spacer
spacer

PDBsum entry 1nyu

Go to PDB code: 
protein Protein-protein interface(s) links
Membrane protein/hormone/growth factor PDB id
1nyu

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
92 a.a. *
86 a.a. *
83 a.a. *
59 a.a. *
* Residue conservation analysis
PDB id:
1nyu
Name: Membrane protein/hormone/growth factor
Title: Crystal structure of activin a bound to the ecd of actriib
Structure: Activin receptor. Chain: a, c. Fragment: n-terminal extracellular domain (residues 19-119). Engineered: yes. Inhibin beta a chain. Chain: b, d. Fragment: mature domain (residues 311-426). Synonym: activin beta-a chain, erythroid differentiation protein, edf.
Source: Rattus norvegicus. Norway rat. Organism_taxid: 10116. Gene: actriib. Expressed in: spodoptera frugiperda. Expression_system_taxid: 7108. Homo sapiens. Human. Organism_taxid: 9606.
Biol. unit: Dimer (from PQS)
Resolution:
3.10Å     R-factor:   0.268     R-free:   0.291
Authors: T.B.Thompson,T.K.Woodruff,T.S.Jardetzky
Key ref:
T.B.Thompson et al. (2003). Structures of an ActRIIB:activin A complex reveal a novel binding mode for TGF-beta ligand:receptor interactions. EMBO J, 22, 1555-1566. PubMed id: 12660162 DOI: 10.1093/emboj/cdg156
Date:
13-Feb-03     Release date:   08-Apr-03    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P38445  (AVR2B_RAT) -  Activin receptor type-2B from Rattus norvegicus
Seq:
Struc:
513 a.a.
92 a.a.
Protein chain
Pfam   ArchSchema ?
P08476  (INHBA_HUMAN) -  Inhibin beta A chain from Homo sapiens
Seq:
Struc:
426 a.a.
86 a.a.
Protein chain
Pfam   ArchSchema ?
P38445  (AVR2B_RAT) -  Activin receptor type-2B from Rattus norvegicus
Seq:
Struc:
513 a.a.
83 a.a.
Protein chain
Pfam   ArchSchema ?
P08476  (INHBA_HUMAN) -  Inhibin beta A chain from Homo sapiens
Seq:
Struc:
426 a.a.
59 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: Chains A, C: E.C.2.7.11.30  - receptor protein serine/threonine kinase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction:
1. L-seryl-[receptor-protein] + ATP = O-phospho-L-seryl-[receptor- protein] + ADP + H+
2. L-threonyl-[receptor-protein] + ATP = O-phospho-L-threonyl-[receptor- protein] + ADP + H+
L-seryl-[receptor-protein]
+ ATP
= O-phospho-L-seryl-[receptor- protein]
+ ADP
+ H(+)
L-threonyl-[receptor-protein]
+ ATP
= O-phospho-L-threonyl-[receptor- protein]
+ ADP
+ H(+)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1093/emboj/cdg156 EMBO J 22:1555-1566 (2003)
PubMed id: 12660162  
 
 
Structures of an ActRIIB:activin A complex reveal a novel binding mode for TGF-beta ligand:receptor interactions.
T.B.Thompson, T.K.Woodruff, T.S.Jardetzky.
 
  ABSTRACT  
 
The TGF-beta superfamily of ligands and receptors stimulate cellular events in diverse processes ranging from cell fate specification in development to immune suppression. Activins define a major subgroup of TGF-beta ligands that regulate cellular differentiation, proliferation, activation and apoptosis. Activins signal through complexes formed with type I and type II serine/threonine kinase receptors. We have solved the crystal structure of activin A bound to the extracellular domain of a type II receptor, ActRIIB, revealing the details of this interaction. ActRIIB binds to the outer edges of the activin finger regions, with the two receptors juxtaposed in close proximity, in a mode that differs from TGF-beta3 binding to type II receptors. The dimeric activin A structure differs from other known TGF-beta ligand structures, adopting a compact folded-back conformation. The crystal structure of the complex is consistent with recruitment of two type I receptors into a close packed arrangement at the cell surface and suggests that diversity in the conformational arrangements of TGF-beta ligand dimers could influence cellular signaling processes.
 
  Selected figure(s)  
 
Figure 1.
Figure 1 Structure of the ActRIIB:activin A complex. (A) Ribbon diagram of the complex. The activin A dimer is shown in light and dark blue for each monomer and the fingers are labeled F1 -F4; ActRIIB models are represented in yellow and red CPK atoms with the hydrophobic cluster (Y60, W78, F101) are shown in grey. (B) Superposition of the P4[1] (black) and P4[1]2[1]2 (red and blue) crystal forms. (C) Electron density showing the edge of the hydrophobic interface and the intramolecular salt bridge between K102 and D104 (activin A shown in red; ActRIIB, yellow). (D) Expanded stereo view of the electron density of the complex interface. Electron density is from a simulated annealing composite omit map contoured at 1.5 and 0.9 , respectively.
Figure 4.
Figure 4 The ActRIIB:activin A interface. (A) Surfaces of interaction between activin A and ActRIIB. Molecular surfaces showing contact residues at the complex interface for the activin A monomer (right) and ActRIIB (left). Positively and negatively charged residues are colored blue and red, respectively, while polar and hydrophobic residues are colored purple and green, respectively. (B) Hydrophobic interactions at the ActRIIB:activin A interface. (C) Hydrophilic interactions at the ActRIIB:activin A interface.
 
  The above figures are reprinted from an Open Access publication published by Macmillan Publishers Ltd: EMBO J (2003, 22, 1555-1566) copyright 2003.  
  Figures were selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20209104 J.Zhu, E.L.Braun, S.Kohno, M.Antenos, E.Y.Xu, R.W.Cook, S.J.Lin, B.C.Moore, L.J.Guillette, T.S.Jardetzky, and T.K.Woodruff (2010).
Phylogenomic analyses reveal the evolutionary origin of the inhibin alpha-subunit, a unique TGFbeta superfamily antagonist.
  PLoS One, 5, e9457.  
20629020 L.Calvanese, D.Marasco, N.Doti, A.Saporito, G.D'Auria, L.Paolillo, M.Ruvo, and L.Falcigno (2010).
Structural investigations on the Nodal-Cripto binding: a theoretical and experimental approach.
  Biopolymers, 93, 1011-1021.  
19229295 A.Kotzsch, J.Nickel, A.Seher, W.Sebald, and T.D.Müller (2009).
Crystal structure analysis reveals a spring-loaded latch as molecular mechanism for GDF-5-type I receptor specificity.
  EMBO J, 28, 937-947.
PDB code: 3evs
19457927 C.Belville, J.D.Maréchal, S.Pennetier, P.Carmillo, L.Masgrau, L.Messika-Zeitoun, J.Galey, G.Machado, D.Treton, J.Gonzalès, J.Y.Picard, N.Josso, R.L.Cate, and N.di Clemente (2009).
Natural mutations of the anti-Mullerian hormone type II receptor found in persistent Mullerian duct syndrome affect ligand binding, signal transduction and cellular transport.
  Hum Mol Genet, 18, 3002-3013.  
19161338 J.Baardsnes, C.S.Hinck, A.P.Hinck, and M.D.O'Connor-McCourt (2009).
TbetaR-II discriminates the high- and low-affinity TGF-beta isoforms via two hydrogen-bonded ion pairs.
  Biochemistry, 48, 2146-2155.  
19644449 J.N.Cash, C.A.Rejon, A.C.McPherron, D.J.Bernard, and T.B.Thompson (2009).
The structure of myostatin:follistatin 288: insights into receptor utilization and heparin binding.
  EMBO J, 28, 2662-2676.
PDB code: 3hh2
19926516 J.Nickel, W.Sebald, J.C.Groppe, and T.D.Mueller (2009).
Intricacies of BMP receptor assembly.
  Cytokine Growth Factor Rev, 20, 367-377.  
19735544 K.Heinecke, A.Seher, W.Schmitz, T.D.Mueller, W.Sebald, and J.Nickel (2009).
Receptor oligomerization and beyond: a case study in bone morphogenetic proteins.
  BMC Biol, 7, 59.  
19193648 K.L.Walton, Y.Makanji, M.C.Wilce, K.L.Chan, D.M.Robertson, and C.A.Harrison (2009).
A common biosynthetic pathway governs the dimerization and secretion of inhibin and related transforming growth factor beta (TGFbeta) ligands.
  J Biol Chem, 284, 9311-9320.  
19273500 Y.Xia, and A.L.Schneyer (2009).
The biology of activin: recent advances in structure, regulation and function.
  J Endocrinol, 202, 1.  
18485004 A.Galat, G.Gross, P.Drevet, A.Sato, and A.Ménez (2008).
Conserved structural determinants in three-fingered protein domains.
  FEBS J, 275, 3207-3225.  
18160401 A.Kotzsch, J.Nickel, A.Seher, K.Heinecke, L.van Geersdaele, T.Herrmann, W.Sebald, and T.D.Mueller (2008).
Structure analysis of bone morphogenetic protein-2 type I receptor complexes reveals a mechanism of receptor inactivation in juvenile polyposis syndrome.
  J Biol Chem, 283, 5876-5887.
PDB codes: 2qj9 2qja 2qjb
18089557 J.A.Kelber, G.Shani, E.C.Booker, W.W.Vale, and P.C.Gray (2008).
Cripto is a noncompetitive activin antagonist that forms analogous signaling complexes with activin and nodal.
  J Biol Chem, 283, 4490-4500.  
18243111 J.Groppe, C.S.Hinck, P.Samavarchi-Tehrani, C.Zubieta, J.P.Schuermann, A.B.Taylor, P.M.Schwarz, J.L.Wrana, and A.P.Hinck (2008).
Cooperative assembly of TGF-beta superfamily signaling complexes is mediated by two disparate mechanisms and distinct modes of receptor binding.
  Mol Cell, 29, 157-168.
PDB code: 2pjy
17878607 K.Tsuchida, M.Nakatani, A.Uezumi, T.Murakami, and X.Cui (2008).
Signal transduction pathway through activin receptors as a therapeutic target of musculoskeletal diseases and cancer.
  Endocr J, 55, 11-21.  
18768470 R.Stamler, H.T.Keutmann, Y.Sidis, C.Kattamuri, A.Schneyer, and T.B.Thompson (2008).
The Structure of FSTL3{middle dot}Activin A Complex: DIFFERENTIAL BINDING OF N-TERMINAL DOMAINS INFLUENCES FOLLISTATIN-TYPE ANTAGONIST SPECIFICITY.
  J Biol Chem, 283, 32831-32838.
PDB code: 3b4v
18056265 R.V.Korupolu, U.Muenster, J.D.Read, W.Vale, and W.H.Fischer (2008).
Activin A/bone morphogenetic protein (BMP) chimeras exhibit BMP-like activity and antagonize activin and myostatin.
  J Biol Chem, 283, 3782-3790.  
18397882 Y.Makanji, K.L.Walton, M.C.Wilce, K.L.Chan, D.M.Robertson, and C.A.Harrison (2008).
Suppression of inhibin A biological activity by alterations in the binding site for betaglycan.
  J Biol Chem, 283, 16743-16751.  
17295905 D.Weber, A.Kotzsch, J.Nickel, S.Harth, A.Seher, U.Mueller, W.Sebald, and T.D.Mueller (2007).
A silent H-bond can be mutationally activated for high-affinity interaction of BMP-2 and activin type IIB receptor.
  BMC Struct Biol, 7, 6.
PDB codes: 2h62 2h64
17483092 J.L.Zhang, Y.Huang, L.Y.Qiu, J.Nickel, and W.Sebald (2007).
von Willebrand factor type C domain-containing proteins regulate bone morphogenetic protein signaling through different recognition mechanisms.
  J Biol Chem, 282, 20002-20014.  
17158104 P.M.Smallwood, J.Williams, Q.Xu, D.J.Leahy, and J.Nathans (2007).
Mutational analysis of Norrin-Frizzled4 recognition.
  J Biol Chem, 282, 4057-4068.  
17643432 P.T.Loverde, A.Osman, and A.Hinck (2007).
Schistosoma mansoni: TGF-beta signaling pathways.
  Exp Parasitol, 117, 304-317.  
17893364 S.Han, P.Loulakis, M.Griffor, and Z.Xie (2007).
Crystal structure of activin receptor type IIB kinase domain from human at 2.0 Angstrom resolution.
  Protein Sci, 16, 2272-2277.
PDB code: 2qlu
17140726 T.F.Lerch, M.Xu, T.S.Jardetzky, K.E.Mayo, I.Radhakrishnan, R.Kazer, L.D.Shea, and T.K.Woodruff (2007).
The structures that underlie normal reproductive function.
  Mol Cell Endocrinol, 267, 1-5.  
17409095 T.F.Lerch, S.Shimasaki, T.K.Woodruff, and T.S.Jardetzky (2007).
Structural and biophysical coupling of heparin and activin binding to follistatin isoform functions.
  J Biol Chem, 282, 15930-15939.
PDB code: 2p6a
17146441 T.Shimanuki, T.Hara, T.Furuya, T.Imamura, and K.Miyazono (2007).
Modulation of the functional binding sites for TGF-beta on the type II receptor leads to suppression of TGF-beta signaling.
  Oncogene, 26, 3311-3320.  
16482217 A.E.Harrington, S.A.Morris-Triggs, B.T.Ruotolo, C.V.Robinson, S.Ohnuma, and M.Hyvönen (2006).
Structural basis for the inhibition of activin signalling by follistatin.
  EMBO J, 25, 1035-1045.
PDB codes: 2arp 2arv
16672363 G.P.Allendorph, W.W.Vale, and S.Choe (2006).
Structure of the ternary signaling complex of a TGF-beta superfamily member.
  Proc Natl Acad Sci U S A, 103, 7643-7648.
PDB code: 2goo
16765900 X.Wang, R.H.Baloh, J.Milbrandt, and K.C.Garcia (2006).
Structure of artemin complexed with its receptor GFRalpha3: convergent recognition of glial cell line-derived neurotrophic factors.
  Structure, 14, 1083-1092.
PDB codes: 2gh0 2gyr 2gyz
16384533 A.J.Gore, D.P.Philips, W.L.Miller, and D.J.Bernard (2005).
Differential regulation of follicle stimulating hormone by activin A and TGFB1 in murine gonadotropes.
  Reprod Biol Endocrinol, 3, 73.  
15734148 C.A.Harrison, P.C.Gray, W.W.Vale, and D.M.Robertson (2005).
Antagonists of activin signaling: mechanisms and potential biological applications.
  Trends Endocrinol Metab, 16, 73-78.  
15948132 H.H.Keah, and M.T.Hearn (2005).
A molecular recognition paradigm: promiscuity associated with the ligand-receptor interactions of the activin members of the TGF-beta superfamily.
  J Mol Recognit, 18, 385-403.  
15851468 M.A.Brown, Q.Zhao, K.A.Baker, C.Naik, C.Chen, L.Pukac, M.Singh, T.Tsareva, Y.Parice, A.Mahoney, V.Roschke, I.Sanyal, and S.Choe (2005).
Crystal structure of BMP-9 and functional interactions with pro-region and receptors.
  J Biol Chem, 280, 25111-25118.
PDB code: 1zkz
15861141 P.Llinas, M.H.Le Du, H.Gårdsvoll, K.Danø, M.Ploug, B.Gilquin, E.A.Stura, and A.Ménez (2005).
Crystal structure of the human urokinase plasminogen activator receptor bound to an antagonist peptide.
  EMBO J, 24, 1655-1663.
PDB code: 1ywh
16186117 R.W.Cook, T.B.Thompson, S.P.Kurup, T.S.Jardetzky, and T.K.Woodruff (2005).
Structural basis for a functional antagonist in the transforming growth factor beta superfamily.
  J Biol Chem, 280, 40177-40186.  
16129674 U.Muenster, C.A.Harrison, C.Donaldson, W.Vale, and W.H.Fischer (2005).
An activin-A/C chimera exhibits activin and myostatin antagonistic properties.
  J Biol Chem, 280, 36626-36632.  
15123686 C.A.Harrison, P.C.Gray, W.H.Fischer, C.Donaldson, S.Choe, and W.Vale (2004).
An activin mutant with disrupted ALK4 binding blocks signaling via type II receptors.
  J Biol Chem, 279, 28036-28044.  
15475360 E.del Re, Y.Sidis, D.A.Fabrizio, H.Y.Lin, and A.Schneyer (2004).
Reconstitution and analysis of soluble inhibin and activin receptor complexes in a cell-free system.
  J Biol Chem, 279, 53126-53135.  
14627550 J.P.Hanrahan, S.M.Gregan, P.Mulsant, M.Mullen, G.H.Davis, R.Powell, and S.M.Galloway (2004).
Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries).
  Biol Reprod, 70, 900-909.  
14746809 M.de Caestecker (2004).
The transforming growth factor-beta superfamily of receptors.
  Cytokine Growth Factor Rev, 15, 1.  
15473835 S.J.Lee (2004).
Regulation of muscle mass by myostatin.
  Annu Rev Cell Dev Biol, 20, 61-86.  
14966532 S.K.Cheng, F.Olale, A.H.Brivanlou, and A.F.Schier (2004).
Lefty blocks a subset of TGFbeta signals by antagonizing EGF-CFC coreceptors.
  PLoS Biol, 2, E30.  
15064755 S.Keller, J.Nickel, J.L.Zhang, W.Sebald, and T.D.Mueller (2004).
Molecular recognition of BMP-2 and BMP receptor IA.
  Nat Struct Mol Biol, 11, 481-488.
PDB codes: 1reu 1rew
15044950 V.M.Leppänen, M.M.Bespalov, P.Runeberg-Roos, U.Puurand, A.Merits, M.Saarma, and A.Goldman (2004).
The structure of GFRalpha1 domain 3 reveals new insights into GDNF binding and RET activation.
  EMBO J, 23, 1452-1462.
PDB code: 1q8d
15449706 W.Sebald, J.Nickel, J.L.Zhang, and T.D.Mueller (2004).
Molecular recognition in bone morphogenetic protein (BMP)/receptor interaction.
  Biol Chem, 385, 697-710.  
14559178 W.Sebald, and T.D.Mueller (2003).
The interaction of BMP-7 and ActRII implicates a new mode of receptor assembly.
  Trends Biochem Sci, 28, 518-521.  
12809600 Y.Shi, and J.Massagué (2003).
Mechanisms of TGF-beta signaling from cell membrane to the nucleus.
  Cell, 113, 685-700.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer