spacer
spacer

PDBsum entry 1hsg

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Hydrolase (acid proteinase) PDB id
1hsg

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
99 a.a. *
Ligands
MK1
Waters ×127
* Residue conservation analysis
PDB id:
1hsg
Name: Hydrolase (acid proteinase)
Title: Crystal structure at 1.9 angstroms resolution of human immunodeficiency virus (HIV) ii protease complexed with l-735,524, an orally bioavailable inhibitor of the HIV proteases
Structure: HIV-1 protease. Chain: a, b. Engineered: yes. Other_details: ny5 isolate
Source: Human immunodeficiency virus 1. Organism_taxid: 11676. Gene: HIV-1 protease from the ny5 isolate. Expressed in: escherichia coli. Expression_system_taxid: 562
Biol. unit: Dimer (from PQS)
Resolution:
2.00Å     R-factor:   0.166    
Authors: Z.Chen
Key ref: Z.Chen et al. (1994). Crystal structure at 1.9-A resolution of human immunodeficiency virus (HIV) II protease complexed with L-735,524, an orally bioavailable inhibitor of the HIV proteases. J Biol Chem, 269, 26344-26348. PubMed id: 7929352
Date:
31-Mar-95     Release date:   03-Apr-96    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P03367  (POL_HV1BR) -  Gag-Pol polyprotein from Human immunodeficiency virus type 1 group M subtype B (isolate BRU/LAI)
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
1447 a.a.
99 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class 1: E.C.2.7.7.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 2: E.C.2.7.7.49  - RNA-directed Dna polymerase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: DNA(n) + a 2'-deoxyribonucleoside 5'-triphosphate = DNA(n+1) + diphosphate
DNA(n)
+ 2'-deoxyribonucleoside 5'-triphosphate
= DNA(n+1)
+ diphosphate
   Enzyme class 3: E.C.2.7.7.7  - DNA-directed Dna polymerase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: DNA(n) + a 2'-deoxyribonucleoside 5'-triphosphate = DNA(n+1) + diphosphate
DNA(n)
+ 2'-deoxyribonucleoside 5'-triphosphate
= DNA(n+1)
+ diphosphate
   Enzyme class 4: E.C.3.1.-.-
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 5: E.C.3.1.13.2  - exoribonuclease H.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Exonucleolytic cleavage to 5'-phosphomonoester oligonucleotides in both 5'- to 3'- and 3'- to 5'-directions.
   Enzyme class 6: E.C.3.1.26.13  - retroviral ribonuclease H.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 7: E.C.3.4.23.16  - HIV-1 retropepsin.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Specific for a P1 residue that is hydrophobic, and P1' variable, but often Pro.
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
J Biol Chem 269:26344-26348 (1994)
PubMed id: 7929352  
 
 
Crystal structure at 1.9-A resolution of human immunodeficiency virus (HIV) II protease complexed with L-735,524, an orally bioavailable inhibitor of the HIV proteases.
Z.Chen, Y.Li, E.Chen, D.L.Hall, P.L.Darke, C.Culberson, J.A.Shafer, L.C.Kuo.
 
  ABSTRACT  
 
L-735,524 is a potent, orally bioavailable inhibitor of human immunodeficiency virus (HIV) protease currently in a Phase II clinical trial. We report here the three-dimensional structure of L-735,524 complexed to HIV-2 protease at 1.9-A resolution, as well as the structure of the native HIV-2 protease at 2.5-A resolution. The structure of HIV-2 protease is found to be essentially identical to that of HIV-1 protease. In the crystal lattice of the HIV-2 protease complexed with L-735,524, the inhibitor is chelated to the active site of the homodimeric enzyme in one orientation. This feature allows an unambiguous assignment of protein-ligand interactions from the electron density map. Both Fourier and difference Fourier maps reveal clearly the closure of the flap domains of the protease upon L-735,524 binding. Specific interactions between the enzyme and the inhibitor include the hydroxy group of the hydroxyaminopentane amide moiety of L-735,524 ligating to the carboxyl groups of the essential Asp-25 and Asp-25' enzymic residues and the amide oxygens of the inhibitor hydrogen bonding to the backbone amide nitrogen of Ile-50 and Ile-50' via an intervening water molecule. A second bridging water molecule is found between the amide nitrogen N2 of L-735,524 and the carboxyl oxygen of Asp-29'. Although other hydrogen bonds also add to binding, an equally significant contribution to affinity arises from hydrophobic interactions between the protease and the inhibitor throughout the pseudo-symmetric S1/S1', S2/S2', and S3/S3' regions of the enzyme. Except for its pyridine ring, all lipophilic moieties (t-butyl, indanyl, benzyl, and piperidyl) of L-735,524 are rigidly defined in the active site.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
20467461 K.M.Merz (2010).
Limits of Free Energy Computation for Protein-Ligand Interactions.
  J Chem Theory Comput, 6, 1018-1027.  
20565756 S.Brouillet, T.Valere, E.Ollivier, L.Marsan, and A.Vanet (2010).
Co-lethality studied as an asset against viral drug escape: the HIV protease case.
  Biol Direct, 5, 40.  
19798742 J.M.Louis, R.Ishima, A.Aniana, and J.M.Sayer (2009).
Revealing the dimer dissociation and existence of a folded monomer of the mature HIV-2 protease.
  Protein Sci, 18, 2442-2453.  
18988271 M.Arenas, M.C.Villaverde, and F.Sussman (2009).
Prediction and analysis of binding affinities for chemically diverse HIV-1 PR inhibitors by the modified SAFE_p approach.
  J Comput Chem, 30, 1229-1240.  
19261605 T.Kamenecka, J.Habel, D.Duckett, W.Chen, Y.Y.Ling, B.Frackowiak, R.Jiang, Y.Shin, X.Song, and P.LoGrasso (2009).
Structure-activity relationships and X-ray structures describing the selectivity of aminopyrazole inhibitors for c-Jun N-terminal kinase 3 (JNK3) over p38.
  J Biol Chem, 284, 12853-12861.
PDB codes: 3fi2 3fi3
18834890 A.Y.Kovalevsky, J.M.Louis, A.Aniana, A.K.Ghosh, and I.T.Weber (2008).
Structural evidence for effectiveness of darunavir and two related antiviral inhibitors against HIV-2 protease.
  J Mol Biol, 384, 178-192.
PDB codes: 3ebz 3ec0 3ecg
  18820715 E.Lefebvre, and C.A.Schiffer (2008).
Resilience to resistance of HIV-1 protease inhibitors: profile of darunavir.
  AIDS Rev, 10, 131-142.  
18375506 G.Verkhivker, G.Tiana, C.Camilloni, D.Provasi, and R.A.Broglia (2008).
Atomistic simulations of the HIV-1 protease folding inhibition.
  Biophys J, 95, 550-562.  
17849388 K.Wittayanarakul, S.Hannongbua, and M.Feig (2008).
Accurate prediction of protonation state as a prerequisite for reliable MM-PB(GB)SA binding free energy calculations of HIV-1 protease inhibitors.
  J Comput Chem, 29, 673-685.  
19373036 M.N.Nalam, and C.A.Schiffer (2008).
New approaches to HIV protease inhibitor drug design II: testing the substrate envelope hypothesis to avoid drug resistance and discover robust inhibitors.
  Curr Opin HIV AIDS, 3, 642-646.  
18004760 T.Hou, W.A.McLaughlin, and W.Wang (2008).
Evaluating the potency of HIV-1 protease drugs to combat resistance.
  Proteins, 71, 1163-1174.  
17474129 S.Chellappan, V.Kairys, M.X.Fernandes, C.Schiffer, and M.K.Gilson (2007).
Evaluation of the substrate envelope hypothesis for inhibitors of HIV-1 protease.
  Proteins, 68, 561-567.  
17360759 S.Muzammil, A.A.Armstrong, L.W.Kang, A.Jakalian, P.R.Bonneau, V.Schmelmer, L.M.Amzel, and E.Freire (2007).
Unique thermodynamic response of tipranavir to human immunodeficiency virus type 1 protease drug resistance mutations.
  J Virol, 81, 5144-5154.
PDB codes: 2o4k 2o4l 2o4n 2o4p 2o4s
16892342 E.Specker, J.Böttcher, S.Brass, A.Heine, H.Lilie, A.Schoop, G.Müller, N.Griebenow, and G.Klebe (2006).
Unexpected novel binding mode of pyrrolidine-based aspartyl protease inhibitors: design, synthesis and crystal structure in complex with HIV protease.
  ChemMedChem, 1, 106-117.  
16941468 H.B.Thorsteinsdottir, T.Schwede, V.Zoete, and M.Meuwly (2006).
How inaccuracies in protein structure models affect estimates of protein-ligand interactions: computational analysis of HIV-I protease inhibitor binding.
  Proteins, 65, 407-423.  
16569872 M.Prabu-Jeyabalan, N.M.King, E.A.Nalivaika, G.Heilek-Snyder, N.Cammack, and C.A.Schiffer (2006).
Substrate envelope and drug resistance: crystal structure of RO1 in complex with wild-type human immunodeficiency virus type 1 protease.
  Antimicrob Agents Chemother, 50, 1518-1521.
PDB code: 2f3k
15701681 A.T.Laurie, and R.M.Jackson (2005).
Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites.
  Bioinformatics, 21, 1908-1916.  
16127059 J.Yanchunas, D.R.Langley, L.Tao, R.E.Rose, J.Friborg, R.J.Colonno, and M.L.Doyle (2005).
Molecular basis for increased susceptibility of isolates with atazanavir resistance-conferring substitution I50L to other protease inhibitors.
  Antimicrob Agents Chemother, 49, 3825-3832.  
15526325 M.Kontoyianni, G.S.Sokol, and L.M.McClellan (2005).
Evaluation of library ranking efficacy in virtual screening.
  J Comput Chem, 26, 11-22.  
15066177 B.Mahalingam, Y.F.Wang, P.I.Boross, J.Tozser, J.M.Louis, R.W.Harrison, and I.T.Weber (2004).
Crystal structures of HIV protease V82A and L90M mutants reveal changes in the indinavir-binding site.
  Eur J Biochem, 271, 1516-1524.
PDB codes: 1sdt 1sdu 1sdv
15340915 M.Lepsík, Z.Kríz, and Z.Havlas (2004).
Efficiency of a second-generation HIV-1 protease inhibitor studied by molecular dynamics and absolute binding free energy calculations.
  Proteins, 57, 279-293.  
15489160 N.M.King, M.Prabu-Jeyabalan, E.A.Nalivaika, and C.A.Schiffer (2004).
Combating susceptibility to drug resistance: lessons from HIV-1 protease.
  Chem Biol, 11, 1333-1338.  
15597206 X.Chen, I.T.Weber, and R.W.Harrison (2004).
Molecular dynamics simulations of 14 HIV protease mutants in complexes with indinavir.
  J Mol Model, 10, 373-381.  
14517908 A.Nayeem, S.Krystek, and T.Stouch (2003).
An assessment of protein-ligand binding site polarizability.
  Biopolymers, 70, 201-211.  
14615656 L.Kinman, S.J.Brodie, C.C.Tsai, T.Bui, K.Larsen, A.Schmidt, D.Anderson, W.R.Morton, S.L.Hu, and R.J.Ho (2003).
Lipid-drug association enhanced HIV-1 protease inhibitor indinavir localization in lymphoid tissues and viral load reduction: a proof of concept study in HIV-2287-infected macaques.
  J Acquir Immune Defic Syndr, 34, 387-397.  
12502847 M.Prabu-Jeyabalan, E.A.Nalivaika, N.M.King, and C.A.Schiffer (2003).
Viability of a drug-resistant human immunodeficiency virus type 1 protease variant: structural insights for better antiviral therapy.
  J Virol, 77, 1306-1315.
PDB codes: 1mt7 1mt8 1mt9 1mtb 1n49
12759910 S.Sirois, E.I.Proynov, J.F.Truchon, C.M.Tsoukas, and D.R.Salahub (2003).
A density functional study of the hydrogen-bond network within the HIV-1 protease catalytic site cleft.
  J Comput Chem, 24, 1110-1119.  
12663790 T.D.Wu, C.A.Schiffer, M.J.Gonzales, J.Taylor, R.Kantor, S.Chou, D.Israelski, A.R.Zolopa, W.J.Fessel, and R.W.Shafer (2003).
Mutation patterns and structural correlates in human immunodeficiency virus type 1 protease following different protease inhibitor treatments.
  J Virol, 77, 4836-4847.  
12898670 T.Gossas, and U.H.Danielson (2003).
Analysis of the pH-dependencies of the association and dissociation kinetics of HIV-1 protease inhibitors.
  J Mol Recognit, 16, 203-212.  
  11790852 N.M.King, L.Melnick, M.Prabu-Jeyabalan, E.A.Nalivaika, S.S.Yang, Y.Gao, X.Nie, C.Zepp, D.L.Heefner, and C.A.Schiffer (2002).
Lack of synergy for inhibitors targeting a multi-drug-resistant HIV-1 protease.
  Protein Sci, 11, 418-429.
PDB codes: 1k6c 1k6p 1k6t 1k6v
11932232 R.W.Shafer (2002).
Genotypic testing for human immunodeficiency virus type 1 drug resistance.
  Clin Microbiol Rev, 15, 247-277.  
11170214 B.Pillai, K.K.Kannan, and M.V.Hosur (2001).
1.9 A x-ray study shows closed flap conformation in crystals of tethered HIV-1 PR.
  Proteins, 43, 57-64.
PDB code: 1g6l
11468361 G.Pujadas, and J.Palau (2001).
Molecular mimicry of substrate oxygen atoms by water molecules in the beta-amylase active site.
  Protein Sci, 10, 1645-1657.  
11009599 M.J.Todd, I.Luque, A.Velázquez-Campoy, and E.Freire (2000).
Thermodynamic basis of resistance to HIV-1 protease inhibition: calorimetric analysis of the V82F/I84V active site resistant mutant.
  Biochemistry, 39, 11876-11883.  
10739910 S.Munshi, Z.Chen, Y.Yan, Y.Li, D.B.Olsen, H.B.Schock, B.B.Galvin, B.Dorsey, and L.C.Kuo (2000).
An alternate binding site for the P1-P3 group of a class of potent HIV-1 protease inhibitors as a result of concerted structural change in the 80s loop of the protease.
  Acta Crystallogr D Biol Crystallogr, 56, 381-388.
PDB codes: 1c6x 1c6y 1c6z 1c70
10409825 B.N.Dominy, and C.L.Brooks (1999).
Methodology for protein-ligand binding studies: application to a model for drug resistance, the HIV/FIV protease system.
  Proteins, 36, 318-331.  
10508781 R.Ishima, D.I.Freedberg, Y.X.Wang, J.M.Louis, and D.A.Torchia (1999).
Flap opening and dimer-interface flexibility in the free and inhibitor-bound HIV protease, and their implications for function.
  Structure, 7, 1047-1055.  
9790666 P.J.Ala, E.E.Huston, R.M.Klabe, P.K.Jadhav, P.Y.Lam, and C.H.Chang (1998).
Counteracting HIV-1 protease drug resistance: structural analysis of mutant proteases complexed with XV638 and SD146, cyclic urea amides with broad specificities.
  Biochemistry, 37, 15042-15049.
PDB codes: 1bv7 1bv9 1bwa 1bwb
  10082371 S.W.Rick, I.A.Topol, J.W.Erickson, and S.K.Burt (1998).
Molecular mechanisms of resistance: free energy calculations of mutation effects on inhibitor binding to HIV-1 protease.
  Protein Sci, 7, 1750-1756.  
9136873 E.M.Towler, S.K.Thompson, T.Tomaszek, and C.Debouck (1997).
Identification of a loop outside the active site cavity of the human immunodeficiency virus proteases which confers inhibitor specificity.
  Biochemistry, 36, 5128-5133.  
7613867 J.P.Priestle, A.Fässler, J.Rösel, M.Tintelnot-Blomley, P.Strop, and M.G.Grütter (1995).
Comparative analysis of the X-ray structures of HIV-1 and HIV-2 proteases in complex with CGP 53820, a novel pseudosymmetric inhibitor.
  Structure, 3, 381-389.
PDB codes: 1hih 1hii
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer