|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
553 a.a.
|
 |
|
|
|
|
|
|
|
425 a.a.
|
 |
|
|
|
|
|
|
|
214 a.a.
|
 |
|
|
|
|
|
|
|
220 a.a.
|
 |
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Transferase/DNA-RNA hybrid
|
 |
|
Title:
|
 |
Crystal structure of HIV-1 reverse transcriptase in complex with a polypurine tract rna:dna
|
|
Structure:
|
 |
5'-r( Up Cp Ap Gp Cp Cp Ap Cp Up Up Up Up Up Ap Ap Ap Ap Gp Ap Ap Ap Ap G)-3'. Chain: e. Engineered: yes. 5'-d( Cp Tp Tp Tp Tp Cp Tp Tp Tp Tp Ap Ap Ap Ap Ap Gp Tp Gp Gp Cp Tp G)-3'. Chain: f. Engineered: yes. HIV-1 reverse transcriptase.
|
|
Source:
|
 |
Synthetic: yes. Human immunodeficiency virus 1. Organism_taxid: 11676. Gene: pol. Expressed in: escherichia coli. Expression_system_taxid: 562. Mus musculus. House mouse. Organism_taxid: 10090.
|
|
Biol. unit:
|
 |
Tetramer (from
)
|
|
Resolution:
|
 |
|
3.00Å
|
R-factor:
|
0.274
|
R-free:
|
0.316
|
|
|
Authors:
|
 |
S.G.Sarafianos,K.Das,C.Tantillo,A.D.Clark Jr.,J.Ding,J.Whitcomb, P.L.Boyer,S.H.Hughes,E.Arnold
|
Key ref:
|
 |
S.G.Sarafianos
et al.
(2001).
Crystal structure of HIV-1 reverse transcriptase in complex with a polypurine tract RNA:DNA.
EMBO J,
20,
1449-1461.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
22-Jan-01
|
Release date:
|
26-Mar-01
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
P03366
(POL_HV1B1) -
Gag-Pol polyprotein from Human immunodeficiency virus type 1 group M subtype B (isolate BH10)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
1447 a.a.
553 a.a.*
|
|
|
|
|
|
|
|
|
 |
 |
|
|
|
|
P03366
(POL_HV1B1) -
Gag-Pol polyprotein from Human immunodeficiency virus type 1 group M subtype B (isolate BH10)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
1447 a.a.
425 a.a.*
|
|
|
|
|
|
|
|
|
 |
 |
|
 |
|
|
 |
 |
 |
 |
Enzyme class 2:
|
 |
Chains A, B:
E.C.2.7.7.-
- ?????
|
|
 |
 |
 |
 |
 |
Enzyme class 3:
|
 |
Chains A, B:
E.C.2.7.7.49
- RNA-directed Dna polymerase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
DNA(n) + a 2'-deoxyribonucleoside 5'-triphosphate = DNA(n+1) + diphosphate
|
 |
 |
 |
 |
 |
DNA(n)
|
+
|
2'-deoxyribonucleoside 5'-triphosphate
|
=
|
DNA(n+1)
|
+
|
diphosphate
|
|
 |
 |
 |
 |
 |
 |
 |
 |
Enzyme class 4:
|
 |
Chains A, B:
E.C.2.7.7.7
- DNA-directed Dna polymerase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
DNA(n) + a 2'-deoxyribonucleoside 5'-triphosphate = DNA(n+1) + diphosphate
|
 |
 |
 |
 |
 |
DNA(n)
|
+
|
2'-deoxyribonucleoside 5'-triphosphate
|
=
|
DNA(n+1)
|
+
|
diphosphate
|
|
 |
 |
 |
 |
 |
 |
 |
 |
Enzyme class 5:
|
 |
Chains A, B:
E.C.3.1.-.-
|
|
 |
 |
 |
 |
 |
Enzyme class 6:
|
 |
Chains A, B:
E.C.3.1.13.2
- exoribonuclease H.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
Exonucleolytic cleavage to 5'-phosphomonoester oligonucleotides in both 5'- to 3'- and 3'- to 5'-directions.
|
 |
 |
 |
 |
 |
Enzyme class 7:
|
 |
Chains A, B:
E.C.3.1.26.13
- retroviral ribonuclease H.
|
|
 |
 |
 |
 |
 |
Enzyme class 8:
|
 |
Chains A, B:
E.C.3.4.23.16
- HIV-1 retropepsin.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
Specific for a P1 residue that is hydrophobic, and P1' variable, but often Pro.
|
 |
 |
 |
 |
 |
 |
 |
|
Note, where more than one E.C. class is given (as above), each may
correspond to a different protein domain or, in the case of polyprotein
precursors, to a different mature protein.
|
|
 |
|
Molecule diagrams generated from .mol files obtained from the
KEGG ftp site
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
| |
|
DOI no:
|
EMBO J
20:1449-1461
(2001)
|
|
PubMed id:
|
|
|
|
|
| |
|
Crystal structure of HIV-1 reverse transcriptase in complex with a polypurine tract RNA:DNA.
|
|
S.G.Sarafianos,
K.Das,
C.Tantillo,
A.D.Clark,
J.Ding,
J.M.Whitcomb,
P.L.Boyer,
S.H.Hughes,
E.Arnold.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
We have determined the 3.0 A resolution structure of wild-type HIV-1 reverse
transcriptase in complex with an RNA:DNA oligonucleotide whose sequence includes
a purine-rich segment from the HIV-1 genome called the polypurine tract (PPT).
The PPT is resistant to ribonuclease H (RNase H) cleavage and is used as a
primer for second DNA strand synthesis. The 'RNase H primer grip', consisting of
amino acids that interact with the DNA primer strand, may contribute to RNase H
catalysis and cleavage specificity. Cleavage specificity is also controlled by
the width of the minor groove and the trajectory of the RNA:DNA, both of which
are sequence dependent. An unusual 'unzipping' of 7 bp occurs in the adenine
stretch of the PPT: an unpaired base on the template strand takes the base
pairing out of register and then, following two offset base pairs, an unpaired
base on the primer strand re-establishes the normal register. The structural
aberration extends to the RNase H active site and may play a role in the
resistance of PPT to RNase H cleavage.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 3.
Figure 3 Stereo view of a ribbon representation of the structure
of HIV-1 RT in complex with the polypurine RNA:DNA. The fingers,
palm, thumb, connection and RNase H subdomains of p66 are
colored blue, red, green, yellow and orange, respectively. The
p51 subunit is colored gray. The RNA template and DNA primer
strands are shown in magenta and blue, respectively.
|
 |
Figure 5.
Figure 5 Simulated annealing (F[o] - F[c]) omit electron density
maps contoured at the 2 level
at the polymerase active site (1) (omitting nucleic acid) and of
the unpaired residue of template (2) (omitting unpaired residue
Tem-15-Ade).
|
 |
|
|
|
| |
The above figures are
reprinted
from an Open Access publication published by Macmillan Publishers Ltd:
EMBO J
(2001,
20,
1449-1461)
copyright 2001.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
M.Lapkouski,
L.Tian,
J.T.Miller,
S.F.Le Grice,
and
W.Yang
(2013).
Complexes of HIV-1 RT, NNRTI and RNA/DNA hybrid reveal a structure compatible with RNA degradation.
|
| |
Nat Struct Mol Biol,
20,
230-236.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.Das,
S.E.Martinez,
J.D.Bauman,
and
E.Arnold
(2012).
HIV-1 reverse transcriptase complex with DNA and nevirapine reveals non-nucleoside inhibition mechanism.
|
| |
Nat Struct Mol Biol,
19,
253-259.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Herschhorn,
and
A.Hizi
(2010).
Retroviral reverse transcriptases.
|
| |
Cell Mol Life Sci,
67,
2717-2747.
|
 |
|
|
|
|
 |
A.K.Upadhyay,
T.T.Talele,
and
V.N.Pandey
(2010).
Impact of template overhang-binding region of HIV-1 RT on the binding and orientation of the duplex region of the template-primer.
|
| |
Mol Cell Biochem,
338,
19-33.
|
 |
|
|
|
|
 |
C.S.Adamson,
and
E.O.Freed
(2010).
Novel approaches to inhibiting HIV-1 replication.
|
| |
Antiviral Res,
85,
119-141.
|
 |
|
|
|
|
 |
C.Zhang,
N.Ding,
K.Chen,
and
R.Yang
(2010).
Complex positive selection pressures drive the evolution of HIV-1 with different co-receptor tropisms.
|
| |
Sci China Life Sci,
53,
1204-1214.
|
 |
|
|
|
|
 |
J.T.Olimpo,
and
J.J.DeStefano
(2010).
Duplex structural differences and not 2'-hydroxyls explain the more stable binding of HIV-reverse transcriptase to RNA-DNA versus DNA-DNA.
|
| |
Nucleic Acids Res,
38,
4426-4435.
|
 |
|
|
|
|
 |
J.Wang,
R.A.Bambara,
L.M.Demeter,
and
C.Dykes
(2010).
Reduced fitness in cell culture of HIV-1 with nonnucleoside reverse transcriptase inhibitor-resistant mutations correlates with relative levels of reverse transcriptase content and RNase H activity in virions.
|
| |
J Virol,
84,
9377-9389.
|
 |
|
|
|
|
 |
K.Singh,
B.Marchand,
K.A.Kirby,
E.Michailidis,
and
S.G.Sarafianos
(2010).
Structural Aspects of Drug Resistance and Inhibition of HIV-1 Reverse Transcriptase.
|
| |
Viruses,
2,
606-638.
|
 |
|
|
|
|
 |
M.Götte,
J.W.Rausch,
B.Marchand,
S.Sarafianos,
and
S.F.Le Grice
(2010).
Reverse transcriptase in motion: conformational dynamics of enzyme-substrate interactions.
|
| |
Biochim Biophys Acta,
1804,
1202-1212.
|
 |
|
|
|
|
 |
M.Mitchell,
A.Gillis,
M.Futahashi,
H.Fujiwara,
and
E.Skordalakes
(2010).
Structural basis for telomerase catalytic subunit TERT binding to RNA template and telomeric DNA.
|
| |
Nat Struct Mol Biol,
17,
513-518.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
N.Sluis-Cremer,
K.Moore,
J.Radzio,
S.Sonza,
and
G.Tachedjian
(2010).
N348I in HIV-1 reverse transcriptase decreases susceptibility to tenofovir and etravirine in combination with other resistance mutations.
|
| |
AIDS,
24,
317-319.
|
 |
|
|
|
|
 |
R.Hu,
F.Barbault,
F.Maurel,
M.Delamar,
and
R.Zhang
(2010).
Molecular dynamics simulations of 2-amino-6-arylsulphonylbenzonitriles analogues as HIV inhibitors: interaction modes and binding free energies.
|
| |
Chem Biol Drug Des,
76,
518-526.
|
 |
|
|
|
|
 |
S.Chung,
M.Wendeler,
J.W.Rausch,
G.Beilhartz,
M.Gotte,
B.R.O'Keefe,
A.Bermingham,
J.A.Beutler,
S.Liu,
X.Zhuang,
and
S.F.Le Grice
(2010).
Structure-activity analysis of vinylogous urea inhibitors of human immunodeficiency virus-encoded ribonuclease H.
|
| |
Antimicrob Agents Chemother,
54,
3913-3921.
|
 |
|
|
|
|
 |
S.J.Schultz,
M.Zhang,
and
J.J.Champoux
(2010).
Multiple nucleotide preferences determine cleavage-site recognition by the HIV-1 and M-MuLV RNases H.
|
| |
J Mol Biol,
397,
161-178.
|
 |
|
|
|
|
 |
S.Liu,
B.T.Harada,
J.T.Miller,
S.F.Le Grice,
and
X.Zhuang
(2010).
Initiation complex dynamics direct the transitions between distinct phases of early HIV reverse transcription.
|
| |
Nat Struct Mol Biol,
17,
1453-1460.
|
 |
|
|
|
|
 |
D.M.Himmel,
K.A.Maegley,
T.A.Pauly,
J.D.Bauman,
K.Das,
C.Dharia,
A.D.Clark,
K.Ryan,
M.J.Hickey,
R.A.Love,
S.H.Hughes,
S.Bergqvist,
and
E.Arnold
(2009).
Structure of HIV-1 reverse transcriptase with the inhibitor beta-Thujaplicinol bound at the RNase H active site.
|
| |
Structure,
17,
1625-1635.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.J.Champoux,
and
S.J.Schultz
(2009).
Ribonuclease H: properties, substrate specificity and roles in retroviral reverse transcription.
|
| |
FEBS J,
276,
1506-1516.
|
 |
|
|
|
|
 |
J.M.Seckler,
K.J.Howard,
M.D.Barkley,
and
P.L.Wintrode
(2009).
Solution structural dynamics of HIV-1 reverse transcriptase heterodimer.
|
| |
Biochemistry,
48,
7646-7655.
|
 |
|
|
|
|
 |
K.A.Delviks-Frankenberry,
G.N.Nikolenko,
F.Maldarelli,
S.Hase,
Y.Takebe,
and
V.K.Pathak
(2009).
Subtype-specific differences in the human immunodeficiency virus type 1 reverse transcriptase connection subdomain of CRF01_AE are associated with higher levels of resistance to 3'-azido-3'-deoxythymidine.
|
| |
J Virol,
83,
8502-8513.
|
 |
|
|
|
|
 |
K.B.Turner,
H.Y.Yi-Brunozzi,
R.G.Brinson,
J.P.Marino,
D.Fabris,
and
S.F.Le Grice
(2009).
SHAMS: combining chemical modification of RNA with mass spectrometry to examine polypurine tract-containing RNA/DNA hybrids.
|
| |
RNA,
15,
1605-1613.
|
 |
|
|
|
|
 |
K.Post,
B.Kankia,
S.Gopalakrishnan,
V.Yang,
E.Cramer,
P.Saladores,
R.J.Gorelick,
J.Guo,
K.Musier-Forsyth,
and
J.G.Levin
(2009).
Fidelity of plus-strand priming requires the nucleic acid chaperone activity of HIV-1 nucleocapsid protein.
|
| |
Nucleic Acids Res,
37,
1755-1766.
|
 |
|
|
|
|
 |
L.L.Dunn,
M.J.McWilliams,
K.Das,
E.Arnold,
and
S.H.Hughes
(2009).
Mutations in the thumb allow human immunodeficiency virus type 1 reverse transcriptase to be cleaved by protease in virions.
|
| |
J Virol,
83,
12336-12344.
|
 |
|
|
|
|
 |
R.G.Brinson,
K.B.Turner,
H.Y.Yi-Brunozzi,
S.F.Le Grice,
D.Fabris,
and
J.P.Marino
(2009).
Probing anomalous structural features in polypurine tract-containing RNA-DNA hybrids with neomycin B.
|
| |
Biochemistry,
48,
6988-6997.
|
 |
|
|
|
|
 |
S.G.Sarafianos,
B.Marchand,
K.Das,
D.M.Himmel,
M.A.Parniak,
S.H.Hughes,
and
E.Arnold
(2009).
Structure and function of HIV-1 reverse transcriptase: molecular mechanisms of polymerization and inhibition.
|
| |
J Mol Biol,
385,
693-713.
|
 |
|
|
|
|
 |
S.J.Schultz,
M.Zhang,
and
J.J.Champoux
(2009).
Preferred sequences within a defined cleavage window specify DNA 3' end-directed cleavages by retroviral RNases H.
|
| |
J Biol Chem,
284,
32225-32238.
|
 |
|
|
|
|
 |
S.T.Rigby,
K.P.Van Nostrand,
A.E.Rose,
R.J.Gorelick,
D.H.Mathews,
and
R.A.Bambara
(2009).
Factors that determine the efficiency of HIV-1 strand transfer initiated at a specific site.
|
| |
J Mol Biol,
394,
694-707.
|
 |
|
|
|
|
 |
A.F.Santos,
R.B.Lengruber,
E.A.Soares,
A.Jere,
E.Sprinz,
A.M.Martinez,
J.Silveira,
F.S.Sion,
V.K.Pathak,
and
M.A.Soares
(2008).
Conservation patterns of HIV-1 RT connection and RNase H domains: identification of new mutations in NRTI-treated patients.
|
| |
PLoS ONE,
3,
e1781.
|
 |
|
|
|
|
 |
A.Hachiya,
E.N.Kodama,
S.G.Sarafianos,
M.M.Schuckmann,
Y.Sakagami,
M.Matsuoka,
M.Takiguchi,
H.Gatanaga,
and
S.Oka
(2008).
Amino acid mutation N348I in the connection subdomain of human immunodeficiency virus type 1 reverse transcriptase confers multiclass resistance to nucleoside and nonnucleoside reverse transcriptase inhibitors.
|
| |
J Virol,
82,
3261-3270.
|
 |
|
|
|
|
 |
C.Dash,
B.J.Scarth,
C.Badorrek,
M.Götte,
and
S.F.Le Grice
(2008).
Examining the ribonuclease H primer grip of HIV-1 reverse transcriptase by charge neutralization of RNA/DNA hybrids.
|
| |
Nucleic Acids Res,
36,
6363-6371.
|
 |
|
|
|
|
 |
D.Michalowski,
R.Chitima-Matsiga,
D.M.Held,
and
D.H.Burke
(2008).
Novel bimodular DNA aptamers with guanosine quadruplexes inhibit phylogenetically diverse HIV-1 reverse transcriptases.
|
| |
Nucleic Acids Res,
36,
7124-7135.
|
 |
|
|
|
|
 |
D.T.Jacob,
and
J.J.DeStefano
(2008).
A new role for HIV nucleocapsid protein in modulating the specificity of plus strand priming.
|
| |
Virology,
378,
385-396.
|
 |
|
|
|
|
 |
E.A.Abbondanzieri,
G.Bokinsky,
J.W.Rausch,
J.X.Zhang,
S.F.Le Grice,
and
X.Zhuang
(2008).
Dynamic binding orientations direct activity of HIV reverse transcriptase.
|
| |
Nature,
453,
184-189.
|
 |
|
|
|
|
 |
E.Arnold,
and
S.G.Sarafianos
(2008).
Molecular biology: an HIV secret uncovered.
|
| |
Nature,
453,
169-170.
|
 |
|
|
|
|
 |
E.P.Tchesnokov,
A.Obikhod,
R.F.Schinazi,
and
M.Götte
(2008).
Delayed Chain Termination Protects the Anti-hepatitis B Virus Drug Entecavir from Excision by HIV-1 Reverse Transcriptase.
|
| |
J Biol Chem,
283,
34218-34228.
|
 |
|
|
|
|
 |
H.Y.Yi-Brunozzi,
R.G.Brinson,
D.M.Brabazon,
D.Lener,
S.F.Le Grice,
and
J.P.Marino
(2008).
High-resolution NMR analysis of the conformations of native and base analog substituted retroviral and LTR-retrotransposon PPT primers.
|
| |
Chem Biol,
15,
254-262.
|
 |
|
|
|
|
 |
J.D.Podlevsky,
C.J.Bley,
R.V.Omana,
X.Qi,
and
J.J.Chen
(2008).
The telomerase database.
|
| |
Nucleic Acids Res,
36,
D339-D343.
|
 |
|
|
|
|
 |
J.Oh,
M.J.McWilliams,
J.G.Julias,
and
S.H.Hughes
(2008).
Mutations in the U5 region adjacent to the primer binding site affect tRNA cleavage by human immunodeficiency virus type 1 reverse transcriptase in vivo.
|
| |
J Virol,
82,
719-727.
|
 |
|
|
|
|
 |
K.B.Turner,
R.G.Brinson,
H.Y.Yi-Brunozzi,
J.W.Rausch,
J.T.Miller,
S.F.Le Grice,
J.P.Marino,
and
D.Fabris
(2008).
Structural probing of the HIV-1 polypurine tract RNA:DNA hybrid using classic nucleic acid ligands.
|
| |
Nucleic Acids Res,
36,
2799-2810.
|
 |
|
|
|
|
 |
K.W.Chang,
J.Oh,
W.G.Alvord,
and
S.H.Hughes
(2008).
The effects of alternate polypurine tracts (PPTs) and mutations of sequences adjacent to the PPT on viral replication and cleavage specificity of the Rous sarcoma virus reverse transcriptase.
|
| |
J Virol,
82,
8592-8604.
|
 |
|
|
|
|
 |
M.Ehteshami,
G.L.Beilhartz,
B.J.Scarth,
E.P.Tchesnokov,
S.McCormick,
B.Wynhoven,
P.R.Harrigan,
and
M.Götte
(2008).
Connection domain mutations N348I and A360V in HIV-1 reverse transcriptase enhance resistance to 3'-azido-3'-deoxythymidine through both RNase H-dependent and -independent mechanisms.
|
| |
J Biol Chem,
283,
22222-22232.
|
 |
|
|
|
|
 |
M.L.Coté,
and
M.J.Roth
(2008).
Murine leukemia virus reverse transcriptase: structural comparison with HIV-1 reverse transcriptase.
|
| |
Virus Res,
134,
186-202.
|
 |
|
|
|
|
 |
M.Wendeler,
H.F.Lee,
A.Bermingham,
J.T.Miller,
O.Chertov,
M.K.Bona,
N.S.Baichoo,
M.Ehteshami,
J.Beutler,
B.R.O'Keefe,
M.Götte,
M.Kvaratskhelia,
and
S.Le Grice
(2008).
Vinylogous ureas as a novel class of inhibitors of reverse transcriptase-associated ribonuclease H activity.
|
| |
ACS Chem Biol,
3,
635-644.
|
 |
|
|
|
|
 |
S.J.Schultz,
and
J.J.Champoux
(2008).
RNase H activity: structure, specificity, and function in reverse transcription.
|
| |
Virus Res,
134,
86.
|
 |
|
|
|
|
 |
S.Liu,
E.A.Abbondanzieri,
J.W.Rausch,
S.F.Le Grice,
and
X.Zhuang
(2008).
Slide into action: dynamic shuttling of HIV reverse transcriptase on nucleic acid substrates.
|
| |
Science,
322,
1092-1097.
|
 |
|
|
|
|
 |
U.D.Priyakumar,
and
A.D.Mackerell
(2008).
Atomic detail investigation of the structure and dynamics of DNA.RNA hybrids: a molecular dynamics study.
|
| |
J Phys Chem B,
112,
1515-1524.
|
 |
|
|
|
|
 |
B.A.Paulson,
M.Zhang,
S.J.Schultz,
and
J.J.Champoux
(2007).
Substitution of alanine for tyrosine-64 in the fingers subdomain of M-MuLV reverse transcriptase impairs strand displacement synthesis and blocks viral replication in vivo.
|
| |
Virology,
366,
361-376.
|
 |
|
|
|
|
 |
B.Roquebert,
M.Wirden,
A.Simon,
J.Deval,
C.Katlama,
V.Calvez,
and
A.G.Marcelin
(2007).
Relationship between mutations in HIV-1 RNase H domain and nucleoside reverse transcriptase inhibitors resistance mutations in naïve and pre-treated HIV infected patients.
|
| |
J Med Virol,
79,
207-211.
|
 |
|
|
|
|
 |
D.M.Held,
J.D.Kissel,
S.J.Thacker,
D.Michalowski,
D.Saran,
J.Ji,
R.W.Hardy,
J.J.Rossi,
and
D.H.Burke
(2007).
Cross-clade inhibition of recombinant human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus SIVcpz reverse transcriptases by RNA pseudoknot aptamers.
|
| |
J Virol,
81,
5375-5384.
|
 |
|
|
|
|
 |
J.A.Grobler,
G.Dornadula,
M.R.Rice,
A.L.Simcoe,
D.J.Hazuda,
and
M.D.Miller
(2007).
HIV-1 reverse transcriptase plus-strand initiation exhibits preferential sensitivity to non-nucleoside reverse transcriptase inhibitors in vitro.
|
| |
J Biol Chem,
282,
8005-8010.
|
 |
|
|
|
|
 |
J.Deval,
C.M.D'Abramo,
Z.Zhao,
S.McCormick,
D.Coutsinos,
S.Hess,
M.Kvaratskhelia,
and
M.Götte
(2007).
High resolution footprinting of the hepatitis C virus polymerase NS5B in complex with RNA.
|
| |
J Biol Chem,
282,
16907-16916.
|
 |
|
|
|
|
 |
J.H.Brehm,
D.Koontz,
J.D.Meteer,
V.Pathak,
N.Sluis-Cremer,
and
J.W.Mellors
(2007).
Selection of mutations in the connection and RNase H domains of human immunodeficiency virus type 1 reverse transcriptase that increase resistance to 3'-azido-3'-dideoxythymidine.
|
| |
J Virol,
81,
7852-7859.
|
 |
|
|
|
|
 |
J.W.Rausch,
and
S.F.Le Grice
(2007).
Purine analog substitution of the HIV-1 polypurine tract primer defines regions controlling initiation of plus-strand DNA synthesis.
|
| |
Nucleic Acids Res,
35,
256-268.
|
 |
|
|
|
|
 |
K.A.Delviks-Frankenberry,
G.N.Nikolenko,
R.Barr,
and
V.K.Pathak
(2007).
Mutations in human immunodeficiency virus type 1 RNase H primer grip enhance 3'-azido-3'-deoxythymidine resistance.
|
| |
J Virol,
81,
6837-6845.
|
 |
|
|
|
|
 |
K.M.Haines,
and
D.D.Loeb
(2007).
The sequence of the RNA primer and the DNA template influence the initiation of plus-strand DNA synthesis in hepatitis B virus.
|
| |
J Mol Biol,
370,
471-480.
|
 |
|
|
|
|
 |
L.V.Loukachevitch,
and
M.Egli
(2007).
Crystallization and preliminary X-ray analysis of Escherichia coli RNase HI-dsRNA complexes.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
63,
84-88.
|
 |
|
|
|
|
 |
M.Nowotny,
S.A.Gaidamakov,
R.Ghirlando,
S.M.Cerritelli,
R.J.Crouch,
and
W.Yang
(2007).
Structure of human RNase H1 complexed with an RNA/DNA hybrid: insight into HIV reverse transcription.
|
| |
Mol Cell,
28,
264-276.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
R.M.Yarrington,
J.Chen,
E.C.Bolton,
and
J.D.Boeke
(2007).
Mn2+ suppressor mutations and biochemical communication between Ty1 reverse transcriptase and RNase H domains.
|
| |
J Virol,
81,
9004-9012.
|
 |
|
|
|
|
 |
S.Yamazaki,
L.Tan,
G.Mayer,
J.S.Hartig,
J.N.Song,
S.Reuter,
T.Restle,
S.D.Laufer,
D.Grohmann,
H.G.Kräusslich,
J.Bajorath,
and
M.Famulok
(2007).
Aptamer displacement identifies alternative small-molecule target sites that escape viral resistance.
|
| |
Chem Biol,
14,
804-812.
|
 |
|
|
|
|
 |
V.Purohit,
B.P.Roques,
B.Kim,
and
R.A.Bambara
(2007).
Mechanisms that prevent template inactivation by HIV-1 reverse transcriptase RNase H cleavages.
|
| |
J Biol Chem,
282,
12598-12609.
|
 |
|
|
|
|
 |
Y.Timsit,
and
S.Bombard
(2007).
The 1.3 A resolution structure of the RNA tridecamer r(GCGUUUGAAACGC): metal ion binding correlates with base unstacking and groove contraction.
|
| |
RNA,
13,
2098-2107.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.Dash,
J.P.Marino,
and
S.F.Le Grice
(2006).
Examining Ty3 polypurine tract structure and function by nucleoside analog interference.
|
| |
J Biol Chem,
281,
2773-2783.
|
 |
|
|
|
|
 |
C.Dash,
T.S.Fisher,
V.R.Prasad,
and
S.F.Le Grice
(2006).
Examining interactions of HIV-1 reverse transcriptase with single-stranded template nucleotides by nucleoside analog interference.
|
| |
J Biol Chem,
281,
27873-27881.
|
 |
|
|
|
|
 |
D.Lim,
G.G.Gregorio,
C.Bingman,
E.Martinez-Hackert,
W.A.Hendrickson,
and
S.P.Goff
(2006).
Crystal structure of the moloney murine leukemia virus RNase H domain.
|
| |
J Virol,
80,
8379-8389.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.M.Himmel,
S.G.Sarafianos,
S.Dharmasena,
M.M.Hossain,
K.McCoy-Simandle,
T.Ilina,
A.D.Clark,
J.L.Knight,
J.G.Julias,
P.K.Clark,
K.Krogh-Jespersen,
R.M.Levy,
S.H.Hughes,
M.A.Parniak,
and
E.Arnold
(2006).
HIV-1 reverse transcriptase structure with RNase H inhibitor dihydroxy benzoyl naphthyl hydrazone bound at a novel site.
|
| |
ACS Chem Biol,
1,
702-712.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
F.Li,
S.Sarkhel,
C.J.Wilds,
Z.Wawrzak,
T.P.Prakash,
M.Manoharan,
and
M.Egli
(2006).
2'-Fluoroarabino- and arabinonucleic acid show different conformations, resulting in deviating RNA affinities and processing of their heteroduplexes with RNA by RNase H.
|
| |
Biochemistry,
45,
4141-4152.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.W.Noah,
S.Park,
J.T.Whitt,
J.Perutka,
W.Frey,
and
A.M.Lambowitz
(2006).
Atomic force microscopy reveals DNA bending during group II intron ribonucleoprotein particle integration into double-stranded DNA.
|
| |
Biochemistry,
45,
12424-12435.
|
 |
|
|
|
|
 |
M.E.Hamburgh,
K.A.Curr,
M.Monaghan,
V.R.Rao,
S.Tripathi,
B.D.Preston,
S.Sarafianos,
E.Arnold,
T.Darden,
and
V.R.Prasad
(2006).
Structural determinants of slippage-mediated mutations by human immunodeficiency virus type 1 reverse transcriptase.
|
| |
J Biol Chem,
281,
7421-7428.
|
 |
|
|
|
|
 |
R.Galetto,
V.Giacomoni,
M.Véron,
and
M.Negroni
(2006).
Dissection of a circumscribed recombination hot spot in HIV-1 after a single infectious cycle.
|
| |
J Biol Chem,
281,
2711-2720.
|
 |
|
|
|
|
 |
S.A.Shabalina,
A.N.Spiridonov,
and
A.Y.Ogurtsov
(2006).
Computational models with thermodynamic and composition features improve siRNA design.
|
| |
BMC Bioinformatics,
7,
65.
|
 |
|
|
|
|
 |
S.J.Schultz,
M.Zhang,
and
J.J.Champoux
(2006).
Sequence, distance, and accessibility are determinants of 5'-end-directed cleavages by retroviral RNases H.
|
| |
J Biol Chem,
281,
1943-1955.
|
 |
|
|
|
|
 |
W.P.Bohlayer,
and
J.J.DeStefano
(2006).
Tighter binding of HIV reverse transcriptase to RNA-DNA versus DNA-DNA results mostly from interactions in the polymerase domain and requires just a small stretch of RNA-DNA.
|
| |
Biochemistry,
45,
7628-7638.
|
 |
|
|
|
|
 |
A.Atwood-Moore,
K.Ejebe,
and
H.L.Levin
(2005).
Specific recognition and cleavage of the plus-strand primer by reverse transcriptase.
|
| |
J Virol,
79,
14863-14875.
|
 |
|
|
|
|
 |
A.Bibillo,
D.Lener,
A.Tewari,
and
S.F.Le Grice
(2005).
Interaction of the Ty3 reverse transcriptase thumb subdomain with template-primer.
|
| |
J Biol Chem,
280,
30282-30290.
|
 |
|
|
|
|
 |
A.Bibillo,
D.Lener,
G.J.Klarmann,
and
S.F.Le Grice
(2005).
Functional roles of carboxylate residues comprising the DNA polymerase active site triad of Ty3 reverse transcriptase.
|
| |
Nucleic Acids Res,
33,
171-181.
|
 |
|
|
|
|
 |
A.Mulky,
and
J.C.Kappes
(2005).
Analysis of human immunodeficiency virus type 1 reverse transcriptase subunit structure/function in the context of infectious virions and human target cells.
|
| |
Antimicrob Agents Chemother,
49,
3762-3769.
|
 |
|
|
|
|
 |
G.Tachedjian,
J.Radzio,
and
N.Sluis-Cremer
(2005).
Relationship between enzyme activity and dimeric structure of recombinant HIV-1 reverse transcriptase.
|
| |
Proteins,
60,
5.
|
 |
|
|
|
|
 |
H.Y.Yi-Brunozzi,
D.M.Brabazon,
D.Lener,
S.F.Le Grice,
and
J.P.Marino
(2005).
A ribose sugar conformational switch in the LTR-retrotransposon Ty3 polypurine tract-containing RNA/DNA hybrid.
|
| |
J Am Chem Soc,
127,
16344-16345.
|
 |
|
|
|
|
 |
H.Y.Yi-Brunozzi,
and
S.F.Le Grice
(2005).
Investigating HIV-1 polypurine tract geometry via targeted insertion of abasic lesions in the (-)-DNA template and (+)-RNA primer.
|
| |
J Biol Chem,
280,
20154-20162.
|
 |
|
|
|
|
 |
J.G.Renisio,
S.Cosquer,
I.Cherrak,
S.El Antri,
O.Mauffret,
and
S.Fermandjian
(2005).
Pre-organized structure of viral DNA at the binding-processing site of HIV-1 integrase.
|
| |
Nucleic Acids Res,
33,
1970-1981.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.L.Mbisa,
G.N.Nikolenko,
and
V.K.Pathak
(2005).
Mutations in the RNase H primer grip domain of murine leukemia virus reverse transcriptase decrease efficiency and accuracy of plus-strand DNA transfer.
|
| |
J Virol,
79,
419-427.
|
 |
|
|
|
|
 |
K.W.Chang,
J.G.Julias,
W.G.Alvord,
J.Oh,
and
S.H.Hughes
(2005).
Alternate polypurine tracts (PPTs) affect the rous sarcoma virus RNase H cleavage specificity and reveal a preferential cleavage following a GA dinucleotide sequence at the PPT-U3 junction.
|
| |
J Virol,
79,
13694-13704.
|
 |
|
|
|
|
 |
M.Nowotny,
S.A.Gaidamakov,
R.J.Crouch,
and
W.Yang
(2005).
Crystal structures of RNase H bound to an RNA/DNA hybrid: substrate specificity and metal-dependent catalysis.
|
| |
Cell,
121,
1005-1016.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.A.Gaidamakov,
I.I.Gorshkova,
P.Schuck,
P.J.Steinbach,
H.Yamada,
R.J.Crouch,
and
S.M.Cerritelli
(2005).
Eukaryotic RNases H1 act processively by interactions through the duplex RNA-binding domain.
|
| |
Nucleic Acids Res,
33,
2166-2175.
|
 |
|
|
|
|
 |
V.Purohit,
M.Balakrishnan,
B.Kim,
and
R.A.Bambara
(2005).
Evidence that HIV-1 reverse transcriptase employs the DNA 3' end-directed primary/secondary RNase H cleavage mechanism during synthesis and strand transfer.
|
| |
J Biol Chem,
280,
40534-40543.
|
 |
|
|
|
|
 |
V.Sundaravaradan,
T.Hahn,
and
N.Ahmad
(2005).
Conservation of functional domains and limited heterogeneity of HIV-1 reverse transcriptase gene following vertical transmission.
|
| |
Retrovirology,
2,
36.
|
 |
|
|
|
|
 |
Y.R.Yuan,
Y.Pei,
J.B.Ma,
V.Kuryavyi,
M.Zhadina,
G.Meister,
H.Y.Chen,
Z.Dauter,
T.Tuschl,
and
D.J.Patel
(2005).
Crystal structure of A. aeolicus argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC-mediated mRNA cleavage.
|
| |
Mol Cell,
19,
405-419.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.Lingel,
and
E.Izaurralde
(2004).
RNAi: finding the elusive endonuclease.
|
| |
RNA,
10,
1675-1679.
|
 |
|
|
|
|
 |
A.Mulky,
S.G.Sarafianos,
E.Arnold,
X.Wu,
and
J.C.Kappes
(2004).
Subunit-specific analysis of the human immunodeficiency virus type 1 reverse transcriptase in vivo.
|
| |
J Virol,
78,
7089-7096.
|
 |
|
|
|
|
 |
C.Dash,
H.Y.Yi-Brunozzi,
and
S.F.Le Grice
(2004).
Two modes of HIV-1 polypurine tract cleavage are affected by introducing locked nucleic acid analogs into the (-) DNA template.
|
| |
J Biol Chem,
279,
37095-37102.
|
 |
|
|
|
|
 |
C.Dash,
J.W.Rausch,
and
S.F.Le Grice
(2004).
Using pyrrolo-deoxycytosine to probe RNA/DNA hybrids containing the human immunodeficiency virus type-1 3' polypurine tract.
|
| |
Nucleic Acids Res,
32,
1539-1547.
|
 |
|
|
|
|
 |
E.N.Peletskaya,
A.A.Kogon,
S.Tuske,
E.Arnold,
and
S.H.Hughes
(2004).
Nonnucleoside inhibitor binding affects the interactions of the fingers subdomain of human immunodeficiency virus type 1 reverse transcriptase with DNA.
|
| |
J Virol,
78,
3387-3397.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.Chon,
R.Nakano,
N.Ohtani,
M.Haruki,
K.Takano,
M.Morikawa,
and
S.Kanaya
(2004).
Gene cloning and biochemical characterizations of thermostable ribonuclease HIII from Bacillus stearothermophilus.
|
| |
Biosci Biotechnol Biochem,
68,
2138-2147.
|
 |
|
|
|
|
 |
J.D.Pata,
W.G.Stirtan,
S.W.Goldstein,
and
T.A.Steitz
(2004).
Structure of HIV-1 reverse transcriptase bound to an inhibitor active against mutant reverse transcriptases resistant to other nonnucleoside inhibitors.
|
| |
Proc Natl Acad Sci U S A,
101,
10548-10553.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.G.Julias,
M.J.McWilliams,
S.G.Sarafianos,
W.G.Alvord,
E.Arnold,
and
S.H.Hughes
(2004).
Effects of mutations in the G tract of the human immunodeficiency virus type 1 polypurine tract on virus replication and RNase H cleavage.
|
| |
J Virol,
78,
13315-13324.
|
 |
|
|
|
|
 |
J.Winshell,
B.A.Paulson,
B.D.Buelow,
and
J.J.Champoux
(2004).
Requirements for DNA unpairing during displacement synthesis by HIV-1 reverse transcriptase.
|
| |
J Biol Chem,
279,
52924-52933.
|
 |
|
|
|
|
 |
M.B.Zwick,
H.K.Komori,
R.L.Stanfield,
S.Church,
M.Wang,
P.W.Parren,
R.Kunert,
H.Katinger,
I.A.Wilson,
and
D.R.Burton
(2004).
The long third complementarity-determining region of the heavy chain is important in the activity of the broadly neutralizing anti-human immunodeficiency virus type 1 antibody 2F5.
|
| |
J Virol,
78,
3155-3161.
|
 |
|
|
|
|
 |
N.Sluis-Cremer,
N.A.Temiz,
and
I.Bahar
(2004).
Conformational changes in HIV-1 reverse transcriptase induced by nonnucleoside reverse transcriptase inhibitor binding.
|
| |
Curr HIV Res,
2,
323-332.
|
 |
|
|
|
|
 |
P.L.Boyer,
C.R.Stenbak,
P.K.Clark,
M.L.Linial,
and
S.H.Hughes
(2004).
Characterization of the polymerase and RNase H activities of human foamy virus reverse transcriptase.
|
| |
J Virol,
78,
6112-6121.
|
 |
|
|
|
|
 |
S.Tuske,
S.G.Sarafianos,
A.D.Clark,
J.Ding,
L.K.Naeger,
K.L.White,
M.D.Miller,
C.S.Gibbs,
P.L.Boyer,
P.Clark,
G.Wang,
B.L.Gaffney,
R.A.Jones,
D.M.Jerina,
S.H.Hughes,
and
E.Arnold
(2004).
Structures of HIV-1 RT-DNA complexes before and after incorporation of the anti-AIDS drug tenofovir.
|
| |
Nat Struct Mol Biol,
11,
469-474.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
B.Sharma,
N.Kaushik,
A.Upadhyay,
S.Tripathi,
K.Singh,
and
V.N.Pandey
(2003).
A positively charged side chain at position 154 on the beta8-alphaE loop of HIV-1 RT is required for stable ternary complex formation.
|
| |
Nucleic Acids Res,
31,
5167-5174.
|
 |
|
|
|
|
 |
D.Lener,
M.Kvaratskhelia,
and
S.F.Le Grice
(2003).
Nonpolar thymine isosteres in the Ty3 polypurine tract DNA template modulate processing and provide a model for its recognition by Ty3 reverse transcriptase.
|
| |
J Biol Chem,
278,
26526-26532.
|
 |
|
|
|
|
 |
G.J.Klarmann,
X.Chen,
T.W.North,
and
B.D.Preston
(2003).
Incorporation of uracil into minus strand DNA affects the specificity of plus strand synthesis initiation during lentiviral reverse transcription.
|
| |
J Biol Chem,
278,
7902-7909.
|
 |
|
|
|
|
 |
G.W.Han,
M.L.Kopka,
D.Langs,
M.R.Sawaya,
and
R.E.Dickerson
(2003).
Crystal structure of an RNA.DNA hybrid reveals intermolecular intercalation: dimer formation by base-pair swapping.
|
| |
Proc Natl Acad Sci U S A,
100,
9214-9219.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.G.Julias,
M.J.McWilliams,
S.G.Sarafianos,
W.G.Alvord,
E.Arnold,
and
S.H.Hughes
(2003).
Mutation of amino acids in the connection domain of human immunodeficiency virus type 1 reverse transcriptase that contact the template-primer affects RNase H activity.
|
| |
J Virol,
77,
8548-8554.
|
 |
|
|
|
|
 |
J.T.Nielsen,
P.C.Stein,
and
M.Petersen
(2003).
NMR structure of an alpha-L-LNA:RNA hybrid: structural implications for RNase H recognition.
|
| |
Nucleic Acids Res,
31,
5858-5867.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.W.Rausch,
J.Qu,
H.Y.Yi-Brunozzi,
E.T.Kool,
and
S.F.Le Grice
(2003).
Hydrolysis of RNA/DNA hybrids containing nonpolar pyrimidine isosteres defines regions essential for HIV type 1 polypurine tract selection.
|
| |
Proc Natl Acad Sci U S A,
100,
11279-11284.
|
 |
|
|
|
|
 |
K.Klumpp,
J.Q.Hang,
S.Rajendran,
Y.Yang,
A.Derosier,
P.Wong Kai In,
H.Overton,
K.E.Parkes,
N.Cammack,
and
J.A.Martin
(2003).
Two-metal ion mechanism of RNA cleavage by HIV RNase H and mechanism-based design of selective HIV RNase H inhibitors.
|
| |
Nucleic Acids Res,
31,
6852-6859.
|
 |
|
|
|
|
 |
K.Post,
J.Guo,
K.J.Howard,
M.D.Powell,
J.T.Miller,
A.Hizi,
S.F.Le Grice,
and
J.G.Levin
(2003).
Human immunodeficiency virus type 2 reverse transcriptase activity in model systems that mimic steps in reverse transcription.
|
| |
J Virol,
77,
7623-7634.
|
 |
|
|
|
|
 |
L.M.Mansky,
E.Le Rouzic,
S.Benichou,
and
L.C.Gajary
(2003).
Influence of reverse transcriptase variants, drugs, and Vpr on human immunodeficiency virus type 1 mutant frequencies.
|
| |
J Virol,
77,
2071-2080.
|
 |
|
|
|
|
 |
M.J.McWilliams,
J.G.Julias,
S.G.Sarafianos,
W.G.Alvord,
E.Arnold,
and
S.H.Hughes
(2003).
Mutations in the 5' end of the human immunodeficiency virus type 1 polypurine tract affect RNase H cleavage specificity and virus titer.
|
| |
J Virol,
77,
11150-11157.
|
 |
|
|
|
|
 |
M.Tonelli,
N.B.Ulyanov,
T.M.Billeci,
B.Karwowski,
P.Guga,
W.J.Stec,
and
T.L.James
(2003).
Dynamic NMR structures of [Rp]- and [Sp]-phosphorothioated DNA-RNA hybrids: is flexibility required for RNase H recognition?
|
| |
Biophys J,
85,
2525-2538.
|
 |
|
|
|
|
 |
N.Sluis-Cremer,
E.Kempner,
and
M.A.Parniak
(2003).
Structure-activity relationships in HIV-1 reverse transcriptase revealed by radiation target analysis.
|
| |
Protein Sci,
12,
2081-2086.
|
 |
|
|
|
|
 |
P.J.Rothwell,
S.Berger,
O.Kensch,
S.Felekyan,
M.Antonik,
B.M.Wöhrl,
T.Restle,
R.S.Goody,
and
C.A.Seidel
(2003).
Multiparameter single-molecule fluorescence spectroscopy reveals heterogeneity of HIV-1 reverse transcriptase:primer/template complexes.
|
| |
Proc Natl Acad Sci U S A,
100,
1655-1660.
|
 |
|
|
|
|
 |
S.G.Sarafianos,
A.D.Clark,
S.Tuske,
C.J.Squire,
K.Das,
D.Sheng,
P.Ilankumaran,
A.R.Ramesha,
H.Kroth,
J.M.Sayer,
D.M.Jerina,
P.L.Boyer,
S.H.Hughes,
and
E.Arnold
(2003).
Trapping HIV-1 reverse transcriptase before and after translocation on DNA.
|
| |
J Biol Chem,
278,
16280-16288.
|
 |
|
|
|
|
 |
S.J.Schultz,
M.Zhang,
and
J.J.Champoux
(2003).
Specific cleavages by RNase H facilitate initiation of plus-strand RNA synthesis by Moloney murine leukemia virus.
|
| |
J Virol,
77,
5275-5285.
|
 |
|
|
|
|
 |
T.S.Fisher,
T.Darden,
and
V.R.Prasad
(2003).
Mutations proximal to the minor groove-binding track of human immunodeficiency virus type 1 reverse transcriptase differentially affect utilization of RNA versus DNA as template.
|
| |
J Virol,
77,
5837-5845.
|
 |
|
|
|
|
 |
W.Huang,
A.Gamarnik,
K.Limoli,
C.J.Petropoulos,
and
J.M.Whitcomb
(2003).
Amino acid substitutions at position 190 of human immunodeficiency virus type 1 reverse transcriptase increase susceptibility to delavirdine and impair virus replication.
|
| |
J Virol,
77,
1512-1523.
|
 |
|
|
|
|
 |
Y.Iwatani,
A.E.Rosen,
J.Guo,
K.Musier-Forsyth,
and
J.G.Levin
(2003).
Efficient initiation of HIV-1 reverse transcription in vitro. Requirement for RNA sequences downstream of the primer binding site abrogated by nucleocapsid protein-dependent primer-template interactions.
|
| |
J Biol Chem,
278,
14185-14195.
|
 |
|
|
|
|
 |
Z.Sevilya,
S.Loya,
N.Adir,
and
A.Hizi
(2003).
The ribonuclease H activity of the reverse transcriptases of human immunodeficiency viruses type 1 and type 2 is modulated by residue 294 of the small subunit.
|
| |
Nucleic Acids Res,
31,
1481-1487.
|
 |
|
|
|
|
 |
A.Bibillo,
and
T.H.Eickbush
(2002).
High processivity of the reverse transcriptase from a non-long terminal repeat retrotransposon.
|
| |
J Biol Chem,
277,
34836-34845.
|
 |
|
|
|
|
 |
A.Krakowiak,
A.Owczarek,
M.Koziołkiewicz,
and
W.J.Stec
(2002).
Stereochemical course of Escherichia coli RNase H.
|
| |
Chembiochem,
3,
1242-1250.
|
 |
|
|
|
|
 |
D.Lener,
S.R.Budihas,
and
S.F.Le Grice
(2002).
Mutating conserved residues in the ribonuclease H domain of Ty3 reverse transcriptase affects specialized cleavage events.
|
| |
J Biol Chem,
277,
26486-26495.
|
 |
|
|
|
|
 |
D.Lim,
M.Orlova,
and
S.P.Goff
(2002).
Mutations of the RNase H C helix of the Moloney murine leukemia virus reverse transcriptase reveal defects in polypurine tract recognition.
|
| |
J Virol,
76,
8360-8373.
|
 |
|
|
|
|
 |
D.Renneberg,
E.Bouliong,
U.Reber,
D.Schümperli,
and
C.J.Leumann
(2002).
Antisense properties of tricyclo-DNA.
|
| |
Nucleic Acids Res,
30,
2751-2757.
|
 |
|
|
|
|
 |
J.D.Pata,
B.R.King,
and
T.A.Steitz
(2002).
Assembly, purification and crystallization of an active HIV-1 reverse transcriptase initiation complex.
|
| |
Nucleic Acids Res,
30,
4855-4863.
|
 |
|
|
|
|
 |
J.G.Julias,
M.J.McWilliams,
S.G.Sarafianos,
E.Arnold,
and
S.H.Hughes
(2002).
Mutations in the RNase H domain of HIV-1 reverse transcriptase affect the initiation of DNA synthesis and the specificity of RNase H cleavage in vivo.
|
| |
Proc Natl Acad Sci U S A,
99,
9515-9520.
|
 |
|
|
|
|
 |
J.W.Rausch,
D.Lener,
J.T.Miller,
J.G.Julias,
S.H.Hughes,
and
S.F.Le Grice
(2002).
Altering the RNase H primer grip of human immunodeficiency virus reverse transcriptase modifies cleavage specificity.
|
| |
Biochemistry,
41,
4856-4865.
|
 |
|
|
|
|
 |
M.Kvaratskhelia,
J.T.Miller,
S.R.Budihas,
L.K.Pannell,
and
S.F.Le Grice
(2002).
Identification of specific HIV-1 reverse transcriptase contacts to the viral RNA:tRNA complex by mass spectrometry and a primary amine selective reagent.
|
| |
Proc Natl Acad Sci U S A,
99,
15988-15993.
|
 |
|
|
|
|
 |
M.Kvaratskhelia,
S.R.Budihas,
and
S.F.Le Grice
(2002).
Pre-existing distortions in nucleic acid structure aid polypurine tract selection by HIV-1 reverse transcriptase.
|
| |
J Biol Chem,
277,
16689-16696.
|
 |
|
|
|
|
 |
M.P.Golinelli,
and
S.H.Hughes
(2002).
Nontemplated nucleotide addition by HIV-1 reverse transcriptase.
|
| |
Biochemistry,
41,
5894-5906.
|
 |
|
|
|
|
 |
N.Sluis-Cremer,
and
G.Tachedjian
(2002).
Modulation of the oligomeric structures of HIV-1 retroviral enzymes by synthetic peptides and small molecules.
|
| |
Eur J Biochem,
269,
5103-5111.
|
 |
|
|
|
|
 |
S.G.Sarafianos,
A.D.Clark,
K.Das,
S.Tuske,
J.J.Birktoft,
P.Ilankumaran,
A.R.Ramesha,
J.M.Sayer,
D.M.Jerina,
P.L.Boyer,
S.H.Hughes,
and
E.Arnold
(2002).
Structures of HIV-1 reverse transcriptase with pre- and post-translocation AZTMP-terminated DNA.
|
| |
EMBO J,
21,
6614-6624.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
W.H.Zhang,
E.S.Svarovskaia,
R.Barr,
and
V.K.Pathak
(2002).
Y586F mutation in murine leukemia virus reverse transcriptase decreases fidelity of DNA synthesis in regions associated with adenine-thymine tracts.
|
| |
Proc Natl Acad Sci U S A,
99,
10090-10095.
|
 |
|
|
|
|
 |
H.Q.Gao,
S.G.Sarafianos,
E.Arnold,
and
S.H.Hughes
(2001).
RNase H cleavage of the 5' end of the human immunodeficiency virus type 1 genome.
|
| |
J Virol,
75,
11874-11880.
|
 |
|
|
|
|
 |
J.G.Julias,
A.L.Ferris,
P.L.Boyer,
and
S.H.Hughes
(2001).
Replication of phenotypically mixed human immunodeficiency virus type 1 virions containing catalytically active and catalytically inactive reverse transcriptase.
|
| |
J Virol,
75,
6537-6546.
|
 |
|
|
|
|
 |
M.Negroni,
and
H.Buc
(2001).
Mechanisms of retroviral recombination.
|
| |
Annu Rev Genet,
35,
275-302.
|
 |
|
|
|
|
 |
M.Wilhelm,
O.Uzun,
E.H.Mules,
A.Gabriel,
and
F.X.Wilhelm
(2001).
Polypurine tract formation by Ty1 RNase H.
|
| |
J Biol Chem,
276,
47695-47701.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
| |