Zhang L, Hol WG, Verlinde CL, Merritt EA, Van Voorhis WC. Mol Biochem Parasitol 176 98-108 (2011)
  7. Linking in domain-swapped protein dimers. Baiesi M, Orlandini E, Trovato A, Seno F. Sci Rep 6 33872 (2016)
  8. Discovery of Kinase and Carbonic Anhydrase Dual Inhibitors by Machine Learning Classification and Experiments. Kim MJ, Pandit S, Jee JG. Pharmaceuticals (Basel) 15 236 (2022)


Reviews citing this publication (17)

  1. The structural basis for control of eukaryotic protein kinases. Endicott JA, Noble ME, Johnson LN. Annu Rev Biochem 81 587-613 (2012)
  2. Structure and Molecular Mechanism of ER Stress Signaling by the Unfolded Protein Response Signal Activator IRE1. Adams CJ, Kopp MC, Larburu N, Nowak PR, Ali MMU. Front Mol Biosci 6 11 (2019)
  3. Recent insights into the complexity of Tank-binding kinase 1 signaling networks: the emerging role of cellular localization in the activation and substrate specificity of TBK1. Helgason E, Phung QT, Dueber EC. FEBS Lett 587 1230-1237 (2013)
  4. UnPAKing the class differences among p21-activated kinases. Eswaran J, Soundararajan M, Kumar R, Knapp S. Trends Biochem Sci 33 394-403 (2008)
  5. Decoding the phosphorylation code in Hedgehog signal transduction. Chen Y, Jiang J. Cell Res 23 186-200 (2013)
  6. The mammalian family of sterile 20p-like protein kinases. Delpire E. Pflugers Arch 458 953-967 (2009)
  7. The DAPK family: a structure-function analysis. Shiloh R, Bialik S, Kimchi A. Apoptosis 19 286-297 (2014)
  8. How Do Protein Kinases Take a Selfie (Autophosphorylate)? Beenstock J, Mooshayef N, Engelberg D. Trends Biochem Sci 41 938-953 (2016)
  9. The Src module: an ancient scaffold in the evolution of cytoplasmic tyrosine kinases. Shah NH, Amacher JF, Nocka LM, Kuriyan J. Crit Rev Biochem Mol Biol 53 535-563 (2018)
  10. Death-associated protein kinase (DAPK) family modulators: Current and future therapeutic outcomes. Farag AK, Roh EJ. Med Res Rev 39 349-385 (2019)
  11. Biophysical characterization of recombinant proteins: a key to higher structural genomics success. Vedadi M, Arrowsmith CH, Allali-Hassani A, Senisterra G, Wasney GA. J Struct Biol 172 107-119 (2010)
  12. Insights into protein kinase regulation and inhibition by large scale structural comparison. Eswaran J, Knapp S. Biochim Biophys Acta 1804 429-432 (2010)
  13. Large-scale structural biology of the human proteome. Edwards A. Annu Rev Biochem 78 541-568 (2009)
  14. Ste20-like kinase SLK, at the crossroads: a matter of life and death. Al-Zahrani KN, Baron KD, Sabourin LA. Cell Adh Migr 7 1-10 (2013)
  15. Structural and functional diversity in the activity and regulation of DAPK-related protein kinases. Temmerman K, Simon B, Wilmanns M. FEBS J 280 5533-5550 (2013)
  16. Mutations That Confer Drug-Resistance, Oncogenicity and Intrinsic Activity on the ERK MAP Kinases-Current State of the Art. Smorodinsky-Atias K, Soudah N, Engelberg D. Cells 9 E129 (2020)
  17. Phosphorylation Sites in Protein Kinases and Phosphatases Regulated by Formyl Peptide Receptor 2 Signaling. Annunziata MC, Parisi M, Esposito G, Fabbrocini G, Ammendola R, Cattaneo F. Int J Mol Sci 21 E3818 (2020)

Articles citing this publication (92)

  1. The unfolded protein response signals through high-order assembly of Ire1. Korennykh AV, Egea PF, Korostelev AA, Finer-Moore J, Zhang C, Shokat KM, Stroud RM, Walter P. Nature 457 687-693 (2009)
  2. Linear motif atlas for phosphorylation-dependent signaling. Miller ML, Jensen LJ, Diella F, Jørgensen C, Tinti M, Li L, Hsiung M, Parker SA, Bordeaux J, Sicheritz-Ponten T, Olhovsky M, Pasculescu A, Alexander J, Knapp S, Blom N, Bork P, Li S, Cesareni G, Pawson T, Turk BE, Yaffe MB, Brunak S, Linding R. Sci Signal 1 ra2 (2008)
  3. A helix scaffold for the assembly of active protein kinases. Kornev AP, Taylor SS, Ten Eyck LF. Proc Natl Acad Sci U S A 105 14377-14382 (2008)
  4. Structure of the Ire1 autophosphorylation complex and implications for the unfolded protein response. Ali MM, Bagratuni T, Davenport EL, Nowak PR, Silva-Santisteban MC, Hardcastle A, McAndrews C, Rowlands MG, Morgan GJ, Aherne W, Collins I, Davies FE, Pearl LH. EMBO J 30 894-905 (2011)
  5. Molecular basis of Tank-binding kinase 1 activation by transautophosphorylation. Ma X, Helgason E, Phung QT, Quan CL, Iyer RS, Lee MW, Bowman KK, Starovasnik MA, Dueber EC. Proc Natl Acad Sci U S A 109 9378-9383 (2012)
  6. Death-associated protein kinase 1 phosphorylates Pin1 and inhibits its prolyl isomerase activity and cellular function. Lee TH, Chen CH, Suizu F, Huang P, Schiene-Fischer C, Daum S, Zhang YJ, Goate A, Chen RH, Zhou XZ, Lu KP. Mol Cell 42 147-159 (2011)
  7. Transitions to catalytically inactive conformations in EGFR kinase. Shan Y, Arkhipov A, Kim ET, Pan AC, Shaw DE. Proc Natl Acad Sci U S A 110 7270-7275 (2013)
  8. A Mek1-Mek2 heterodimer determines the strength and duration of the Erk signal. Catalanotti F, Reyes G, Jesenberger V, Galabova-Kovacs G, de Matos Simoes R, Carugo O, Baccarini M. Nat Struct Mol Biol 16 294-303 (2009)
  9. The ins and outs of selective kinase inhibitor development. Müller S, Chaikuad A, Gray NS, Knapp S. Nat Chem Biol 11 818-821 (2015)
  10. Structures of Down syndrome kinases, DYRKs, reveal mechanisms of kinase activation and substrate recognition. Soundararajan M, Roos AK, Savitsky P, Filippakopoulos P, Kettenbach AN, Olsen JV, Gerber SA, Eswaran J, Knapp S, Elkins JM. Structure 21 986-996 (2013)
  11. Letter Structure of the human autophagy initiating kinase ULK1 in complex with potent inhibitors. Lazarus MB, Novotny CJ, Shokat KM. ACS Chem Biol 10 257-261 (2015)
  12. The NDR/LATS family kinase Cbk1 directly controls transcriptional asymmetry. Mazanka E, Alexander J, Yeh BJ, Charoenpong P, Lowery DM, Yaffe M, Weiss EL. PLoS Biol 6 e203 (2008)
  13. Insights into the evolution of divergent nucleotide-binding mechanisms among pseudokinases revealed by crystal structures of human and mouse MLKL. Murphy JM, Lucet IS, Hildebrand JM, Tanzer MC, Young SN, Sharma P, Lessene G, Alexander WS, Babon JJ, Silke J, Czabotar PE. Biochem J 457 369-377 (2014)
  14. Autoactivation of transforming growth factor beta-activated kinase 1 is a sequential bimolecular process. Scholz R, Sidler CL, Thali RF, Winssinger N, Cheung PC, Neumann D. J Biol Chem 285 25753-25766 (2010)
  15. Structural basis for the regulation of protein kinase A by activation loop phosphorylation. Steichen JM, Kuchinskas M, Keshwani MM, Yang J, Adams JA, Taylor SS. J Biol Chem 287 14672-14680 (2012)
  16. An electrostatic selection mechanism controls sequential kinase signaling downstream of the T cell receptor. Shah NH, Wang Q, Yan Q, Karandur D, Kadlecek TA, Fallahee IR, Russ WP, Ranganathan R, Weiss A, Kuriyan J. Elife 5 e20105 (2016)
  17. Auto-activation mechanism of the Mycobacterium tuberculosis PknB receptor Ser/Thr kinase. Mieczkowski C, Iavarone AT, Alber T. EMBO J 27 3186-3197 (2008)
  18. Global consequences of activation loop phosphorylation on protein kinase A. Steichen JM, Iyer GH, Li S, Saldanha SA, Deal MS, Woods VL, Taylor SS. J Biol Chem 285 3825-3832 (2010)
  19. Small-molecule inhibition and activation-loop trans-phosphorylation of the IGF1 receptor. Wu J, Li W, Craddock BP, Foreman KW, Mulvihill MJ, Ji QS, Miller WT, Hubbard SR. EMBO J 27 1985-1994 (2008)
  20. Identification of multiple substrates of the StkP Ser/Thr protein kinase in Streptococcus pneumoniae. Nováková L, Bezousková S, Pompach P, Spidlová P, Sasková L, Weiser J, Branny P. J Bacteriol 192 3629-3638 (2010)
  21. Unphosphorylated SR-like protein Npl3 stimulates RNA polymerase II elongation. Dermody JL, Dreyfuss JM, Villén J, Ogundipe B, Gygi SP, Park PJ, Ponticelli AS, Moore CL, Buratowski S, Bucheli ME. PLoS One 3 e3273 (2008)
  22. Cancer-associated loss-of-function mutations implicate DAPK3 as a tumor-suppressing kinase. Brognard J, Zhang YW, Puto LA, Hunter T. Cancer Res 71 3152-3161 (2011)
  23. The Hedgehog-induced Smoothened conformational switch assembles a signaling complex that activates Fused by promoting its dimerization and phosphorylation. Shi Q, Li S, Jia J, Jiang J. Development 138 4219-4231 (2011)
  24. Crystal structure of human aurora B in complex with INCENP and VX-680. Elkins JM, Santaguida S, Musacchio A, Knapp S. J Med Chem 55 7841-7848 (2012)
  25. HIPK2 kinase activity depends on cis-autophosphorylation of its activation loop. Saul VV, de la Vega L, Milanovic M, Krüger M, Braun T, Fritz-Wolf K, Becker K, Schmitz ML. J Mol Cell Biol 5 27-38 (2013)
  26. Tuning a three-component reaction for trapping kinase substrate complexes. Statsuk AV, Maly DJ, Seeliger MA, Fabian MA, Biggs WH, Lockhart DJ, Zarrinkar PP, Kuriyan J, Shokat KM. J Am Chem Soc 130 17568-17574 (2008)
  27. Structural basis of human p70 ribosomal S6 kinase-1 regulation by activation loop phosphorylation. Sunami T, Byrne N, Diehl RE, Funabashi K, Hall DL, Ikuta M, Patel SB, Shipman JM, Smith RF, Takahashi I, Zugay-Murphy J, Iwasawa Y, Lumb KJ, Munshi SK, Sharma S. J Biol Chem 285 4587-4594 (2010)
  28. An Atg13 protein-mediated self-association of the Atg1 protein kinase is important for the induction of autophagy. Yeh YY, Shah KH, Herman PK. J Biol Chem 286 28931-28939 (2011)
  29. Structural comparison of human mammalian ste20-like kinases. Record CJ, Chaikuad A, Rellos P, Das S, Pike AC, Fedorov O, Marsden BD, Knapp S, Lee WH. PLoS One 5 e11905 (2010)
  30. Functional divergence and evolutionary turnover in mammalian phosphoproteomes. Freschi L, Osseni M, Landry CR. PLoS Genet 10 e1004062 (2014)
  31. Structure of cyclin G-associated kinase (GAK) trapped in different conformations using nanobodies. Chaikuad A, Keates T, Vincke C, Kaufholz M, Zenn M, Zimmermann B, Gutiérrez C, Zhang RG, Hatzos-Skintges C, Joachimiak A, Muyldermans S, Herberg FW, Knapp S, Müller S. Biochem J 459 59-69 (2014)
  32. Structure of the MST4 in complex with MO25 provides insights into its activation mechanism. Shi Z, Jiao S, Zhang Z, Ma M, Zhang Z, Chen C, Wang K, Wang H, Wang W, Zhang L, Zhao Y, Zhou Z. Structure 21 449-461 (2013)
  33. A kinetic test characterizes kinase intramolecular and intermolecular autophosphorylation mechanisms. Dodson CA, Yeoh S, Haq T, Bayliss R. Sci Signal 6 ra54 (2013)
  34. A conserved Glu-Arg salt bridge connects coevolved motifs that define the eukaryotic protein kinase fold. Yang J, Wu J, Steichen JM, Kornev AP, Deal MS, Li S, Sankaran B, Woods VL, Taylor SS. J Mol Biol 415 666-679 (2012)
  35. Aurora1 phosphorylation activity on histone H3 and its cross-talk with other post-translational histone modifications in Arabidopsis. Demidov D, Hesse S, Tewes A, Rutten T, Fuchs J, Ashtiyani RK, Lein S, Fischer A, Reuter G, Houben A. Plant J 59 221-230 (2009)
  36. Comprehensive profiling of the STE20 kinase family defines features essential for selective substrate targeting and signaling output. Miller CJ, Lou HJ, Simpson C, van de Kooij B, Ha BH, Fisher OS, Pirman NL, Boggon TJ, Rinehart J, Yaffe MB, Linding R, Turk BE. PLoS Biol 17 e2006540 (2019)
  37. The p38β mitogen-activated protein kinase possesses an intrinsic autophosphorylation activity, generated by a short region composed of the α-G helix and MAPK insert. Beenstock J, Ben-Yehuda S, Melamed D, Admon A, Livnah O, Ahn NG, Engelberg D. J Biol Chem 289 23546-23556 (2014)
  38. Identifying three-dimensional structures of autophosphorylation complexes in crystals of protein kinases. Xu Q, Malecka KL, Fink L, Jordan EJ, Duffy E, Kolander S, Peterson JR, Dunbrack RL. Sci Signal 8 rs13 (2015)
  39. Structure of the OSR1 kinase, a hypertension drug target. Villa F, Deak M, Alessi DR, van Aalten DM. Proteins 73 1082-1087 (2008)
  40. Calcium-binding protein 39 facilitates molecular interaction between Ste20p proline alanine-rich kinase and oxidative stress response 1 monomers. Ponce-Coria J, Gagnon KB, Delpire E. Am J Physiol Cell Physiol 303 C1198-205 (2012)
  41. The Ldb1 and Ldb2 transcriptional cofactors interact with the Ste20-like kinase SLK and regulate cell migration. Storbeck CJ, Wagner S, O'Reilly P, McKay M, Parks RJ, Westphal H, Sabourin LA. Mol Biol Cell 20 4174-4182 (2009)
  42. Myosin 3A kinase activity is regulated by phosphorylation of the kinase domain activation loop. Quintero OA, Unrath WC, Stevens SM, Manor U, Kachar B, Yengo CM. J Biol Chem 288 37126-37137 (2013)
  43. Conservation of structure, function and inhibitor binding in UNC-51-like kinase 1 and 2 (ULK1/2). Chaikuad A, Koschade SE, Stolz A, Zivkovic K, Pohl C, Shaid S, Ren H, Lambert LJ, Cosford NDP, Brandts CH, Knapp S. Biochem J 476 875-887 (2019)
  44. Death-Associated Protein Kinase Activity Is Regulated by Coupled Calcium/Calmodulin Binding to Two Distinct Sites. Simon B, Huart AS, Temmerman K, Vahokoski J, Mertens HD, Komadina D, Hoffmann JE, Yumerefendi H, Svergun DI, Kursula P, Schultz C, McCarthy AA, Hart DJ, Wilmanns M. Structure 24 851-861 (2016)
  45. Homo-oligomerization and activation of AMP-activated protein kinase are mediated by the kinase domain alphaG-helix. Scholz R, Suter M, Weimann T, Polge C, Konarev PV, Thali RF, Tuerk RD, Viollet B, Wallimann T, Schlattner U, Neumann D. J Biol Chem 284 27425-27437 (2009)
  46. Characterization of Staphylococcus aureus EssB, an integral membrane component of the Type VII secretion system: atomic resolution crystal structure of the cytoplasmic segment. Zoltner M, Fyfe PK, Palmer T, Hunter WN. Biochem J 449 469-477 (2013)
  47. Crystal structures of ABL-related gene (ABL2) in complex with imatinib, tozasertib (VX-680), and a type I inhibitor of the triazole carbothioamide class. Salah E, Ugochukwu E, Barr AJ, von Delft F, Knapp S, Elkins JM. J Med Chem 54 2359-2367 (2011)
  48. Structures of human MST3 kinase in complex with adenine, ADP and Mn2+. Ko TP, Jeng WY, Liu CI, Lai MD, Wu CL, Chang WJ, Shr HL, Lu TJ, Wang AH. Acta Crystallogr D Biol Crystallogr 66 145-154 (2010)
  49. Transphosphorylation of E. coli Proteins during Production of Recombinant Protein Kinases Provides a Robust System to Characterize Kinase Specificity. Wu X, Oh MH, Kim HS, Schwartz D, Imai BS, Yau PM, Clouse SD, Huber SC. Front Plant Sci 3 262 (2012)
  50. Hydrophobic motif phosphorylation coordinates activity and polar localization of the Neurospora crassa nuclear Dbf2-related kinase COT1. Maerz S, Dettmann A, Seiler S. Mol Cell Biol 32 2083-2098 (2012)
  51. The origin of the non-recombining region of sex chromosomes in Carica and Vasconcellea. Wu X, Wang J, Na JK, Yu Q, Moore RC, Zee F, Huber SC, Ming R. Plant J 63 801-810 (2010)
  52. Activation of a prophage-encoded tyrosine kinase by a heterologous infecting phage results in a self-inflicted abortive infection. Friedman DI, Mozola CC, Beeri K, Ko CC, Reynolds JL. Mol Microbiol 82 567-577 (2011)
  53. Domain-Swapping Switch Point in Ste20 Protein Kinase SPAK. Taylor CA, Juang YC, Earnest S, Sengupta S, Goldsmith EJ, Cobb MH. Biochemistry 54 5063-5071 (2015)
  54. Ste20-like protein kinase SLK (LOSK) regulates microtubule organization by targeting dynactin to the centrosome. Zhapparova ON, Fokin AI, Vorobyeva NE, Bryantseva SA, Nadezhdina ES. Mol Biol Cell 24 3205-3214 (2013)
  55. Podocyte injury and albuminuria in mice with podocyte-specific overexpression of the Ste20-like kinase, SLK. Cybulsky AV, Takano T, Papillon J, Guillemette J, Herzenberg AM, Kennedy CR. Am J Pathol 177 2290-2299 (2010)
  56. Regulation of the Ste20-like kinase, SLK: involvement of activation segment phosphorylation. Luhovy AY, Jaberi A, Papillon J, Guillemette J, Cybulsky AV. J Biol Chem 287 5446-5458 (2012)
  57. Thr-370 is responsible for CDK11(p58) autophosphorylation, dimerization, and kinase activity. Chi Y, Zhang C, Zong H, Hong Y, Kong X, Liu H, Zou W, Wang Y, Yun X, Gu J. J Biol Chem 286 1748-1757 (2011)
  58. Structural mechanism of synergistic activation of Aurora kinase B/C by phosphorylated INCENP. Abdul Azeez KR, Chatterjee S, Yu C, Golub TR, Sobott F, Elkins JM. Nat Commun 10 3166 (2019)
  59. Autophosphorylation activates c-Src kinase through global structural rearrangements. Boczek EE, Luo Q, Dehling M, Röpke M, Mader SL, Seidl A, Kaila VRI, Buchner J. J Biol Chem 294 13186-13197 (2019)
  60. The Ste20-like kinase SLK promotes p53 transactivation and apoptosis. Cybulsky AV, Takano T, Guillemette J, Papillon J, Volpini RA, Di Battista JA. Am J Physiol Renal Physiol 297 F971-80 (2009)
  61. Activity of the Ste20-like kinase, SLK, is enhanced by homodimerization. Delarosa S, Guillemette J, Papillon J, Han YS, Kristof AS, Cybulsky AV. Am J Physiol Renal Physiol 301 F554-64 (2011)
  62. Identification of human IKK-2 inhibitors of natural origin (part I): modeling of the IKK-2 kinase domain, virtual screening and activity assays. Sala E, Guasch L, Iwaszkiewicz J, Mulero M, Salvadó MJ, Pinent M, Zoete V, Grosdidier A, Garcia-Vallvé S, Michielin O, Pujadas G. PLoS One 6 e16903 (2011)
  63. Rational Redesign of a Functional Protein Kinase-Substrate Interaction. Chen C, Nimlamool W, Miller CJ, Lou HJ, Turk BE. ACS Chem Biol 12 1194-1198 (2017)
  64. Structural basis of Rad53 kinase activation by dimerization and activation segment exchange. Wybenga-Groot LE, Ho CS, Sweeney FD, Ceccarelli DF, McGlade CJ, Durocher D, Sicheri F. Cell Signal 26 1825-1836 (2014)
  65. Sequence and Structure-Based Analysis of Specificity Determinants in Eukaryotic Protein Kinases. Bradley D, Viéitez C, Rajeeve V, Selkrig J, Cutillas PR, Beltrao P. Cell Rep 34 108602 (2021)
  66. Structural basis of the effect of activating mutations on the EGF receptor. Galdadas I, Carlino L, Ward RA, Hughes SJ, Haider S, Gervasio FL. Elife 10 e65824 (2021)
  67. Substituted indolin-2-ones as p90 ribosomal S6 protein kinase 2 (RSK2) inhibitors: Molecular docking simulation and structure-activity relationship analysis. Zhong Y, Xue M, Zhao X, Yuan J, Liu X, Huang J, Zhao Z, Li H, Xu Y. Bioorg Med Chem 21 1724-1734 (2013)
  68. De Novo Fragment Design for Drug Discovery and Chemical Biology. Rodrigues T, Reker D, Welin M, Caldera M, Brunner C, Gabernet G, Schneider P, Walse B, Schneider G. Angew Chem Int Ed Engl 54 15079-15083 (2015)
  69. Germinal-center kinase-like kinase co-crystal structure reveals a swapped activation loop and C-terminal extension. Marcotte D, Rushe M, M Arduini R, Lukacs C, Atkins K, Sun X, Little K, Cullivan M, Paramasivam M, Patterson TA, Hesson T, D McKee T, May-Dracka TL, Xin Z, Bertolotti-Ciarlet A, Bhisetti GR, Lyssikatos JP, Silvian LF. Protein Sci 26 152-162 (2017)
  70. Phosphorylation or Mutation of the ERK2 Activation Loop Alters Oligonucleotide Binding. McReynolds AC, Karra AS, Li Y, Lopez ED, Turjanski AG, Dioum E, Lorenz K, Zaganjor E, Stippec S, McGlynn K, Earnest S, Cobb MH. Biochemistry 55 1909-1917 (2016)
  71. Regulation of Catalytic and Non-catalytic Functions of the Drosophila Ste20 Kinase Slik by Activation Segment Phosphorylation. Panneton V, Nath A, Sader F, Delaunay N, Pelletier A, Maier D, Oh K, Hipfner DR. J Biol Chem 290 20960-20971 (2015)
  72. Regulation of Ste20-like kinase, SLK, activity: Dimerization and activation segment phosphorylation. Cybulsky AV, Guillemette J, Papillon J, Abouelazm NT. PLoS One 12 e0177226 (2017)
  73. The Photosensitising Clinical Agent Verteporfin Is an Inhibitor of SPAK and OSR1 Kinases. AlAmri MA, Kadri H, Alderwick LJ, Jeeves M, Mehellou Y. Chembiochem 19 2072-2080 (2018)
  74. Distinct roles for Ste20-like kinase SLK in muscle function and regeneration. Storbeck CJ, Al-Zahrani KN, Sriram R, Kawesa S, O'Reilly P, Daniel K, McKay M, Kothary R, Tsilfidis C, Sabourin LA. Skelet Muscle 3 16 (2013)
  75. The autoinhibited state of MKK4: Phosphorylation, putative dimerization and R134W mutant studied by molecular dynamics simulations. Shevchenko E, Poso A, Pantsar T. Comput Struct Biotechnol J 18 2687-2698 (2020)
  76. A PEF/Y substrate recognition and signature motif plays a critical role in DAPK-related kinase activity. Temmerman K, de Diego I, Pogenberg V, Simon B, Jonko W, Li X, Wilmanns M. Chem Biol 21 264-273 (2014)
  77. Caspase Cleavages of the Lymphocyte-oriented Kinase Prevent Ezrin, Radixin, and Moesin Phosphorylation during Apoptosis. Leroy C, Belkina NV, Long T, Deruy E, Dissous C, Shaw S, Tulasne D. J Biol Chem 291 10148-10161 (2016)
  78. Kinase domain autophosphorylation rewires the activity and substrate specificity of CK1 enzymes. Cullati SN, Chaikuad A, Chen JS, Gebel J, Tesmer L, Zhubi R, Navarrete-Perea J, Guillen RX, Gygi SP, Hummer G, Dötsch V, Knapp S, Gould KL. Mol Cell 82 2006-2020.e8 (2022)
  79. Pharmacophore modeling and hybrid virtual screening for the discovery of novel IκB kinase 2 (IKK2) inhibitors. Xie HZ, Liu LY, Ren JX, Zhou JP, Zheng RL, Li LL, Yang SY. J Biomol Struct Dyn 29 165-179 (2011)
  80. Structural basis for recruitment of the CHK1 DNA damage kinase by the CLASPIN scaffold protein. Day M, Parry-Morris S, Houghton-Gisby J, Oliver AW, Pearl LH. Structure 29 531-539.e3 (2021)
  81. Structure-Based Target-Specific Screening Leads to Small-Molecule CaMKII Inhibitors. Xu D, Li L, Zhou D, Liu D, Hudmon A, Meroueh SO. ChemMedChem 12 660-677 (2017)
  82. Tighter αC-helix-αL16-helix interactions seem to make p38α less prone to activation by autophosphorylation than Hog1. Tesker M, Selamat SE, Beenstock J, Hayouka R, Livnah O, Engelberg D. Biosci Rep 36 e00324 (2016)
  83. Transforming growth factor β-induced epithelial to mesenchymal transition requires the Ste20-like kinase SLK independently of its catalytic activity. Conway J, Al-Zahrani KN, Pryce BR, Abou-Hamad J, Sabourin LA. Oncotarget 8 98745-98756 (2017)
  84. Face-to-face, pak-to-pak. Malecka KA, Peterson JR. Structure 19 1723-1724 (2011)
  85. Ste20-like kinase, SLK, a novel mediator of podocyte integrity. Cybulsky AV, Papillon J, Guillemette J, Belkina N, Patino-Lopez G, Torban E. Am J Physiol Renal Physiol 315 F186-F198 (2018)
  86. Insights into evolutionary interaction patterns of the 'Phosphorylation Activation Segment' in kinase. Ahiri A, Garmes H, Podlipnik C, Aboulmouhajir A. Bioinformation 15 666-677 (2019)
  87. STE20 phosphorylation of AMPK-related kinases revealed by biochemical purifications combined with genetics. Liu Y, Wang TV, Cui Y, Li C, Jiang L, Rao Y. J Biol Chem 298 101928 (2022)
  88. Structure and RAF family kinase isoform selectivity of type II RAF inhibitors tovorafenib and naporafenib. Tkacik E, Li K, Gonzalez-Del Pino G, Ha BH, Vinals J, Park E, Beyett TS, Eck MJ. J Biol Chem 299 104634 (2023)
  89. A critical evaluation of protein kinase regulation by activation loop autophosphorylation. Reinhardt R, Leonard TA. Elife 12 e88210 (2023)
  90. Ste20-like kinase activity promotes meiotic resumption and spindle microtubule stability in mouse oocytes. Song K, Jiang X, Xu X, Chen Y, Zhang J, Tian Y, Wang Q, Weng J, Liang Y, Ma W. Cell Prolif 56 e13391 (2023)
  91. A conserved arginine within the αC-helix of Erk1/2 is a latch of autoactivation and of oncogenic capabilities. Soudah N, Baskin A, Smorodinsky-Atias K, Beenstock J, Ganon Y, Hayouka R, Aboraya M, Livnah O, Ilouz R, Engelberg D. J Biol Chem 299 105072 (2023)
  92. Divergent kinase WNG1 is regulated by phosphorylation of an atypical activation sub-domain. Dewangan PS, Beraki TG, Paiz EA, Appiah Mensah D, Chen Z, Reese ML. Biochem J 479 1877-1889 (2022)