spacer
spacer

PDBsum entry 2iaj

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Transferase PDB id
2iaj

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
551 a.a. *
415 a.a. *
Ligands
ATP
GOL ×2
Metals
_MN ×3
_NA
Waters ×308
* Residue conservation analysis
PDB id:
2iaj
Name: Transferase
Title: Crystal structure of k103n/y181c mutant HIV-1 reverse transcriptase (rt) in complex with atp
Structure: Reverse transcriptase/ribonuclease h (p66 rt). Chain: a. Fragment: p66. Engineered: yes. Mutation: yes. Reverse transcriptase/ribonuclease h. P51 rt. Chain: b. Fragment: p51. Engineered: yes.
Source: Human immunodeficiency virus type 1 bh10. Organism_taxid: 11678. Strain: bh10 isolate. Gene: pol. Expressed in: escherichia coli. Expression_system_taxid: 562. Expression_system_taxid: 562
Resolution:
2.50Å     R-factor:   0.233     R-free:   0.284
Authors: K.Das,E.Arnold
Key ref:
K.Das et al. (2007). Crystal Structures of Clinically Relevant Lys103Asn/Tyr181Cys Double Mutant HIV-1 Reverse Transcriptase in Complexes with ATP and Non-nucleoside Inhibitor HBY 097. J Mol Biol, 365, 77-89. PubMed id: 17056061 DOI: 10.1016/j.jmb.2006.08.097
Date:
08-Sep-06     Release date:   19-Dec-06    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P03366  (POL_HV1B1) -  Gag-Pol polyprotein from Human immunodeficiency virus type 1 group M subtype B (isolate BH10)
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
1447 a.a.
551 a.a.*
Protein chain
Pfam   ArchSchema ?
P03366  (POL_HV1B1) -  Gag-Pol polyprotein from Human immunodeficiency virus type 1 group M subtype B (isolate BH10)
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
1447 a.a.
415 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 6 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class 1: Chains A, B: E.C.2.7.7.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 2: Chains A, B: E.C.2.7.7.49  - RNA-directed Dna polymerase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: DNA(n) + a 2'-deoxyribonucleoside 5'-triphosphate = DNA(n+1) + diphosphate
DNA(n)
+ 2'-deoxyribonucleoside 5'-triphosphate
= DNA(n+1)
+ diphosphate
   Enzyme class 3: Chains A, B: E.C.2.7.7.7  - DNA-directed Dna polymerase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: DNA(n) + a 2'-deoxyribonucleoside 5'-triphosphate = DNA(n+1) + diphosphate
DNA(n)
+ 2'-deoxyribonucleoside 5'-triphosphate
= DNA(n+1)
+ diphosphate
   Enzyme class 4: Chains A, B: E.C.3.1.-.-
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 5: Chains A, B: E.C.3.1.13.2  - exoribonuclease H.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Exonucleolytic cleavage to 5'-phosphomonoester oligonucleotides in both 5'- to 3'- and 3'- to 5'-directions.
   Enzyme class 6: Chains A, B: E.C.3.1.26.13  - retroviral ribonuclease H.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 7: Chains A, B: E.C.3.4.23.16  - HIV-1 retropepsin.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Specific for a P1 residue that is hydrophobic, and P1' variable, but often Pro.
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1016/j.jmb.2006.08.097 J Mol Biol 365:77-89 (2007)
PubMed id: 17056061  
 
 
Crystal Structures of Clinically Relevant Lys103Asn/Tyr181Cys Double Mutant HIV-1 Reverse Transcriptase in Complexes with ATP and Non-nucleoside Inhibitor HBY 097.
K.Das, S.G.Sarafianos, A.D.Clark, P.L.Boyer, S.H.Hughes, E.Arnold.
 
  ABSTRACT  
 
Lys103Asn and Tyr181Cys are the two mutations frequently observed in patients exposed to various non-nucleoside reverse transcriptase inhibitor drugs (NNRTIs). Human immunodeficiency virus (HIV) strains containing both reverse transcriptase (RT) mutations are resistant to all of the approved NNRTI drugs. We have determined crystal structures of Lys103Asn/Tyr181Cys mutant HIV-1 RT with and without a bound non-nucleoside inhibitor (HBY 097, (S)-4-isopropoxycarbonyl-6-methoxy-3-(methylthio-methyl)-3,4-dihydroquinoxalin-2(1H)-thione) at 3.0 A and 2.5 A resolution, respectively. The structure of the double mutant RT/HBY 097 complex shows a rearrangement of the isopropoxycarbonyl group of HBY 097 compared to its binding with wild-type RT. HBY 097 makes a hydrogen bond with the thiol group of Cys181 that helps the drug retain potency against the Tyr181Cys mutation. The structure of the unliganded double mutant HIV-1 RT showed that Lys103Asn mutation facilitates coordination of a sodium ion with Lys101 O, Asn103 N and O(delta1), Tyr188 O(eta), and two water molecules. The formation of the binding pocket requires the removal of the sodium ion. Although the RT alone and the RT/HBY 097 complex were crystallized in the presence of ATP, only the RT has an ATP coordinated with two Mn(2+) at the polymerase active site. The metal coordination mimics a reaction intermediate state in which complete octahedral coordination was observed for both metal ions. Asp186 coordinates at an axial position whereas the carboxylates of Asp110 and Asp185 are in the planes of coordination of both metal ions. The structures provide evidence that NNRTIs restrict the flexibility of the YMDD loop and prevent the catalytic aspartate residues from adopting their metal-binding conformations.
 
  Selected figure(s)  
 
Figure 1.
Figure 1. Effects of the two mutations (Lys103Asn and Tyr181Cys) on the structure of unliganded HIV-1 RT. (a) A stereo view of the NNIBP region of the double mutant RT/ATP structure. The composite simulated annealing omit map (2|F[o]|–|F[c]|) electron density (cyan) contoured at 1.2σ defines the coordination of a Na ion at the NNIBP region; OW1 and OW2 are two water molecules. (b) The NNIBP region of the double mutant (Lys103Asn/Tyr181Cys) HIV-1 RT. The mutated amino acids have altered interactions with the surrounding amino acids. (c) The NNIBP region of the wild type unliganded HIV-1 RT structure.^13
Figure 2.
Figure 2. Binding mode of HBY 097 to the Lys103Asn/Tyr181Cys double mutant RT. (a) Stereo view of the (2|F[o]|–|F[c]|) electron density (contoured at 1.2σ) covering HBY 097 (cyan) and Cys181 (magenta). The dotted line represents the hydrogen bond between the thiol group of Cys181 and HBY 097. Electrostatic potential surface^62 showing the NNIBP region of (b) the double mutant RT/HBY 097 and (c) wild-type RT/HBY 097^13 structures.
 
  The above figures are reprinted by permission from Elsevier: J Mol Biol (2007, 365, 77-89) copyright 2007.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
22421880 A.Engelman, and P.Cherepanov (2012).
The structural biology of HIV-1: mechanistic and therapeutic insights.
  Nat Rev Microbiol, 10, 279-290.  
21449841 S.Ibe, and W.Sugiura (2011).
Clinical significance of HIV reverse-transcriptase inhibitor-resistance mutations.
  Future Microbiol, 6, 295-315.  
20120021 G.J.van Westen, J.K.Wegner, A.Bender, A.P.Ijzerman, and H.W.van Vlijmen (2010).
Mining protein dynamics from sets of crystal structures using "consensus structures".
  Protein Sci, 19, 742-752.  
19900463 J.A.Brown, K.A.Fiala, J.D.Fowler, S.M.Sherrer, S.A.Newmister, W.W.Duym, and Z.Suo (2010).
A novel mechanism of sugar selection utilized by a human X-family DNA polymerase.
  J Mol Biol, 395, 282-290.  
21088701 K.A.Delviks-Frankenberry, G.N.Nikolenko, and V.K.Pathak (2010).
The "Connection" Between HIV Drug Resistance and RNase H.
  Viruses, 2, 1476-1503.  
20376302 K.Singh, B.Marchand, K.A.Kirby, E.Michailidis, and S.G.Sarafianos (2010).
Structural Aspects of Drug Resistance and Inhibition of HIV-1 Reverse Transcriptase.
  Viruses, 2, 606-638.  
19665597 M.Götte, J.W.Rausch, B.Marchand, S.Sarafianos, and S.F.Le Grice (2010).
Reverse transcriptase in motion: conformational dynamics of enzyme-substrate interactions.
  Biochim Biophys Acta, 1804, 1202-1212.  
20111609 M.Yokoyama, H.Mori, and H.Sato (2010).
Allosteric regulation of HIV-1 reverse transcriptase by ATP for nucleotide selection.
  PLoS One, 5, e8867.  
20852643 X.Tu, K.Das, Q.Han, J.D.Bauman, A.D.Clark, X.Hou, Y.V.Frenkel, B.L.Gaffney, R.A.Jones, P.L.Boyer, S.H.Hughes, S.G.Sarafianos, and E.Arnold (2010).
Structural basis of HIV-1 resistance to AZT by excision.
  Nat Struct Mol Biol, 17, 1202-1209.
PDB codes: 3kle 3klf 3klg 3klh 3kli
19284375 E.Skordalakes (2009).
Telomerase structure paves the way for new cancer therapies.
  Future Oncol, 5, 163-167.  
19812032 K.Das, R.P.Bandwar, K.L.White, J.Y.Feng, S.G.Sarafianos, S.Tuske, X.Tu, A.D.Clark, P.L.Boyer, X.Hou, B.L.Gaffney, R.A.Jones, M.D.Miller, S.H.Hughes, and E.Arnold (2009).
Structural basis for the role of the K65r mutation in HIV-1 reverse transcriptase polymerization, excision antagonism, and tenofovir resistance.
  J Biol Chem, 284, 35092-35100.
PDB codes: 3jsm 3jyt
19022262 S.G.Sarafianos, B.Marchand, K.Das, D.M.Himmel, M.A.Parniak, S.H.Hughes, and E.Arnold (2009).
Structure and function of HIV-1 reverse transcriptase: molecular mechanisms of polymerization and inhibition.
  J Mol Biol, 385, 693-713.  
19006142 Z.K.Sweeney, J.J.Kennedy-Smith, J.Wu, N.Arora, J.R.Billedeau, J.P.Davidson, J.Fretland, J.Q.Hang, G.M.Heilek, S.F.Harris, D.Hirschfeld, P.Inbar, H.Javanbakht, J.A.Jernelius, Q.Jin, Y.Li, W.Liang, R.Roetz, K.Sarma, M.Smith, D.Stefanidis, G.Su, J.M.Suh, A.G.Villaseñor, M.Welch, F.J.Zhang, and K.Klumpp (2009).
Diphenyl ether non-nucleoside reverse transcriptase inhibitors with excellent potency against resistant mutant viruses and promising pharmacokinetic properties.
  ChemMedChem, 4, 88-99.  
18216099 A.Hachiya, E.N.Kodama, S.G.Sarafianos, M.M.Schuckmann, Y.Sakagami, M.Matsuoka, M.Takiguchi, H.Gatanaga, and S.Oka (2008).
Amino acid mutation N348I in the connection subdomain of human immunodeficiency virus type 1 reverse transcriptase confers multiclass resistance to nucleoside and nonnucleoside reverse transcriptase inhibitors.
  J Virol, 82, 3261-3270.  
18758444 A.J.Gillis, A.P.Schuller, and E.Skordalakes (2008).
Structure of the Tribolium castaneum telomerase catalytic subunit TERT.
  Nature, 455, 633-637.
PDB codes: 3du5 3du6
17975836 B.Sharma, E.Crespan, G.Villani, and G.Maga (2008).
The balance between the rates of incorporation and pyrophosphorolytic removal influences the HIV-1 reverse transcriptase bypass of an abasic site with deoxy-, dideoxy-, and ribonucleotides.
  Proteins, 71, 715-727.  
18768973 J.York, D.Dai, S.M.Amberg, and J.H.Nunberg (2008).
pH-induced activation of arenavirus membrane fusion is antagonized by small-molecule inhibitors.
  J Virol, 82, 10932-10939.  
18230722 K.Das, J.D.Bauman, A.D.Clark, Y.V.Frenkel, P.J.Lewi, A.J.Shatkin, S.H.Hughes, and E.Arnold (2008).
High-resolution structures of HIV-1 reverse transcriptase/TMC278 complexes: strategic flexibility explains potency against resistance mutations.
  Proc Natl Acad Sci U S A, 105, 1466-1471.
PDB codes: 2zd1 2ze2 3bgr
18338369 P.Srivab, and S.Hannongbua (2008).
A study of the binding energies of efavirenz to wild-type and K103N/Y181C HIV-1 reverse transcriptase based on the ONIOM method.
  ChemMedChem, 3, 803-811.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer