|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
237 a.a.
|
 |
|
|
|
|
|
|
|
337 a.a.
|
 |
|
|
|
|
|
|
|
246 a.a.
|
 |
|
|
|
|
|
|
|
140 a.a.
|
 |
|
|
|
|
|
|
|
172 a.a.
|
 |
|
|
|
|
|
|
|
119 a.a.
|
 |
|
|
|
|
|
|
|
29 a.a.
|
 |
|
|
|
|
|
|
|
156 a.a.
|
 |
|
|
|
|
|
|
|
142 a.a.
|
 |
|
|
|
|
|
|
|
132 a.a.
|
 |
|
|
|
|
|
|
|
145 a.a.
|
 |
|
|
|
|
|
|
|
194 a.a.
|
 |
|
|
|
|
|
|
|
186 a.a.
|
 |
|
|
|
|
|
|
|
115 a.a.
|
 |
|
|
|
|
|
|
|
143 a.a.
|
 |
|
|
|
|
|
|
|
95 a.a.
|
 |
|
|
|
|
|
|
|
150 a.a.
|
 |
|
|
|
|
|
|
|
81 a.a.
|
 |
|
|
|
|
|
|
|
119 a.a.
|
 |
|
|
|
|
|
|
|
53 a.a.
|
 |
|
|
|
|
|
|
|
65 a.a.
|
 |
|
|
|
|
|
|
|
154 a.a.
|
 |
|
|
|
|
|
|
|
82 a.a.
|
 |
|
|
|
|
|
|
|
142 a.a.
|
 |
|
|
|
|
|
|
|
73 a.a.
|
 |
|
|
|
|
|
|
|
56 a.a.
|
 |
|
|
|
|
|
|
|
46 a.a.
|
 |
|
|
|
|
|
|
|
92 a.a.
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
_CL
×22
|
 |
|
|
|
|
|
|
|
_NA
×86
|
 |
|
|
|
|
|
|
|
_MG
×117
|
 |
|
|
|
|
|
|
|
_CD
×5
|
 |
|
|
|
|
|
|
|
__K
×2
|
 |
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Ribosome
|
 |
|
Title:
|
 |
The haloarcula marismortui 50s complexed with a pretranslocational intermediate in protein synthesis
|
|
Structure:
|
 |
23s rrna. Chain: 0. 5s rrna. Chain: 9. Cca. Chain: 3. Engineered: yes. Other_details: RNA analogue of 3' of deacylated-tRNA. Cc-pmn-pcb.
|
|
Source:
|
 |
Haloarcula marismortui. Organism_taxid: 2238. Synthetic: yes. Other_details: solid phase synthesis. Other_details: solid phase synthesis, followed by peptidyl transferase reaction.. Organism_taxid: 2238
|
|
Resolution:
|
 |
|
3.10Å
|
R-factor:
|
0.173
|
R-free:
|
0.220
|
|
|
Authors:
|
 |
T.M.Schmeing,A.C.Seila,J.L.Hansen,B.Freeborn,J.K.Soukup,S.A.Scaringe, S.A.Strobel,P.B.Moore,T.A.Steitz
|
Key ref:
|
 |
T.M.Schmeing
et al.
(2002).
A pre-translocational intermediate in protein synthesis observed in crystals of enzymatically active 50S subunits.
Nat Struct Biol,
9,
225-230.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
07-Jan-02
|
Release date:
|
22-Feb-02
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
P20276
(RL2_HALMA) -
Large ribosomal subunit protein uL2 from Haloarcula marismortui (strain ATCC 43049 / DSM 3752 / JCM 8966 / VKM B-1809)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
240 a.a.
237 a.a.*
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P20279
(RL3_HALMA) -
Large ribosomal subunit protein uL3 from Haloarcula marismortui (strain ATCC 43049 / DSM 3752 / JCM 8966 / VKM B-1809)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
338 a.a.
337 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P12735
(RL4_HALMA) -
Large ribosomal subunit protein uL4 from Haloarcula marismortui (strain ATCC 43049 / DSM 3752 / JCM 8966 / VKM B-1809)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
246 a.a.
246 a.a.*
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P14124
(RL5_HALMA) -
Large ribosomal subunit protein uL5 from Haloarcula marismortui (strain ATCC 43049 / DSM 3752 / JCM 8966 / VKM B-1809)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
177 a.a.
140 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P14135
(RL6_HALMA) -
Large ribosomal subunit protein uL6 from Haloarcula marismortui (strain ATCC 43049 / DSM 3752 / JCM 8966 / VKM B-1809)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
178 a.a.
172 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P12743
(RL7A_HALMA) -
Large ribosomal subunit protein eL8 from Haloarcula marismortui (strain ATCC 43049 / DSM 3752 / JCM 8966 / VKM B-1809)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
120 a.a.
119 a.a.*
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P15825
(RL10_HALMA) -
Large ribosomal subunit protein uL10 from Haloarcula marismortui (strain ATCC 43049 / DSM 3752 / JCM 8966 / VKM B-1809)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
348 a.a.
29 a.a.*
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P60617
(RL10E_HALMA) -
Large ribosomal subunit protein uL16 from Haloarcula marismortui (strain ATCC 43049 / DSM 3752 / JCM 8966 / VKM B-1809)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
177 a.a.
156 a.a.*
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P29198
(RL13_HALMA) -
Large ribosomal subunit protein uL13 from Haloarcula marismortui (strain ATCC 43049 / DSM 3752 / JCM 8966 / VKM B-1809)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
145 a.a.
142 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P22450
(RL14_HALMA) -
Large ribosomal subunit protein uL14 from Haloarcula marismortui (strain ATCC 43049 / DSM 3752 / JCM 8966 / VKM B-1809)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
132 a.a.
132 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P12737
(RL15_HALMA) -
Large ribosomal subunit protein uL15 from Haloarcula marismortui (strain ATCC 43049 / DSM 3752 / JCM 8966 / VKM B-1809)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
165 a.a.
145 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P60618
(RL15E_HALMA) -
Large ribosomal subunit protein eL15 from Haloarcula marismortui (strain ATCC 43049 / DSM 3752 / JCM 8966 / VKM B-1809)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
196 a.a.
194 a.a.*
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P14123
(RL18_HALMA) -
Large ribosomal subunit protein uL18 from Haloarcula marismortui (strain ATCC 43049 / DSM 3752 / JCM 8966 / VKM B-1809)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
187 a.a.
186 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P12733
(RL18E_HALMA) -
Large ribosomal subunit protein eL18 from Haloarcula marismortui (strain ATCC 43049 / DSM 3752 / JCM 8966 / VKM B-1809)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
116 a.a.
115 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P14119
(RL19E_HALMA) -
Large ribosomal subunit protein eL19 from Haloarcula marismortui (strain ATCC 43049 / DSM 3752 / JCM 8966 / VKM B-1809)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
149 a.a.
143 a.a.*
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P12734
(RL21_HALMA) -
Large ribosomal subunit protein eL21 from Haloarcula marismortui (strain ATCC 43049 / DSM 3752 / JCM 8966 / VKM B-1809)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
96 a.a.
95 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P10970
(RL22_HALMA) -
Large ribosomal subunit protein uL22 from Haloarcula marismortui (strain ATCC 43049 / DSM 3752 / JCM 8966 / VKM B-1809)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
155 a.a.
150 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P12732
(RL23_HALMA) -
Large ribosomal subunit protein uL23 from Haloarcula marismortui (strain ATCC 43049 / DSM 3752 / JCM 8966 / VKM B-1809)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
85 a.a.
81 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P10972
(RL24_HALMA) -
Large ribosomal subunit protein uL24 from Haloarcula marismortui (strain ATCC 43049 / DSM 3752 / JCM 8966 / VKM B-1809)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
120 a.a.
119 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P14116
(RL24E_HALMA) -
Large ribosomal subunit protein eL24 from Haloarcula marismortui (strain ATCC 43049 / DSM 3752 / JCM 8966 / VKM B-1809)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
67 a.a.
53 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P10971
(RL29_HALMA) -
Large ribosomal subunit protein uL29 from Haloarcula marismortui (strain ATCC 43049 / DSM 3752 / JCM 8966 / VKM B-1809)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
71 a.a.
65 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P14121
(RL30_HALMA) -
Large ribosomal subunit protein uL30 from Haloarcula marismortui (strain ATCC 43049 / DSM 3752 / JCM 8966 / VKM B-1809)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
154 a.a.
154 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P18138
(RL31_HALMA) -
Large ribosomal subunit protein eL31 from Haloarcula marismortui (strain ATCC 43049 / DSM 3752 / JCM 8966 / VKM B-1809)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
92 a.a.
82 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P12736
(RL32_HALMA) -
Large ribosomal subunit protein eL32 from Haloarcula marismortui (strain ATCC 43049 / DSM 3752 / JCM 8966 / VKM B-1809)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
241 a.a.
142 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P60619
(RL37A_HALMA) -
Large ribosomal subunit protein eL43 from Haloarcula marismortui (strain ATCC 43049 / DSM 3752 / JCM 8966 / VKM B-1809)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
92 a.a.
73 a.a.*
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P32410
(RL37_HALMA) -
Large ribosomal subunit protein eL37 from Haloarcula marismortui (strain ATCC 43049 / DSM 3752 / JCM 8966 / VKM B-1809)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
57 a.a.
56 a.a.
|
|
|
|
|
|
|
|
|
 |
 |
|
 |
|
|
 |
 |
 |
 |
Enzyme class:
|
 |
Chains A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, 1, 2:
E.C.?
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Nat Struct Biol
9:225-230
(2002)
|
|
PubMed id:
|
|
|
|
|
| |
|
A pre-translocational intermediate in protein synthesis observed in crystals of enzymatically active 50S subunits.
|
|
T.M.Schmeing,
A.C.Seila,
J.L.Hansen,
B.Freeborn,
J.K.Soukup,
S.A.Scaringe,
S.A.Strobel,
P.B.Moore,
T.A.Steitz.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The large ribosomal subunit catalyzes peptide bond formation during protein
synthesis. Its peptidyl transferase activity has often been studied using a
'fragment assay' that depends on high concentrations of methanol or ethanol.
Here we describe a version of this assay that does not require alcohol and use
it to show, both crystallographically and biochemically, that crystals of the
large ribosomal subunits from Haloarcula marismortui are enzymatically active.
Addition of these crystals to solutions containing substrates results in
formation of products, which ceases when crystals are removed. When substrates
are diffused into large subunit crystals, the subsequent structure shows that
products have formed. The CC-puromycin-peptide product is found bound to the
A-site and the deacylated CCA is bound to the P-site, with its 3prime prime or
minute OH near N3 A2486 (Escherichia coli A2451). Thus, this structure
represents a state that occurs after peptide bond formation but before the
hybrid state of protein synthesis.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 1.
Figure 1. Schematic of the modified fragment assay. The
substrates are shown on the left. CCA-phenylalanine-caproic
acid-biotin (CCA-pcb) and C-puromycin (C-pmn) undergo a
ribosome-dependent reaction in which a peptide bond is formed
between the -amino
group of C-pmn and the carbonyl ester of the phenylalanine
moiety of CCA-pcb, yielding the two products:
C-puromycin-phenylalanine-caproic acid-biotin (C-pmn-pcb) and a
deacylated CCA.
|
 |
Figure 4.
Figure 4. Structure of the new fragment reaction products bound
to the ribosome. a, A space-filling representation of the 50S
particle (RNA in white and protein in yellow) in complex with
products, with the three tRNAs as they were observed^25 binding
to the Thermus thermophilus 70S ribosome superimposed for
reference. The subunit has been split through the tunnel, and
the front half was removed to reveal the tunnel and the peptidyl
transferase site (boxed). The orientation is the crown view,
with the L1 protein to the left and the L7−L12 stalk to the
right. b, A close-up view of the active site shows that the
peptidyl-product (CC-Pmn-pcb) (green) binds the A-loop (yellow),
whereas the deacylated product (CCA) (violet) base pairs to the
P-loop (blue). The N3 of A2486 (A2451) (light blue) is in
proximity to the 3' OH of the deacylated product, and the base
of U2620 (U2585) (red) has moved near to the newly formed
peptidyl ester link and the 3' OH of dimethyl A76.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Macmillan Publishers Ltd:
Nat Struct Biol
(2002,
9,
225-230)
copyright 2002.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
J.Frank,
and
R.L.Gonzalez
(2010).
Structure and dynamics of a processive Brownian motor: the translating ribosome.
|
| |
Annu Rev Biochem,
79,
381-412.
|
 |
|
|
|
|
 |
D.N.Wilson
(2009).
The A-Z of bacterial translation inhibitors.
|
| |
Crit Rev Biochem Mol Biol,
44,
393-433.
|
 |
|
|
|
|
 |
M.Simonović,
and
T.A.Steitz
(2009).
A structural view on the mechanism of the ribosome-catalyzed peptide bond formation.
|
| |
Biochim Biophys Acta,
1789,
612-623.
|
 |
|
|
|
|
 |
P.V.Baranov,
M.Venin,
and
G.Provan
(2009).
Codon size reduction as the origin of the triplet genetic code.
|
| |
PLoS One,
4,
e5708.
|
 |
|
|
|
|
 |
S.Shoji,
S.E.Walker,
and
K.Fredrick
(2009).
Ribosomal translocation: one step closer to the molecular mechanism.
|
| |
ACS Chem Biol,
4,
93.
|
 |
|
|
|
|
 |
T.Dale,
R.P.Fahlman,
M.Olejniczak,
and
O.C.Uhlenbeck
(2009).
Specificity of the ribosomal A site for aminoacyl-tRNAs.
|
| |
Nucleic Acids Res,
37,
1202-1210.
|
 |
|
|
|
|
 |
X.Agirrezabala,
and
J.Frank
(2009).
Elongation in translation as a dynamic interaction among the ribosome, tRNA, and elongation factors EF-G and EF-Tu.
|
| |
Q Rev Biophys,
42,
159-200.
|
 |
|
|
|
|
 |
D.A.Kingery,
E.Pfund,
R.M.Voorhees,
K.Okuda,
I.Wohlgemuth,
D.E.Kitchen,
M.V.Rodnina,
and
S.A.Strobel
(2008).
An uncharged amine in the transition state of the ribosomal peptidyl transfer reaction.
|
| |
Chem Biol,
15,
493-500.
|
 |
|
|
|
|
 |
G.Blaha,
G.Gürel,
S.J.Schroeder,
P.B.Moore,
and
T.A.Steitz
(2008).
Mutations outside the anisomycin-binding site can make ribosomes drug-resistant.
|
| |
J Mol Biol,
379,
505-519.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.David-Eden,
and
Y.Mandel-Gutfreund
(2008).
Revealing unique properties of the ribosome using a network based analysis.
|
| |
Nucleic Acids Res,
36,
4641-4652.
|
 |
|
|
|
|
 |
J.C.Cochrane,
and
S.A.Strobel
(2008).
Riboswitch effectors as protein enzyme cofactors.
|
| |
RNA,
14,
993.
|
 |
|
|
|
|
 |
M.Simonović,
and
T.A.Steitz
(2008).
Cross-crystal averaging reveals that the structure of the peptidyl-transferase center is the same in the 70S ribosome and the 50S subunit.
|
| |
Proc Natl Acad Sci U S A,
105,
500-505.
|
 |
|
|
|
|
 |
X.Agirrezabala,
J.Lei,
J.L.Brunelle,
R.F.Ortiz-Meoz,
R.Green,
and
J.Frank
(2008).
Visualization of the hybrid state of tRNA binding promoted by spontaneous ratcheting of the ribosome.
|
| |
Mol Cell,
32,
190-197.
|
 |
|
|
|
|
 |
H.D.Kim,
J.D.Puglisi,
and
S.Chu
(2007).
Fluctuations of transfer RNAs between classical and hybrid states.
|
| |
Biophys J,
93,
3575-3582.
|
 |
|
|
|
|
 |
H.R.Jonker,
S.Ilin,
S.K.Grimm,
J.Wöhnert,
and
H.Schwalbe
(2007).
L11 domain rearrangement upon binding to RNA and thiostrepton studied by NMR spectroscopy.
|
| |
Nucleic Acids Res,
35,
441-454.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.L.Leach,
S.M.Swaney,
J.R.Colca,
W.G.McDonald,
J.R.Blinn,
L.M.Thomasco,
R.C.Gadwood,
D.Shinabarger,
L.Xiong,
and
A.S.Mankin
(2007).
The site of action of oxazolidinone antibiotics in living bacteria and in human mitochondria.
|
| |
Mol Cell,
26,
393-402.
|
 |
|
|
|
|
 |
L.R.Cruz-Vera,
A.New,
C.Squires,
and
C.Yanofsky
(2007).
Ribosomal features essential for tna operon induction: tryptophan binding at the peptidyl transferase center.
|
| |
J Bacteriol,
189,
3140-3146.
|
 |
|
|
|
|
 |
M.Amort,
B.Wotzel,
K.Bakowska-Zywicka,
M.D.Erlacher,
R.Micura,
and
N.Polacek
(2007).
An intact ribose moiety at A2602 of 23S rRNA is key to trigger peptidyl-tRNA hydrolysis during translation termination.
|
| |
Nucleic Acids Res,
35,
5130-5140.
|
 |
|
|
|
|
 |
M.Beringer,
and
M.V.Rodnina
(2007).
Importance of tRNA interactions with 23S rRNA for peptide bond formation on the ribosome: studies with substrate analogs.
|
| |
Biol Chem,
388,
687-691.
|
 |
|
|
|
|
 |
M.Beringer,
and
M.V.Rodnina
(2007).
The ribosomal peptidyl transferase.
|
| |
Mol Cell,
26,
311-321.
|
 |
|
|
|
|
 |
M.V.Rodnina,
M.Beringer,
and
W.Wintermeyer
(2007).
How ribosomes make peptide bonds.
|
| |
Trends Biochem Sci,
32,
20-26.
|
 |
|
|
|
|
 |
A.Korostelev,
S.Trakhanov,
M.Laurberg,
and
H.F.Noller
(2006).
Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements.
|
| |
Cell,
126,
1065-1077.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Mokdad,
M.V.Krasovska,
J.Sponer,
and
N.B.Leontis
(2006).
Structural and evolutionary classification of G/U wobble basepairs in the ribosome.
|
| |
Nucleic Acids Res,
34,
1326-1341.
|
 |
|
|
|
|
 |
D.J.Klein,
and
A.R.Ferré-D'Amaré
(2006).
Structural basis of glmS ribozyme activation by glucosamine-6-phosphate.
|
| |
Science,
313,
1752-1756.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
I.Wohlgemuth,
M.Beringer,
and
M.V.Rodnina
(2006).
Rapid peptide bond formation on isolated 50S ribosomal subunits.
|
| |
EMBO Rep,
7,
699-703.
|
 |
|
|
|
|
 |
J.L.Brunelle,
E.M.Youngman,
D.Sharma,
and
R.Green
(2006).
The interaction between C75 of tRNA and the A loop of the ribosome stimulates peptidyl transferase activity.
|
| |
RNA,
12,
33-39.
|
 |
|
|
|
|
 |
M.Selmer,
C.M.Dunham,
F.V.Murphy,
A.Weixlbaumer,
S.Petry,
A.C.Kelley,
J.R.Weir,
and
V.Ramakrishnan
(2006).
Structure of the 70S ribosome complexed with mRNA and tRNA.
|
| |
Science,
313,
1935-1942.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
N.S.Sato,
N.Hirabayashi,
I.Agmon,
A.Yonath,
and
T.Suzuki
(2006).
Comprehensive genetic selection revealed essential bases in the peptidyl-transferase center.
|
| |
Proc Natl Acad Sci U S A,
103,
15386-15391.
|
 |
|
|
|
|
 |
S.Mansouri,
E.Nourollahzadeh,
and
K.A.Hudak
(2006).
Pokeweed antiviral protein depurinates the sarcin/ricin loop of the rRNA prior to binding of aminoacyl-tRNA to the ribosomal A-site.
|
| |
RNA,
12,
1683-1692.
|
 |
|
|
|
|
 |
T.Tenson,
and
A.Mankin
(2006).
Antibiotics and the ribosome.
|
| |
Mol Microbiol,
59,
1664-1677.
|
 |
|
|
|
|
 |
W.H.McClain
(2006).
Surprising contribution to aminoacylation and translation of non-Watson-Crick pairs in tRNA.
|
| |
Proc Natl Acad Sci U S A,
103,
4570-4575.
|
 |
|
|
|
|
 |
B.A.Maguire,
A.D.Beniaminov,
H.Ramu,
A.S.Mankin,
and
R.A.Zimmermann
(2005).
A protein component at the heart of an RNA machine: the importance of protein l27 for the function of the bacterial ribosome.
|
| |
Mol Cell,
20,
427-435.
|
 |
|
|
|
|
 |
I.Agmon,
A.Bashan,
R.Zarivach,
and
A.Yonath
(2005).
Symmetry at the active site of the ribosome: structural and functional implications.
|
| |
Biol Chem,
386,
833-844.
|
 |
|
|
|
|
 |
J.A.Doudna,
and
J.R.Lorsch
(2005).
Ribozyme catalysis: not different, just worse.
|
| |
Nat Struct Mol Biol,
12,
395-402.
|
 |
|
|
|
|
 |
J.Nilsson,
and
P.Nissen
(2005).
Elongation factors on the ribosome.
|
| |
Curr Opin Struct Biol,
15,
349-354.
|
 |
|
|
|
|
 |
K.Y.Sanbonmatsu,
S.Joseph,
and
C.S.Tung
(2005).
Simulating movement of tRNA into the ribosome during decoding.
|
| |
Proc Natl Acad Sci U S A,
102,
15854-15859.
|
 |
|
|
|
|
 |
L.R.Cruz-Vera,
S.Rajagopal,
C.Squires,
and
C.Yanofsky
(2005).
Features of ribosome-peptidyl-tRNA interactions essential for tryptophan induction of tna operon expression.
|
| |
Mol Cell,
19,
333-343.
|
 |
|
|
|
|
 |
N.M.Abdi,
and
K.Fredrick
(2005).
Contribution of 16S rRNA nucleotides forming the 30S subunit A and P sites to translation in Escherichia coli.
|
| |
RNA,
11,
1624-1632.
|
 |
|
|
|
|
 |
N.Polacek,
and
A.S.Mankin
(2005).
The ribosomal peptidyl transferase center: structure, function, evolution, inhibition.
|
| |
Crit Rev Biochem Mol Biol,
40,
285-311.
|
 |
|
|
|
|
 |
S.Trobro,
and
J.Aqvist
(2005).
Mechanism of peptide bond synthesis on the ribosome.
|
| |
Proc Natl Acad Sci U S A,
102,
12395-12400.
|
 |
|
|
|
|
 |
T.Dale,
and
O.C.Uhlenbeck
(2005).
Binding of misacylated tRNAs to the ribosomal A site.
|
| |
RNA,
11,
1610-1615.
|
 |
|
|
|
|
 |
T.M.Schmeing,
K.S.Huang,
D.E.Kitchen,
S.A.Strobel,
and
T.A.Steitz
(2005).
Structural insights into the roles of water and the 2' hydroxyl of the P site tRNA in the peptidyl transferase reaction.
|
| |
Mol Cell,
20,
437-448.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Sievers,
M.Beringer,
M.V.Rodnina,
and
R.Wolfenden
(2004).
The ribosome as an entropy trap.
|
| |
Proc Natl Acad Sci U S A,
101,
7897-7901.
|
 |
|
|
|
|
 |
A.Yonath,
and
A.Bashan
(2004).
Ribosomal crystallography: initiation, peptide bond formation, and amino acid polymerization are hampered by antibiotics.
|
| |
Annu Rev Microbiol,
58,
233-251.
|
 |
|
|
|
|
 |
C.S.Tung,
and
K.Y.Sanbonmatsu
(2004).
Atomic model of the Thermus thermophilus 70S ribosome developed in silico.
|
| |
Biophys J,
87,
2714-2722.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
D.J.Klein,
P.B.Moore,
and
T.A.Steitz
(2004).
The contribution of metal ions to the structural stability of the large ribosomal subunit.
|
| |
RNA,
10,
1366-1379.
|
 |
|
|
|
|
 |
D.Sharma,
D.R.Southworth,
and
R.Green
(2004).
EF-G-independent reactivity of a pre-translocation-state ribosome complex with the aminoacyl tRNA substrate puromycin supports an intermediate (hybrid) state of tRNA binding.
|
| |
RNA,
10,
102-113.
|
 |
|
|
|
|
 |
F.Schlünzen,
E.Pyetan,
P.Fucini,
A.Yonath,
and
J.M.Harms
(2004).
Inhibition of peptide bond formation by pleuromutilins: the structure of the 50S ribosomal subunit from Deinococcus radiodurans in complex with tiamulin.
|
| |
Mol Microbiol,
54,
1287-1294.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.S.Weinger,
K.M.Parnell,
S.Dorner,
R.Green,
and
S.A.Strobel
(2004).
Substrate-assisted catalysis of peptide bond formation by the ribosome.
|
| |
Nat Struct Mol Biol,
11,
1101-1106.
|
 |
|
|
|
|
 |
M.Lovmar,
T.Tenson,
and
M.Ehrenberg
(2004).
Kinetics of macrolide action: the josamycin and erythromycin cases.
|
| |
J Biol Chem,
279,
53506-53515.
|
 |
|
|
|
|
 |
P.S.Klosterman,
D.K.Hendrix,
M.Tamura,
S.R.Holbrook,
and
S.E.Brenner
(2004).
Three-dimensional motifs from the SCOR, structural classification of RNA database: extruded strands, base triples, tetraloops and U-turns.
|
| |
Nucleic Acids Res,
32,
2342-2352.
|
 |
|
|
|
|
 |
S.C.Blanchard,
H.D.Kim,
R.L.Gonzalez,
J.D.Puglisi,
and
S.Chu
(2004).
tRNA dynamics on the ribosome during translation.
|
| |
Proc Natl Acad Sci U S A,
101,
12893-12898.
|
 |
|
|
|
|
 |
A.Bashan,
I.Agmon,
R.Zarivach,
F.Schluenzen,
J.Harms,
R.Berisio,
H.Bartels,
F.Franceschi,
T.Auerbach,
H.A.Hansen,
E.Kossoy,
M.Kessler,
and
A.Yonath
(2003).
Structural basis of the ribosomal machinery for peptide bond formation, translocation, and nascent chain progression.
|
| |
Mol Cell,
11,
91.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Bashan,
R.Zarivach,
F.Schluenzen,
I.Agmon,
J.Harms,
T.Auerbach,
D.Baram,
R.Berisio,
H.Bartels,
H.A.Hansen,
P.Fucini,
D.Wilson,
M.Peretz,
M.Kessler,
and
A.Yonath
(2003).
Ribosomal crystallography: peptide bond formation and its inhibition.
|
| |
Biopolymers,
70,
19-41.
|
 |
|
|
|
|
 |
A.Yonath
(2003).
Structural insight into functional aspects of ribosomal RNA targeting.
|
| |
Chembiochem,
4,
1008-1017.
|
 |
|
|
|
|
 |
C.M.Duarte,
L.M.Wadley,
and
A.M.Pyle
(2003).
RNA structure comparison, motif search and discovery using a reduced representation of RNA conformational space.
|
| |
Nucleic Acids Res,
31,
4755-4761.
|
 |
|
|
|
|
 |
D.J.Scarlett,
K.K.McCaughan,
D.N.Wilson,
and
W.P.Tate
(2003).
Mapping functionally important motifs SPF and GGQ of the decoding release factor RF2 to the Escherichia coli ribosome by hydroxyl radical footprinting. Implications for macromolecular mimicry and structural changes in RF2.
|
| |
J Biol Chem,
278,
15095-15104.
|
 |
|
|
|
|
 |
D.R.Southworth,
and
R.Green
(2003).
Ribosomal translocation: sparsomycin pushes the button.
|
| |
Curr Biol,
13,
R652-R654.
|
 |
|
|
|
|
 |
E.P.Plant,
K.L.Jacobs,
J.W.Harger,
A.Meskauskas,
J.L.Jacobs,
J.L.Baxter,
A.N.Petrov,
and
J.D.Dinman
(2003).
The 9-A solution: how mRNA pseudoknots promote efficient programmed -1 ribosomal frameshifting.
|
| |
RNA,
9,
168-174.
|
 |
|
|
|
|
 |
I.Agmon,
T.Auerbach,
D.Baram,
H.Bartels,
A.Bashan,
R.Berisio,
P.Fucini,
H.A.Hansen,
J.Harms,
M.Kessler,
M.Peretz,
F.Schluenzen,
A.Yonath,
and
R.Zarivach
(2003).
On peptide bond formation, translocation, nascent protein progression and the regulatory properties of ribosomes. Derived on 20 October 2002 at the 28th FEBS Meeting in Istanbul.
|
| |
Eur J Biochem,
270,
2543-2556.
|
 |
|
|
|
|
 |
J.Dresios,
P.Panopoulos,
K.Suzuki,
and
D.Synetos
(2003).
A dispensable yeast ribosomal protein optimizes peptidyltransferase activity and affects translocation.
|
| |
J Biol Chem,
278,
3314-3322.
|
 |
|
|
|
|
 |
K.Fredrick,
and
H.F.Noller
(2003).
Catalysis of ribosomal translocation by sparsomycin.
|
| |
Science,
300,
1159-1162.
|
 |
|
|
|
|
 |
M.Beringer,
S.Adio,
W.Wintermeyer,
and
M.Rodnina
(2003).
The G2447A mutation does not affect ionization of a ribosomal group taking part in peptide bond formation.
|
| |
RNA,
9,
919-922.
|
 |
|
|
|
|
 |
M.V.Rodnina,
and
W.Wintermeyer
(2003).
Peptide bond formation on the ribosome: structure and mechanism.
|
| |
Curr Opin Struct Biol,
13,
334-340.
|
 |
|
|
|
|
 |
M.Valle,
A.Zavialov,
J.Sengupta,
U.Rawat,
M.Ehrenberg,
and
J.Frank
(2003).
Locking and unlocking of ribosomal motions.
|
| |
Cell,
114,
123-134.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
P.B.Moore,
and
T.A.Steitz
(2003).
After the ribosome structures: how does peptidyl transferase work?
|
| |
RNA,
9,
155-159.
|
 |
|
|
|
|
 |
P.B.Moore,
and
T.A.Steitz
(2003).
The structural basis of large ribosomal subunit function.
|
| |
Annu Rev Biochem,
72,
813-850.
|
 |
|
|
|
|
 |
S.Dorner,
C.Panuschka,
W.Schmid,
and
A.Barta
(2003).
Mononucleotide derivatives as ribosomal P-site substrates reveal an important contribution of the 2'-OH to activity.
|
| |
Nucleic Acids Res,
31,
6536-6542.
|
 |
|
|
|
|
 |
S.Joseph
(2003).
After the ribosome structure: how does translocation work?
|
| |
RNA,
9,
160-164.
|
 |
|
|
|
|
 |
T.A.Steitz,
and
P.B.Moore
(2003).
RNA, the first macromolecular catalyst: the ribosome is a ribozyme.
|
| |
Trends Biochem Sci,
28,
411-418.
|
 |
|
|
|
|
 |
T.M.Schmeing,
P.B.Moore,
and
T.A.Steitz
(2003).
Structures of deacylated tRNA mimics bound to the E site of the large ribosomal subunit.
|
| |
RNA,
9,
1345-1352.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
I.Tozik,
Q.Huang,
C.Zwieb,
and
J.Eichler
(2002).
Reconstitution of the signal recognition particle of the halophilic archaeon Haloferax volcanii.
|
| |
Nucleic Acids Res,
30,
4166-4175.
|
 |
|
|
|
|
 |
J.L.Hansen,
T.M.Schmeing,
P.B.Moore,
and
T.A.Steitz
(2002).
Structural insights into peptide bond formation.
|
| |
Proc Natl Acad Sci U S A,
99,
11670-11675.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.M.Parnell,
A.C.Seila,
and
S.A.Strobel
(2002).
Evidence against stabilization of the transition state oxyanion by a pKa-perturbed RNA base in the peptidyl transferase center.
|
| |
Proc Natl Acad Sci U S A,
99,
11658-11663.
|
 |
|
|
|
|
 |
M.C.Ganoza,
M.C.Kiel,
and
H.Aoki
(2002).
Evolutionary conservation of reactions in translation.
|
| |
Microbiol Mol Biol Rev,
66,
460.
|
 |
|
|
|
|
 |
S.I.Chamberlin,
E.J.Merino,
and
K.M.Weeks
(2002).
Catalysis of amide synthesis by RNA phosphodiester and hydroxyl groups.
|
| |
Proc Natl Acad Sci U S A,
99,
14688-14693.
|
 |
|
|
|
|
 |
W.A.Decatur,
and
M.J.Fournier
(2002).
rRNA modifications and ribosome function.
|
| |
Trends Biochem Sci,
27,
344-351.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
| |